The Coq proof assistant : principles and practice

J.-F. Monin

Université Grenoble Alpes

2016

Lecture 6

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Coq

J.-F. Monin

Fixpoints and induction

Induction

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

Outline

Fixpoints and induction

Coq

J.-F. Monin

Fixpoints and induction

Induction

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・ロト・日本・ キャー キャー シックション

Induction

Induction on natural numbers Functional reading of Induction Refinements on Constructive Logic

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Induction

Induction on natural numbers Functional reading of Induction Refinements on Constructive Logic

Induction and quantifier management

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Induction

Induction on natural numbers Functional reading of Induction Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

Outline

Fixpoints and induction

Induction

Induction on natural numbers Functional reading of Induction Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Recursive calls

must be on a structurally smaller argument.

Available for all inductive types

Not only natural numbers

Induction is a special case of a fixpoint

Not only natural numbers Computational interpretation More secure Subtleties on quantification

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

Consider a recursive function **f** with arguments x...z, including **y**

```
Fixpoint f (x:A)...(z:C) {struct y}: R :=
...
match y with
...
| Construct...y'... => ... (f...y'...) ...
end
...
```

Coq

```
J.-F. Monin
```

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

```
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ
```

Consider a recursive function **f** with arguments \mathbf{x} ... \mathbf{z} , including \mathbf{y}

```
Fixpoint f (x:A)...(z:C) {struct y}: R :=
...
match y with
...
| Construct...y'... => ... (f...y'...) ...
end
...
```

However, {**struct y**} can be omitted: Coq tries to guess which is the structurally decreasing argument from the body of **f**

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

Proofs by induction may need a strengthening of the statement

- additional conjuncts
- \blacktriangleright put more quantifications \forall in the scope of the induction

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Induction

Induction on natural numbers Functional reading of Induction Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Tool of choice for proving properties on an infinite (but countable) number of values

Other methods are

- either weaker (prove less properties)
- or rely on induction in a hidden way

Coq

J.-F. Monin

Fixpoints and induction

Induction

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Tool of choice for proving properties on an infinite (but countable) number of values

Other methods are

- either weaker (prove less properties)
- or rely on induction in a hidden way

Required in many applications in computer science

- reasoning on data structures
- language syntax
- programming language semantics
- proofs of algorithms

Coq

J.-F. Monin

Fixpoints and induction

Induction

- Induction on natural numbers
- Functional reading of Induction
- Refinements on Constructive Logic
- Induction and quantifier management

What if there is no ero?

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 – のへで

Induction requires ingenuity, in general

- a consequence of Gödel incompleteness theorems
- support for induction is a discriminating criterium for automated provers

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

Induction requires ingenuity, in general

- a consequence of Gödel incompleteness theorems
- support for induction is a discriminating criterium for automated provers

Coq supports induction

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

Vhat if there is no ero?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Induction requires ingenuity, in general

- a consequence of Gödel incompleteness theorems
- support for induction is a discriminating criterium for automated provers

Coq supports induction

• proof search \neq proof checking

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Basic induction on natural numbers (\mathbb{N})

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・ロト・日本・日本・日本・日本・日本

• Basic induction on natural numbers (\mathbb{N})

 \blacktriangleright Well-founded induction on (IN, <)

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・ロト・(四ト・(日下・(日下・))

- Basic induction on natural numbers (\mathbb{N})
- Well-founded induction on $({\rm I\!N},<)$
- ▶ Well-founded induction on (*S*, *R*), where *S* is an arbitrary set and *R* a suitable relation on *S*

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

- Basic induction on natural numbers $(\mathbb{I}\mathbb{N})$
- Well-founded induction on $({\rm I\!N},<)$
- ▶ Well-founded induction on (S, R), where S is an arbitrary set and R a suitable relation on S
- Transfinite induction

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Basic induction on natural numbers $(\mathbb{I}\mathbb{N})$
- Well-founded induction on $({\rm I\!N},<)$
- ▶ Well-founded induction on (S, R), where S is an arbitrary set and R a suitable relation on S
- Transfinite induction
- Structural induction

