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Polymorphism

A type can be a parameter of a function
Example: the identity function
Definition ide := fun (X: Type) => fun (x: X) => x.
Definition ide (X: Type) (x: X) := x.



Coq

J.-F. Monin

Polymorphism

Lists

Implicit arguments
When using the identity function, the first argument can be
automatically inferred from the second
Example
id nat 3
id 3

Local declaration
Definition id {X: Type} (x: X) := x.

Simplified application
id 3

Recovering explicit application
@id nat
id (X:=nat)

Global declaration
Set Implicit Arguments.
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Polymorphic inductive definition

Inductive list (X: Set) : Set :=
| nil : list X
| cons : X -> list X -> list X.

On Type
Can be used in more situations (e.g., lists of predicates)

Inductive list (X: Type) : Type :=
| nil : list X
| cons : X -> list X -> list X.
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Basic important properties

app : for appending two lists

nil is neutral on the left and on the right for app
I left : by reflexivity
I right : by induction

app is associative
I app (app u v) w = app u (app v w)

just by induction on u
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Additional material

See coq files Lecture07 lists
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