
Coq

J.-F. Monin

Polymorphism

Lists

The Coq proof assistant :
principles and practice

J.-F. Monin

Université Grenoble Alpes

2016

Lecture 7



Coq

J.-F. Monin

Polymorphism

Lists

Outline

Polymorphism

Lists



Coq

J.-F. Monin

Polymorphism

Lists

Outline

Polymorphism

Lists



Coq

J.-F. Monin

Polymorphism

Lists

Outline

Polymorphism

Lists



Coq

J.-F. Monin

Polymorphism

Lists

Polymorphism

A type can be a parameter of a function
Example: the identity function
Definition ide := fun (X: Type) => fun (x: X) => x.
Definition ide (X: Type) (x: X) := x.



Coq

J.-F. Monin

Polymorphism

Lists

Implicit arguments
When using the identity function, the first argument can be
automatically inferred from the second
Example
id nat 3
id 3

Local declaration
Definition id {X: Type} (x: X) := x.

Simplified application
id 3

Recovering explicit application
@id nat
id (X:=nat)

Global declaration
Set Implicit Arguments.



Coq

J.-F. Monin

Polymorphism

Lists

Implicit arguments
When using the identity function, the first argument can be
automatically inferred from the second
Example
id nat 3
id 3

Local declaration
Definition id {X: Type} (x: X) := x.

Simplified application
id 3

Recovering explicit application
@id nat
id (X:=nat)

Global declaration
Set Implicit Arguments.



Coq

J.-F. Monin

Polymorphism

Lists

Implicit arguments
When using the identity function, the first argument can be
automatically inferred from the second
Example
id nat 3
id 3

Local declaration
Definition id {X: Type} (x: X) := x.

Simplified application
id 3

Recovering explicit application
@id nat
id (X:=nat)

Global declaration
Set Implicit Arguments.



Coq

J.-F. Monin

Polymorphism

Lists

Outline

Polymorphism

Lists



Coq

J.-F. Monin

Polymorphism

Lists

Lists

Polymorphic inductive definition

Inductive list (X: Set) : Set :=
| nil : list X
| cons : X -> list X -> list X.

On Type
Can be used in more situations (e.g., lists of predicates)

Inductive list (X: Type) : Type :=
| nil : list X
| cons : X -> list X -> list X.



Coq

J.-F. Monin

Polymorphism

Lists

Basic important properties

app : for appending two lists

nil is neutral on the left and on the right for app
I left : by reflexivity
I right : by induction

app is associative
I app (app u v) w = app u (app v w)

just by induction on u



Coq

J.-F. Monin

Polymorphism

Lists

Basic important properties

app : for appending two lists

nil is neutral on the left and on the right for app
I left : by reflexivity
I right : by induction

app is associative
I app (app u v) w = app u (app v w)

just by induction on u



Coq

J.-F. Monin

Polymorphism

Lists

Basic important properties

app : for appending two lists

nil is neutral on the left and on the right for app
I left : by reflexivity
I right : by induction

app is associative
I app (app u v) w = app u (app v w)

just by induction on u



Coq

J.-F. Monin

Polymorphism

Lists

Additional material

See coq files Lecture07 lists


	Polymorphism
	Lists