Coq

J.-F. Monin

Fixpoints and induction

Induction

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Basic induction on natural numbers $(\mathbb{I}\mathbb{N})$
- Well-founded induction on $({\rm I\!N},<)$
- ▶ Well-founded induction on (S, R), where S is an arbitrary set and R a suitable relation on S
- Transfinite induction
- Structural induction

Coq

J.-F. Monin

Fixpoints and induction

Induction

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Basic induction on natural numbers (\mathbb{N})
- Well-founded induction on $({\rm I\!N},<)$
- ▶ Well-founded induction on (S, R), where S is an arbitrary set and R a suitable relation on S
- Transfinite induction
- Structural induction

We will focus on structural induction, because it is

► a very natural extension of basic induction but on lists, trees, terms ... instead of IN

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

- Basic induction on natural numbers (\mathbb{N})
- Well-founded induction on $({\rm I\!N},<)$
- ▶ Well-founded induction on (S, R), where S is an arbitrary set and R a suitable relation on S
- Transfinite induction
- Structural induction

We will focus on structural induction, because it is

- ► a very natural extension of basic induction but on lists, trees, terms ... instead of IN
- close to computer science concerns

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

- Basic induction on natural numbers (\mathbb{N})
- Well-founded induction on $({\rm I\!N},<)$
- ▶ Well-founded induction on (S, R), where S is an arbitrary set and R a suitable relation on S
- Transfinite induction
- Structural induction

We will focus on structural induction, because it is

- ► a very natural extension of basic induction but on lists, trees, terms ... instead of IN
- close to computer science concerns
- yet powerful enough to embed all other kinds of induction

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・ロト・西ト・山田・山田・山口・

Let us define $x \leq y \stackrel{\text{def}}{=} \exists d, d + x = y$

Prove $\forall x, 2 + x \leq 5 + x$

Coq

J.-F. Monin

Fixpoints and induction

Induction

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・ロト・日本・日本・日本・日本・日本

Take an arbitrary natural number x

Coq

J.-F. Monin

Fixpoints and induction

Induction

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Take an arbitrary natural number x
- Remark that 3 + (2 + x) = 5 + x

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

- Take an arbitrary natural number x
- Remark that 3 + (2 + x) = 5 + x

• Hence
$$\exists d, d + (2 + x) = 5 + x$$

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

- Take an arbitrary natural number x
- ▶ Remark that 3 + (2 + x) = 5 + x
- Hence $\exists d, d + (2 + x) = 5 + x$
- By definition of \leq we get: $2 + x \leq 5 + x$

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のへで

- Take an arbitrary natural number x
- ▶ Remark that 3 + (2 + x) = 5 + x
- Hence $\exists d, d + (2 + x) = 5 + x$
- By definition of \leq we get: $2 + x \leq 5 + x$

This proof is uniform : it does not depend on the value of x

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

Prove $\forall x, x \leq 4 \Rightarrow \exists y, x = 2y \lor x = 1 + 2y$

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・ロト・日本・日本・日本・日本・日本

Prove $\forall x, x \leq 4 \Rightarrow \exists y, x = 2y \lor x = 1 + 2y$

The proof is not uniform: different is each case

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・ロト・(四ト・(日下・(日下・))

Prove $\forall x, x \leq 4 \Rightarrow \exists y, x = 2y \lor x = 1 + 2y$

The proof is not uniform: different is each case

• Case
$$x = 0$$
: take $y = 0$, left, check $0 = 2.0$

Coq

J.-F. Monin

Fixpoints and induction

Induction

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Prove $\forall x, x \leq 4 \Rightarrow \exists y, x = 2y \lor x = 1 + 2y$

The proof is not uniform: different is each case

• Case x = 0: take y = 0, left, check 0 = 2.0

• Case
$$x = 1$$
: take $y = 0$, right, check $1 = 1 + 2.0$

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Prove $\forall x, x \leq 4 \Rightarrow \exists y, x = 2y \lor x = 1 + 2y$

