The Coq proof assistant : principles and practice

J.-F. Monin

Université Grenoble Alpes
2016

Lecture 6

Outline

Fixpoints and induction

Induction on natural numbers
Functional reading of Induction

Refinements on
Constructive Logic

Outline

Fixpoints and induction

Induction
Induction on natural numbers Functional reading of Induction Refinements on Constructive Logic

Induction on natural numbers
Functional reading of Induction

Outline

Fixpoints and induction

Induction
Induction on natural numbers Functional reading of Induction Refinements on Constructive Logic

Induction and quantifier management

Induction on natural numbers
Functional reading of Induction

Outline

Fixpoints and induction

Induction
Induction on natural numbers Functional reading of Induction Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

Induction on natural numbers
Functional reading of Induction

Outline

Fixpoints and induction

Induction

Induction on natural numbers
Functional reading of Induction
Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

Induction on natural numbers
Functional reading of Induction

Refinements on
Constructive Logic

Fixpoints

Recursive calls
must be on a structurally smaller argument.

Induction on natural numbers
Functional reading of Induction

Available for all inductive types
Not only natural numbers
Induction is a special case of a fixpoint
Not only natural numbers
Computational interpretation
More secure
Subtleties on quantification

Syntax of fixpoints

Consider a recursive function f with arguments $\mathrm{x} . . \mathrm{z}$, including y

Fixpoint f (x:A)...(z:C) \{struct y\}: R := match y with
| Construct...y'... => ... (f...y'...) ... end

Syntax of fixpoints

Consider a recursive function f with arguments $\mathrm{x} . . \mathrm{z}$, including y

$$
\text { Fixpoint f (x:A)...(z:C) \{struct y\}: R := }
$$

...
However, \{struct y\} can be omitted:
Coq tries to guess which is the structurally decreasing argument from the body of f

```
match y with
| Construct...y'... => ... (f...y'...) ...
end
match y with
    ••
    ..
d
```


Subtle inductions

Proofs by induction may need a strengthening of the statement

- additional conjuncts
- put more quantifications \forall in the scope of the induction

Outline

Fixpoints and induction

Induction
Induction on natural numbers
Functional reading of Induction Refinements on Constructive Logic

Induction on natural numbers
Functional reading of Induction

Why induction matters

Tool of choice for proving properties on an infinite (but countable) number of values
Other methods are

- either weaker (prove less properties)
- or rely on induction in a hidden way

Why induction matters

Tool of choice for proving properties on an infinite (but countable) number of values
Other methods are

- either weaker (prove less properties)
- or rely on induction in a hidden way

Required in many applications in computer science

- reasoning on data structures
- language syntax
- programming language semantics
- proofs of algorithms

Strength of induction

Induction requires ingenuity, in general

- a consequence of Gödel incompleteness theorems
- support for induction is a discriminating criterium for automated provers

Strength of induction

Induction requires ingenuity, in general

- a consequence of Gödel incompleteness theorems
- support for induction is a discriminating criterium for automated provers
Coq supports induction

Strength of induction

Induction requires ingenuity, in general

- a consequence of Gödel incompleteness theorems
- support for induction is a discriminating criterium for automated provers
Coq supports induction
- proof search \neq proof checking

Several forms of induction

- Basic induction on natural numbers (N)

Induction
 Induction on natural numbers
 Functional reading of Induction

Several forms of induction

- Basic induction on natural numbers (\mathbb{N})
- Well-founded induction on ($\mathbb{N},<$)

Induction

Induction on natural numbers
Functional reading of Induction
Refinements on
Constructive Logic

Several forms of induction

- Basic induction on natural numbers (\mathbb{N})
- Well-founded induction on ($\mathbb{N},<$)
- Well-founded induction on (S, R), where S is an arbitrary set and R a suitable relation on S

Several forms of induction

- Basic induction on natural numbers (\mathbb{N})
- Well-founded induction on ($\mathbb{N},<$)
- Well-founded induction on (S, R), where S is an arbitrary set and R a suitable relation on S
- Transfinite induction

