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Fixpoints

Recursive calls
must be on a structurally smaller argument.

Available for all inductive types
Not only natural numbers

Induction is a special case of a fixpoint
Not only natural numbers
Computational interpretation
More secure
Subtleties on quantification
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Syntax of fixpoints

Consider a recursive function f with arguments x. . . z,
including y

Fixpoint f (x:A). . .(z:C) {struct y}: R :=
. . .
match y with

. . .
| Construct. . .y’. . . => . . . (f. . .y’. . .) . . .
. . .

end
. . .

However, {struct y} can be omitted:
Coq tries to guess which is the structurally decreasing
argument from the body of f
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Subtle inductions

Proofs by induction may need a strengthening of the
statement

I additional conjuncts
I put more quantifications ∀ in the scope of the induction
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Why induction matters

Tool of choice for proving properties on an infinite (but
countable) number of values
Other methods are

I either weaker (prove less properties)
I or rely on induction in a hidden way

Required in many applications in computer science
I reasoning on data structures
I language syntax
I programming language semantics
I proofs of algorithms
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Strength of induction

Induction requires ingenuity, in general
I a consequence of Gödel incompleteness theorems
I support for induction is a discriminating criterium for

automated provers

Coq supports induction
I proof search 6= proof checking
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Several forms of induction

I Basic induction on natural numbers (IN)

I Well-founded induction on (IN, <)
I Well-founded induction on (S,R), where S is an

arbitrary set and R a suitable relation on S
I Transfinite induction
I Structural induction

We will focus on structural induction, because it is

I a very natural extension of basic induction but on lists,
trees, terms . . . instead of IN

I close to computer science concerns
I yet powerful enough to embed all other kinds of

induction
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Proving something on all natural numbers

Let us define x ≤ y def
== ∃d , d + x = y

Prove ∀x , 2+ x ≤ 5+ x

I Take an arbitrary natural number x
I Remark that 3+ (2+ x) = 5+ x
I Hence ∃d , d + (2+ x) = 5+ x
I By definition of ≤ we get: 2+ x ≤ 5+ x

This proof is uniform : it does not depend on the value of x
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Looking at x : (non-uniform) proof by cases

Prove ∀x , x ≤ 4⇒ ∃y , x = 2y ∨ x = 1+ 2y

The proof is not uniform: different is each case

I Case x = 0: take y = 0, left, check 0 = 2.0
I Case x = 1: take y = 0, right, check 1 = 1+ 2.0
I Case x = 2: take y = 1, left, check 2 = 2.1
I Case x = 3: take y = 1, right, check 3 = 1+ 2.1
I Case x = 4: take y = 2, left, check 4 = 2.2
I Case x = 5+ n: don’t care
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What do you think of the following one?

x ≤ y def
== ∃d , d + x = y

Prove ∀x , x ≤ 3x

I Take an arbitrary natural number x
I Remark that 2x + x = 3x
I Hence ∃d , d + x = 3x
I That is x ≤ 3x

Is this proof uniform? Yes: no case analysis on x
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Common scheme for a proof by cases on nat

Basic scheme

P 0 ∀n,P (S n)
∀x ,P x

Variants

P 0 P 1 ∀n,P (S (S n))
∀x ,P x

P 0 P 1 P 2 ∀n,P (S (S (S n)))
∀x ,P x

etc.
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∀x ,P x
In order to prove ∀x ,P x,
prove P on each natural number n

∞ cases to consider

Does not work. . .

Unless we have a systematical way to construct a proof of
P n for each n?
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1. Prove P 0
2. Prove P 0⇒ P 1
3. Prove P 1⇒ P 2
4. etc.

From 1. and 2. we get P 1
From the latter and 3. we get P 2
Etc.

At first sight, no progress:
infinite number of proof obligations

Unless ve prove (uniformly) 2. 3. 4. etc. at once:

∀n, P n⇒ P (S n)
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Induction on nat

P 0 ∀n,P n⇒ P (S n)
∀n,P n

P n is called the induction hypothesis.

Remark: proof by cases

P 0 ∀n,P (S n)
∀n,P n

is a special case of induction – the induction hypothesis is
not used.
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Primitive recursion

Example: addition
Given some fixed natural m, what is to “add to m”?

I 0+m = m
I S n +m = S(n +m)

Method for defining such functions f
I provide the returned value when the argument is 0
I provide the returned value when the argument is S n

this value may depend on n and on f n

Note that f may have other fixed arguments

Official name in the jargon of logic : primitive recursion
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Properties of +

(Almost all) basic properties of + are proved by induction

I ∀n, 0+ n = n . . .?
I ∀n, n + 0 = n . . .?

Commutativity, associativity

Similarly for subtraction, multiplication. . .