The proof is not uniform: different is each case

• Case x = 0: take y = 0, left, check 0 = 2.0

• Case
$$x = 1$$
: take $y = 0$, right, check $1 = 1 + 2.0$

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Looking at x : (non-uniform) proof by cases

Prove $\forall x, x \leq 4 \Rightarrow \exists y, x = 2y \lor x = 1 + 2y$

The proof is not uniform: different is each case

• Case
$$x = 0$$
: take $y = 0$, left, check $0 = 2.0$

• Case
$$x = 1$$
: take $y = 0$, right, check $1 = 1 + 2.0$

• Case
$$x = 3$$
: take $y = 1$, right, check $3 = 1 + 2.1$

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

Looking at x : (non-uniform) proof by cases

Prove $\forall x, x \leq 4 \Rightarrow \exists y, x = 2y \lor x = 1 + 2y$

The proof is not uniform: different is each case

• Case
$$x = 0$$
: take $y = 0$, left, check $0 = 2.0$

• Case
$$x = 1$$
: take $y = 0$, right, check $1 = 1 + 2.0$

• Case x = 3: take y = 1, right, check 3 = 1 + 2.1

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

Looking at x : (non-uniform) proof by cases

Prove $\forall x, x \leq 4 \Rightarrow \exists y, x = 2y \lor x = 1 + 2y$

The proof is not uniform: different is each case

• Case
$$x = 0$$
: take $y = 0$, left, check $0 = 2.0$

• Case
$$x = 1$$
: take $y = 0$, right, check $1 = 1 + 2.0$

• Case x = 3: take y = 1, right, check 3 = 1 + 2.1

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What do you think of the following one?

$$x \leq y \stackrel{\text{def}}{=} \exists d, d + x = y$$

Prove $\forall x, x \leq 3x$

Coq

J.-F. Monin

Fixpoints and induction

Induction

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・ロト・日本・日本・日本・日本・日本

What do you think of the following one?

 $x \leq y \stackrel{\text{def}}{=} \exists d, d + x = y$

Prove $\forall x, x \leq 3x$

- Take an arbitrary natural number x
- Remark that 2x + x = 3x
- Hence $\exists d, d + x = 3x$
- That is $x \leq 3x$

Is this proof uniform?

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

What do you think of the following one?

 $x \leq y \stackrel{\text{def}}{=} \exists d, d + x = y$

Prove $\forall x, x \leq 3x$

- Take an arbitrary natural number x
- Remark that 2x + x = 3x
- Hence $\exists d, d + x = 3x$
- That is $x \leq 3x$

Is this proof uniform? Yes: no case analysis on x

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

・ロト・西ト・ヨト ・日・ うへぐ

Common scheme for a proof by cases on nat

Basic scheme

$$\frac{P \ 0 \qquad \forall n, P \ (S \ n)}{\forall x, P \ x}$$

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・ロト・日本・日本・日本・日本・日本

Common scheme for a proof by cases on nat

Basic scheme

$$\frac{P \ 0 \qquad \forall n, P \ (S \ n)}{\forall x, P \ x}$$

Variants

$$\frac{P \ 0 \qquad P \ 1}{\forall x, P \ x} \frac{\forall n, P \ (S \ (S \ n))}{\forall x, P \ x}$$

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

・ロト・西ト・田・・田・・日・ シック

Common scheme for a proof by cases on nat

Basic scheme

$$\frac{P \ 0 \qquad \forall n, P \ (S \ n)}{\forall x, P \ x}$$

Variants

$$\frac{P \ 0 \qquad P \ 1 \qquad \forall n, P \ (S \ (S \ n)))}{\forall x, P \ x}$$

$$\frac{P \ 0 \qquad P \ 1 \qquad P \ 2 \qquad \forall n, P \ (S \ (S \ (S \ n))))}{\forall x, P \ x}$$

etc.