Several forms of induction

- Basic induction on natural numbers (\mathbb{N})
- Well-founded induction on ($\mathbb{N},<$)
- Well-founded induction on (S, R), where S is an arbitrary set and R a suitable relation on S
- Transfinite induction
- Structural induction

Several forms of induction

- Basic induction on natural numbers (\mathbb{N})
- Well-founded induction on ($\mathbb{N},<$)
- Well-founded induction on (S, R), where S is an arbitrary set and R a suitable relation on S
- Transfinite induction
- Structural induction

Several forms of induction

- Basic induction on natural numbers (\mathbb{N})
- Well-founded induction on ($\mathbb{N},<$)
- Well-founded induction on (S, R), where S is an arbitrary set and R a suitable relation on S
- Transfinite induction
- Structural induction

We will focus on structural induction, because it is

- a very natural extension of basic induction but on lists, trees, terms ... instead of \mathbb{N}

Several forms of induction

- Basic induction on natural numbers (\mathbb{N})
- Well-founded induction on ($\mathbb{N},<$)
- Well-founded induction on (S, R), where S is an arbitrary set and R a suitable relation on S
- Transfinite induction
- Structural induction

We will focus on structural induction, because it is

- a very natural extension of basic induction but on lists, trees, terms ... instead of \mathbb{N}
- close to computer science concerns

Several forms of induction

- Basic induction on natural numbers (\mathbb{N})
- Well-founded induction on ($\mathbb{N},<$)
- Well-founded induction on (S, R), where S is an arbitrary set and R a suitable relation on S
- Transfinite induction
- Structural induction

We will focus on structural induction, because it is

- a very natural extension of basic induction but on lists, trees, terms ... instead of \mathbb{N}
- close to computer science concerns
- yet powerful enough to embed all other kinds of induction

Proving something on all natural numbers

Let us define $x \leq y \xlongequal{\text { def }} \exists d, d+x=y$
Prove $\forall x, 2+x \leq 5+x$

Induction

Induction on natural numbers
Functional reading of Induction

Proving something on all natural numbers

Let us define $x \leq y \xlongequal{\text { def }} \exists d, d+x=y$
Prove $\forall x, 2+x \leq 5+x$

Induction

Induction on natural numbers
Functional reading of Induction

- Take an arbitrary natural number x

Proving something on all natural numbers

Let us define $x \leq y \xlongequal{\text { def }} \exists d, d+x=y$
Prove $\forall x, 2+x \leq 5+x$

Induction

Induction on natural numbers
Functional reading of Induction

- Take an arbitrary natural number x
- Remark that $3+(2+x)=5+x$

Proving something on all natural numbers

Let us define $x \leq y \xlongequal{\text { def }} \exists d, d+x=y$
Prove $\forall x, 2+x \leq 5+x$

- Take an arbitrary natural number x
- Remark that $3+(2+x)=5+x$
- Hence $\exists d, d+(2+x)=5+x$

Proving something on all natural numbers

Let us define $x \leq y \xlongequal{\text { def }} \exists d, d+x=y$
Prove $\forall x, 2+x \leq 5+x$

- Take an arbitrary natural number x
- Remark that $3+(2+x)=5+x$
- Hence $\exists d, d+(2+x)=5+x$
- By definition of \leq we get: $2+x \leq 5+x$

Proving something on all natural numbers

Let us define $x \leq y \xlongequal{\text { def }} \exists d, d+x=y$
Prove $\forall x, 2+x \leq 5+x$

- Take an arbitrary natural number x
- Remark that $3+(2+x)=5+x$
- Hence $\exists d, d+(2+x)=5+x$
- By definition of \leq we get: $2+x \leq 5+x$

This proof is uniform : it does not depend on the value of x

Looking at x : (non-uniform) proof by cases

$$
\text { Prove } \forall x, x \leq 4 \Rightarrow \exists y, x=2 y \vee x=1+2 y
$$