Interest: foundations (Coq library); fundamental exercises
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Constructive (i.e. functional) reading

A proof of ∀n, P n⇒ P (S n) is a function which,
given 2 arguments:

I a nat n
I a proof pn of P n

yields a proof of P (S n)

Let f be such a proof.
Let p0 be a proof of P 0

Then
I f 1 (f 0 p0) is a proof of P 2
I given any nat n, f n (. . . (f 1 (f 0 p0)) . . .)

is a proof of P (S n)
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Example:
the product of 2 consecutive numbers is even

Formally: ∀n,∃k, n.(S n) = 2.k︸ ︷︷ ︸
P n

I For n = 0: we have n.(S n) = 0.1 = 0 = 2.0,
taking k = 0 yields P 0

I (Uniform) proof of ∀n, P n⇒ P(S n)
I For an arbitrary n ∈ nat, assume P n

i.e. n.(S n) = 2.y for some y
I Then (S n).(S (S n)) = (2+ n).(S n)

= 2.(S n) + 2.y
= 2.(S n + y)

I Taking k = S n + y , we get P(S n), QED.
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Constructive (i.e. functional) reading
A proof of ∃x ,P x is a pair (ex intro w p),
written (w , p) for short,
where w is a value (the witness) and p a proof of P w

Let g be the previous proof of ∀n,∃k, n.(S n) = 2.k︸ ︷︷ ︸
P n

which uses f , a proof of ∀n, P n⇒ P(S n)

Reducing a proof of g 10 yields
f 9 (f 8 (. . . (f 0 p0) . . .)

which reduces to (55, e110):
I p0 = (0, e0)
I p1 = f 0 p0 reduces to (1, e2)
I p2 = f 1 p1 reduces to (3, e6)
I . . .

Where ei : i = i which reduces to reflexivity of equality on i
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Constructive reading in Set
However, reductions are not performed in Prop
(except for theorems finishing with Defined instead of Qed)

Using the existence in Set:
A proof of {x | P x} is a pair (exist w p),
written (w , p) for short,
where w is a value (the witness) and p a proof of P w

Let g be the previous proof of ∀n, {k | n.(S n) = 2.k}︸ ︷︷ ︸
P n

which uses f , a proof of ∀n, P n⇒ P(S n)

Reducing a proof of g 10 yields
f 9 (f 8 (. . . (f 0 p0) . . .)

which reduces to (55, e110)
The proof ei reduces, in principle, to reflexivity of equality on i ,
but reductions are not performed there (but we don’t care)
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About excluded middle

In Prop
A proof of ∀n, even n ∨ ¬even n︸ ︷︷ ︸

P n
is a function f which provides for each n a precise answer:

I either yes: n is even, here is a proof
I or no: n is not even, here is a proof

E.g., reducing f 10 will answer: yes + proof of even 10

2 possibilities
I Cheating, using classical logic: ∀P,P ∨ ¬P
I Really provide a proof, by induction on n

In Set: testing functions returning additional knowledge
A proof of ∀n, {even n}+ {¬even n}︸ ︷︷ ︸

P n

must be constructive

Excluded middle not allowed
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Subtelties with induction

Consider the following version of addition
Coq syntax for function application, see below why

I addt 0m = m
I addt (S n)m = addt n (S m)

Beyond primitive recursion, see explanation below

Prove addt n m = n +m forall n and m

First try
Prove addt n m = n +m by induction on n
(Previous model) → Fails

Second try
Prove ∀m, addt n m = n +m by induction on n
Works
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Explanations on addt

I addt 0m = m
I addt (S n)m = addt n (S m)

Means

I addt 0 = fun m⇒ m
I addt (S n) = fun m⇒ addt n (S m)

Official name in the jargon of logic :
higher order primitive recursion
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More advanced example (homework)

I fib 0 = 1
I fib 1 = 1
I fib (S (S n)) = fib n + fib (S n)

Harmless shorthand for a truly primitive recursion, where we define
fib n and fib (S n) at the same time.

I lfib 0 a b = a
I lfib (S n) a b = lfib n b (a + b)

Prove ∀n, lfib n 1 1 = fib n.
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What if there is no zero?

On nat

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

P O ∀n,P n→ P (S n)
∀x ,P x

On wrongnat

Inductive wrongnat : Set :=
| Swn : wrongnat -> wrongnat.

∀n,P n→ P (Swn n)
∀x ,P x
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Interpretation

A value in an inductive type
is made with finitely many constructors

I A nat comes from O
I A wrongnat comes from nowhere

The conclusion of

∀n,P n→ P (Swn n)
∀x ,P x

can only be applied to some wrongnat
But assuming such a value is inconsistent !

I Application: take for P the predicate constantly false:
fun n→ False
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