Coq

J.-F. Monin

Fixpoints and induction

Induction

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

・ロト・西ト・ヨト・ヨー うへぐ

$\frac{P 0 \quad P 1 \quad \dots \quad P n \dots}{\forall x, P x}$

In order to prove $\forall x, P x$, prove P on each natural number n Coq

J.-F. Monin

Fixpoints and induction

Induction

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

$\frac{P \ 0 \quad P \ 1 \quad \dots \quad P \ n \dots}{\forall x, P \ x}$

In order to prove $\forall x, P x$, prove P on each natural number n

 ∞ cases to consider

Coq

J.-F. Monin

Fixpoints and induction

Induction

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$\frac{P 0 \quad P 1 \quad \dots \quad P n \dots}{\forall x, P x}$

In order to prove $\forall x, P x$, prove P on each natural number n

 ∞ cases to consider

Does not work...

Coq

J.-F. Monin

Fixpoints and induction

Induction

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$\frac{P 0 \quad P 1 \quad \dots \quad P n \dots}{\forall x, P x}$

In order to prove $\forall x, P x$, prove P on each natural number n

 ∞ cases to consider

Does not work...

Unless we have a systematical way to construct a proof of P n for each n?

Coq

J.-F. Monin

Fixpoints and induction

Induction

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

Constructing proofs of P n, with n : nat

- 1. Prove *P* 0
- 2. Prove $P \ 0 \Rightarrow P \ 1$
- 3. Prove $P 1 \Rightarrow P 2$
- 4. etc.

Coq

J.-F. Monin

Fixpoints and induction

Induction

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・ロト・日本・日本・日本・日本・日本

Constructing proofs of P n, with n : nat

- 1. Prove P 0
- 2. Prove $P 0 \Rightarrow P 1$
- 3. Prove $P 1 \Rightarrow P 2$
- 4. etc.

From 1. and 2. we get P 1 From the latter and 3. we get P 2 Etc. Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・ロト・日本・ヨト・ヨー うくぐ

Constructing proofs of P n, with n : nat

- 1. Prove P 0
- 2. Prove $P 0 \Rightarrow P 1$
- 3. Prove $P 1 \Rightarrow P 2$
- 4. etc.

From 1. and 2. we get P 1 From the latter and 3. we get P 2 Etc.

At first sight, no progress: infinite number of proof obligations Coq

J.-F. Monin

Fixpoints and induction

Induction

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

・ロト・西ト・ヨト・日下 ひゃぐ

- 1. Prove *P* 0
- 2. Prove $P 0 \Rightarrow P 1$
- 3. Prove $P 1 \Rightarrow P 2$
- 4. etc.

From 1. and 2. we get P 1 From the latter and 3. we get P 2 Etc.

At first sight, no progress: infinite number of proof obligations

Unless ve prove (uniformly) 2. 3. 4. etc. at once:

 $\forall n, P n \Rightarrow P(S n)$

Coq

J.-F. Monin

Fixpoints and induction

Induction

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

Fixpoints and induction

Induction

Induction on natural numbers

Functional reading of Induction Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへぐ

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・ロト・日本・日本・日本・日本・日本

$\frac{P \ 0 \qquad \forall n, P \ n \Rightarrow P(S \ n)}{\forall n, P \ n}$

P n is called the *induction hypothesis*.

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・ロト・日本・日本・日本・日本・日本

 $\frac{P \ 0 \qquad \forall n, P \ n \Rightarrow P(S \ n)}{\forall n, P \ n}$

P n is called the *induction hypothesis*.

Remark: proof by cases

 $\frac{P 0 \quad \forall n, P(S n)}{\forall n, P n}$

is a special case of induction – the induction hypothesis is not used.

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

Example: addition

Given some fixed natural m, what is to "add to m"?

- $\blacktriangleright 0 + m = m$
- $\blacktriangleright S n + m = S(n + m)$

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Example: addition

Given some fixed natural m, what is to "add to m"?

- ▶ **0** + *m* = *m*
- $S_n + m = S(n+m)$

Method for defining such functions f

- provide the returned value when the argument is 0
- provide the returned value when the argument is S n this value may depend on n and on f n

Note that f may have other fixed arguments

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

Example: addition

Given some fixed natural m, what is to "add to m"?