Induction

Induction on natural numbers
Functional reading of Induction

Refinements on
Constructive Logic

Looking at x : (non-uniform) proof by cases

Prove $\forall x, x \leq 4 \Rightarrow \exists y, x=2 y \vee x=1+2 y$
The proof is not uniform: different is each case

Induction

Induction on natural numbers
Functional reading of Induction

Looking at x : (non-uniform) proof by cases

Prove $\forall x, x \leq 4 \Rightarrow \exists y, x=2 y \vee x=1+2 y$
The proof is not uniform: different is each case

Induction

Induction on natural numbers
Functional reading of Induction

- Case $x=0$: take $y=0$, left, check $0=2.0$

Looking at x : (non-uniform) proof by cases

Prove $\forall x, x \leq 4 \Rightarrow \exists y, x=2 y \vee x=1+2 y$
The proof is not uniform: different is each case

Induction
Induction on natural numbers
Functional reading of Induction

- Case $x=0$: take $y=0$, left, check $0=2.0$
- Case $x=1$: take $y=0$, right, check $1=1+2.0$

Looking at x : (non-uniform) proof by cases

Prove $\forall x, x \leq 4 \Rightarrow \exists y, x=2 y \vee x=1+2 y$
The proof is not uniform: different is each case

- Case $x=0$: take $y=0$, left, check $0=2.0$
- Case $x=1$: take $y=0$, right, check $1=1+2.0$
- Case $x=2$: take $y=1$, left, check $2=2.1$

Looking at x : (non-uniform) proof by cases

Prove $\forall x, x \leq 4 \Rightarrow \exists y, x=2 y \vee x=1+2 y$
The proof is not uniform: different is each case

- Case $x=0$: take $y=0$, left, check $0=2.0$
- Case $x=1$: take $y=0$, right, check $1=1+2.0$
- Case $x=2$: take $y=1$, left, check $2=2.1$
- Case $x=3$: take $y=1$, right, check $3=1+2.1$

Looking at x : (non-uniform) proof by cases

Prove $\forall x, x \leq 4 \Rightarrow \exists y, x=2 y \vee x=1+2 y$
The proof is not uniform: different is each case

- Case $x=0$: take $y=0$, left, check $0=2.0$
- Case $x=1$: take $y=0$, right, check $1=1+2.0$
- Case $x=2$: take $y=1$, left, check $2=2.1$
- Case $x=3$: take $y=1$, right, check $3=1+2.1$
- Case $x=4$: take $y=2$, left, check $4=2.2$

Looking at x : (non-uniform) proof by cases

Prove $\forall x, x \leq 4 \Rightarrow \exists y, x=2 y \vee x=1+2 y$
The proof is not uniform: different is each case

- Case $x=0$: take $y=0$, left, check $0=2.0$
- Case $x=1$: take $y=0$, right, check $1=1+2.0$
- Case $x=2$: take $y=1$, left, check $2=2.1$
- Case $x=3$: take $y=1$, right, check $3=1+2.1$
- Case $x=4$: take $y=2$, left, check $4=2.2$
- Case $x=5+n$: don't care

What do you think of the following one?

$$
\begin{aligned}
& x \leq y \stackrel{\text { def }}{=} \exists d, d+x=y \\
& \text { Prove } \forall x, x \leq 3 x
\end{aligned}
$$

Induction

Induction on natural numbers
Functional reading of Induction

What do you think of the following one?

$x \leq y \xlongequal{\text { def }} \exists d, d+x=y$
Prove $\forall x, x \leq 3 x$

- Take an arbitrary natural number x
- Remark that $2 x+x=3 x$
- Hence $\exists d, d+x=3 x$
- That is $x \leq 3 x$

Is this proof uniform?

What do you think of the following one?