- ▶ **0** + *m* = *m*
- $S_n + m = S(n+m)$

Method for defining such functions f

- provide the returned value when the argument is 0
- provide the returned value when the argument is S n this value may depend on n and on f n

Note that f may have other fixed arguments

Official name in the jargon of logic : primitive recursion

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・ロト・(四ト・(日下・(日下・))

- $\blacktriangleright \forall n, 0 + n = n \quad \dots?$
- $\blacktriangleright \forall n, n+0 = n \quad \dots?$

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

・ロト・日本・日本・日本・日本・日本

- $\blacktriangleright \forall n, 0 + n = n \quad \dots?$
- $\blacktriangleright \forall n, n+0 = n \quad \dots?$

Commutativity, associativity

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

- $\blacktriangleright \forall n, 0 + n = n \quad \dots?$
- $\blacktriangleright \forall n, n+0 = n \quad \dots?$

Commutativity, associativity

Similarly for subtraction, multiplication...

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

- $\blacktriangleright \forall n, 0 + n = n \quad \dots?$
- $\blacktriangleright \forall n, n+0 = n \quad \dots?$

Commutativity, associativity

Similarly for subtraction, multiplication...

Interest: foundations (Coq library); fundamental exercises

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

Fixpoints and induction

Induction

Induction on natural numbers Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

A proof of $\forall n, P n \Rightarrow P(S n)$ is a function which, given 2 arguments:

- a nat n
- a proof p_n of P n

yields a proof of P(S n)

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

A proof of $\forall n, P n \Rightarrow P(S n)$ is a function which, given 2 arguments:

a nat n

• a proof p_n of P n yields a proof of P(S n)

Let f be such a proof. Let p_0 be a proof of P 0 Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A proof of $\forall n, P n \Rightarrow P(S n)$ is a function which, given 2 arguments:

a nat n

• a proof p_n of P n yields a proof of P(S n)

Let f be such a proof. Let p_0 be a proof of P 0

Then

- f 1 (f 0 p₀) is a proof of P 2
- ▶ given any nat n, f n (... (f 1 (f 0 p₀))...) is a proof of P (S n)

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

Example: the product of 2 consecutive numbers is even

Formally:
$$\forall n, \exists k, n.(S n) = 2.k$$

 $P n$

For n = 0: we have n.(S n) = 0.1 = 0 = 2.0, taking k = 0 yields P 0

• (Uniform) proof of $\forall n, P n \Rightarrow P(S n)$

- For an arbitrary n ∈ nat, assume P n i.e. n.(S n) = 2.y for some y
- ► Then (S n).(S (S n)) = (2 + n).(S n)= 2.(S n) + 2.y = 2.(S n + y)

• Taking k = S n + y, we get P(S n),

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

QED.

A proof of $\exists x, P x$ is a pair (ex_intro w p), written (w, p) for short, where w is a value (the witness) and p a proof of P w Coq

J.-F. Monin

Fixpoints and induction

Inductior

nduction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

A proof of $\exists x, P x$ is a pair (ex_intro w p), written (w, p) for short, where w is a value (the witness) and p a proof of P w

Let g be the previous proof of $\forall n, \exists k, n.(S n) = 2.k$ which uses f, a proof of $\forall n, P n \Rightarrow P(S n)$ Coq

J.-F. Monin

Fixpoints and induction

Inductior

nduction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Constructive (i.e. functional) reading

A proof of $\exists x, P x$ is a pair (ex_intro w p), written (w, p) for short, where w is a value (the witness) and p a proof of P w

Let g be the previous proof of $\forall n, \exists k, n.(S n) = 2.k$ which uses f, a proof of $\forall n, P n \Rightarrow P(S n)$

Reducing a proof of g 10 yields $f 9 (f 8 (... (f 0 p_0)...)$ Coq

J.-F. Monin

Fixpoints and induction

Induction

nduction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Constructive (i.e. functional) reading

A proof of $\exists x, P x$ is a pair (ex_intro w p), written (w, p) for short, where w is a value (the witness) and p a proof of P w

Let g be the previous proof of $\forall n, \exists k, n.(S n) = 2.k$ which uses f, a proof of $\forall n, P n \Rightarrow P(S n)$

Reducing a proof of g 10 yields $f 9 (f 8 (... (f 0 p_0)...)$

which reduces to $(55, e_{110})$:

▶
$$p_0 = (0, e_0)$$

•
$$p_1 = f \ 0 \ p_0$$
 reduces to $(1, e_2)$

•
$$p_2 = f \ 1 \ p_1$$
 reduces to $(3, e_6)$

Where \mathbf{e}_i : i = i which reduces to reflexivity of equality on i_{page}

Coq

J.-F. Monin

Fixpoints and induction

Inductior

nduction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

Fixpoints and induction

Induction

Induction on natural numbers Functional reading of Induction Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

However, reductions are not performed in Prop (except for theorems finishing with **Defined** instead of **Qed**)

Using the existence in Set: A proof of $\{x \mid P \mid x\}$ is a pair (exist w p), written (w, p) for short, where w is a value (the witness) and p a proof of P w Coq

J.-F. Monin

Fixpoints and induction

nductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

However, reductions are not performed in Prop (except for theorems finishing with **Defined** instead of **Qed**)

Using the existence in Set: A proof of $\{x \mid P \mid x\}$ is a pair (exist w p), written (w, p) for short, where w is a value (the witness) and p a proof of P w

Let *g* be the previous proof of
$$\forall n, \{k \mid n.(S n) = 2.k\}$$

which uses *f*, a proof of $\forall n, P n \Rightarrow P(S n)$

I-F Monin

Fixpoints and induction

Inductior

nduction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

However, reductions are not performed in Prop (except for theorems finishing with **Defined** instead of **Qed**)

Using the existence in Set: A proof of $\{x \mid P \mid x\}$ is a pair (exist w p), written (w, p) for short, where w is a value (the witness) and p a proof of P w

Let *g* be the previous proof of
$$\forall n, \{k \mid n.(S n) = 2.k\}$$

which uses f, a proof of $\forall n, P n \Rightarrow P(S n)$

Reducing a proof of g 10 yields $f 9 (f 8 (... (f 0 p_0)...)$ Coq

J.-F. Monin

Fixpoints and nduction

nductior

nduction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

However, reductions are not performed in Prop (except for theorems finishing with **Defined** instead of **Qed**)

Using the existence in Set: A proof of $\{x \mid P \mid x\}$ is a pair (exist w p), written (w, p) for short, where w is a value (the witness) and p a proof of P w

Let *g* be the previous proof of
$$\forall n, \{k \mid n.(S n) = 2.k\}$$

P n
P n
P n
P n
P n

which uses f, a proof of $\forall n, P n \Rightarrow P(S n)$

Reducing a proof of g 10 yields f 9 (f 8 (... (f 0 p_0)...)

which reduces to $(55, e_{110})$

The proof e_i reduces, in principle, to reflexivity of equality on i, but reductions are not performed there (but we don't care)

Coq

J.-F. Monin

Fixpoints and nduction

nductior

nduction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

About excluded middle

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

About excluded middle

In Prop A proof of ∀n, even n ∨ ¬even n Pn is a function f which provides for each n a precise answer: either yes: n is even, here is a proof or no: n is not even, here is a proof E.g., reducing f 10 will answer: yes + proof of even 10 2 possibilities

- Cheating, using classical logic: $\forall P, P \lor \neg P$
- Really provide a proof, by induction on n

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

About excluded middle

In Prop A proof of ∀n, even n ∨ ¬even n Pn is a function f which provides for each n a precise answer: either yes: n is even, here is a proof or no: n is not even, here is a proof E.g., reducing f 10 will answer: yes + proof of even 10 2 possibilities

- ► Cheating, using classical logic: ∀P, P ∨ ¬P
- Really provide a proof, by induction on n

In Set: testing functions returning additional knowledge A proof of $\forall n$, $\{\underline{\text{even } n\}} + \{\neg \underline{\text{even } n}\}$ must be constructive P nExcluded middle not allowed