$x \leq y \xlongequal{\text { def }} \exists d, d+x=y$
Prove $\forall x, x \leq 3 x$

- Take an arbitrary natural number x
- Remark that $2 x+x=3 x$
- Hence $\exists d, d+x=3 x$
- That is $x \leq 3 x$

Is this proof uniform? Yes: no case analysis on x

Common scheme for a proof by cases on nat

Basic scheme

$$
\frac{P 0 \quad \forall n, P(S n)}{\forall x, P x}
$$

Induction

Induction on natural numbers
Functional reading of Induction

Refinements on
Constructive Logic

Common scheme for a proof by cases on nat

Basic scheme

$$
\frac{P 0 \quad \forall n, P(S n)}{\forall x, P x}
$$

Variants

$$
\frac{P 0 \quad P 1 \quad \forall n, P(S(S n))}{\forall x, P x}
$$

Common scheme for a proof by cases on nat

Basic scheme

$$
\frac{P 0 \quad \forall n, P(S n)}{\forall x, P x}
$$

Variants

\[

\]

etc.

Proof by cases on all natural numbers

$$
\frac{P 0 \quad P 1 \ldots P n \ldots}{\forall x, P x}
$$

Induction on natural

 numbersFunctional reading of Induction
Refinements on Constructive Logic

In order to prove $\forall x, P x$, prove P on each natural number n

Proof by cases on all natural numbers

$$
\frac{P 0 \quad P 1 \ldots P n \ldots}{\forall x, P x}
$$

Induction on natural

 numbersFunctional reading of Induction
Refinements on Constructive Logic

In order to prove $\forall x, P x$, prove P on each natural number n
∞ cases to consider

Proof by cases on all natural numbers

$$
\frac{P 0 \quad P 1 \ldots P n \ldots}{\forall x, P x}
$$

In order to prove $\forall x, P x$, prove P on each natural number n
∞ cases to consider
Does not work...

Proof by cases on all natural numbers

$$
\frac{P 0 \quad P 1 \ldots P n \ldots}{\forall x, P x}
$$

In order to prove $\forall x, P x$, prove P on each natural number n
∞ cases to consider
Does not work...
Unless we have a systematical way to construct a proof of $P n$ for each n ?

Constructing proofs of $P n$, with n : nat

1. Prove $P 0$
2. Prove $P 0 \Rightarrow P 1$
3. Prove $P 1 \Rightarrow P 2$
4. etc.

Induction

Induction on natural numbers
Functional reading of Induction

Refinements on
Constructive Logic

Constructing proofs of $P n$, with n : nat

1. Prove $P 0$
2. Prove $P 0 \Rightarrow P 1$
3. Prove $P 1 \Rightarrow P 2$
4. etc.

Induction

Induction on natural numbers
Functional reading of Induction
Refinements on
Constructive Logic

From 1. and 2. we get $P 1$
From the latter and 3 . we get $P 2$
Etc.

Constructing proofs of $P n$, with n : nat

1. Prove $P 0$
2. Prove $P 0 \Rightarrow P 1$
3. Prove $P 1 \Rightarrow P 2$
4. etc.

From 1. and 2. we get $P 1$
From the latter and 3 . we get $P 2$
Etc.
At first sight, no progress: infinite number of proof obligations

Constructing proofs of $P n$, with n : nat

1. Prove $P 0$
2. Prove $P 0 \Rightarrow P 1$
3. Prove $P 1 \Rightarrow P 2$
4. etc.

From 1. and 2. we get $P 1$
From the latter and 3 . we get $P 2$
Etc.
At first sight, no progress: infinite number of proof obligations
Unless ve prove (uniformly) 2. 3. 4. etc. at once:

$$
\forall n, P n \Rightarrow P(S n)
$$

Outline

Fixpoints and induction

Induction

Induction on natural numbers
Functional reading of Induction
Refinements on Constructive Logic

Induction on natural numbers
Functional reading of Induction

Induction and quantifier management

What if there is no zero?

Induction on nat

Induction on nat

$$
\frac{P 0 \quad \forall n, P n \Rightarrow P(S n)}{\forall n, P n}
$$

Functional reading of Induction
$P n$ is called the induction hypothesis.