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

Fixpoints and induction

Induction

Induction on natural numbers Functional reading of Induction Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・ロト・日本・日本・日本・日本・日本

- addt 0 m = m
- addt (S n) m = addt n (S m)

Beyond primitive recursion, see explanation below

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- addt 0 m = m
- addt (S n) m = addt n (S m)

Beyond primitive recursion, see explanation below

Prove addt n m = n + m forall n and m

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- addt 0 m = m
- addt (S n) m = addt n (S m)

Beyond primitive recursion, see explanation below

Prove addt n m = n + m forall n and m

First try

Prove addt n m = n + m by induction on n(Previous model) \rightarrow Fails

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

- addt 0 m = m
- addt (S n) m = addt n (S m)

Beyond primitive recursion, see explanation below

Prove addt n m = n + m forall n and m

First try

Prove addt n m = n + m by induction on n(Previous model) \rightarrow Fails

Second try

Prove $\forall m, addt \ n \ m = n + m$ by induction on nWorks

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

Explanations on addt

- addt 0 m = m
- addt (S n) m = addt n (S m)

Means

- addt $0 = fun m \Rightarrow m$
- $addt (S n) = fun m \Rightarrow addt n (S m)$

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

・ロト・西ト・ヨト ・日・ うへぐ

- addt 0 m = m
- addt (S n) m = addt n (S m)

Means

- addt $0 = fun m \Rightarrow m$
- $addt (S n) = fun m \Rightarrow addt n (S m)$

Official name in the jargon of logic : higher order primitive recursion

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

- ▶ *fib* **0** = 1
- ▶ *fib* **1** = 1
- fib(S(Sn)) = fibn + fib(Sn)

Harmless shorthand for a truly primitive recursion, where we define fib n and fib (S n) at the same time.

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・ロト・西ト・ヨト ・日・ うへぐ

- ▶ *fib* **0** = 1
- ▶ *fib* **1** = 1
- fib(S(Sn)) = fibn + fib(Sn)

Harmless shorthand for a truly primitive recursion, where we define fib n and fib (S n) at the same time.

- Ifib 0 a b = a
- If (S n) a b = If b n b (a + b)

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no ero?

・ロト・西ト・西ト・西ト・日・ シック

- ▶ *fib* **0** = 1
- ▶ *fib* **1** = 1
- fib(S(Sn)) = fibn + fib(Sn)

Harmless shorthand for a truly primitive recursion, where we define fib n and fib (S n) at the same time.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

• If (S n) a b = If b n b (a + b)

Prove $\forall n$, *lfib* $n \ 1 \ 1 = fib \ n$.

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

Fixpoints and induction

Induction

Induction on natural numbers Functional reading of Induction Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

Coq

J.-F. Monin

Fixpoints and induction

Inductio

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

On nat

Inductive nat : Set :=

- | 0 : nat
- | S : nat -> nat.

$$\frac{P \circ \forall n, P \circ n \to P(S \circ n)}{\forall x, P \times}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

On nat

Inductive nat : Set := $\mid 0 : nat$ $\mid S : nat \rightarrow nat.$ $P 0 \quad \forall n, P n \rightarrow P(S n)$

$$\frac{\forall x, P x}{\forall x, P x}$$

On wrongnat

Inductive wrongnat : Set :=

| Swn : wrongnat -> wrongnat.

$$\frac{\forall n, P \ n \to P(\text{Swn } n)}{\forall x, P \ x}$$

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

A value in an inductive type is made with finitely many constructors

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management

What if there is no rero?

・ロト・日本・日本・日本・日本・日本

A value in an inductive type is made with finitely many constructors

- A nat comes from 0
- A wrongnat comes from nowhere The conclusion of

$$\frac{\forall n, P \ n \to P(\operatorname{Swn} \ n)}{\forall x, P \ x}$$

can only be applied to some wrongnat But assuming such a value is inconsistent !

 Application: take for P the predicate constantly false: fun n → False

Coq

J.-F. Monin

Fixpoints and induction

Inductior

Induction on natural numbers

Functional reading of Induction

Refinements on Constructive Logic

Induction and quantifier management