Induction on nat

$$
\frac{P 0 \quad \forall n, P n \Rightarrow P(S n)}{\forall n, P n}
$$

$P n$ is called the induction hypothesis.
Remark: proof by cases

$$
\frac{P 0 \quad \forall n, P(S n)}{\forall n, P n}
$$

is a special case of induction - the induction hypothesis is not used.

Primitive recursion

Example: addition

Given some fixed natural m, what is to "add to m "?

- $0+m=m$
- $S n+m=S(n+m)$

Induction on natural numbers
Functional reading of Induction
Refinements on
Constructive Logic

Primitive recursion

Example: addition
Given some fixed natural m, what is to "add to m "?

- $0+m=m$
- $S n+m=S(n+m)$

Method for defining such functions f

- provide the returned value when the argument is 0
- provide the returned value when the argument is $S n$ this value may depend on n and on $f n$

Note that f may have other fixed arguments

Primitive recursion

Example: addition
Given some fixed natural m, what is to "add to m "?

- $0+m=m$
- $S n+m=S(n+m)$

Method for defining such functions f

- provide the returned value when the argument is 0
- provide the returned value when the argument is $S n$ this value may depend on n and on $f n$

Note that f may have other fixed arguments

Official name in the jargon of logic : primitive recursion

Properties of +

(Almost all) basic properties of + are proved by induction

Induction on natural numbers
Functional reading of Induction

Properties of +

(Almost all) basic properties of + are proved by induction

- $\forall n, 0+n=n \quad \ldots ?$
- $\forall n, n+0=n \quad \ldots$?

Induction on natural numbers
Functional reading of Induction

Properties of +

(Almost all) basic properties of + are proved by induction

- $\forall n, 0+n=n \quad \ldots ?$
- $\forall n, n+0=n \quad \ldots$?

Commutativity, associativity

Induction on natural numbers
Functional reading of Induction

Properties of +

(Almost all) basic properties of + are proved by induction

- $\forall n, 0+n=n \quad \ldots ?$
- $\forall n, n+0=n \quad \ldots$?

Commutativity, associativity
Similarly for subtraction, multiplication...

Induction on natural numbers
Functional reading of Induction

Properties of +

(Almost all) basic properties of + are proved by induction

- $\forall n, 0+n=n \quad \ldots ?$
- $\forall n, n+0=n \quad \ldots$?

Commutativity, associativity
Similarly for subtraction, multiplication...
Interest: foundations (Coq library); fundamental exercises

Induction on natural numbers
Functional reading of Induction

Outline

Fixpoints and induction

Induction
Induction on natural numbers

Induction on natural numbers
Functional reading of Induction

Refinements on
Constructive Logic

Functional reading of Induction
Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

Constructive (i.e. functional) reading

A proof of $\forall n, P n \Rightarrow P(S n)$ is a function which, given 2 arguments:

- a nat n
- a proof p_{n} of $P n$
yields a proof of $P(S n)$

Induction on natural numbers
Functional reading of Induction

Refinements on
Constructive Logic

Constructive (i.e. functional) reading

A proof of $\forall n, P n \Rightarrow P(S n)$ is a function which, given 2 arguments:

- a nat n
- a proof p_{n} of $P n$
yields a proof of $P(S n)$
Let f be such a proof.
Let p_{0} be a proof of $P 0$

Induction on natural numbers
Functional reading of Induction

Constructive (i.e. functional) reading

A proof of $\forall n, P n \Rightarrow P(S n)$ is a function which, given 2 arguments:

- a nat n
- a proof p_{n} of $P n$
yields a proof of $P(S n)$
Let f be such a proof.
Let p_{0} be a proof of $P 0$
Then
- $f 1\left(f 0 p_{0}\right)$ is a proof of $P 2$
- given any nat $n, f n\left(\ldots\left(f 1\left(f 0 p_{0}\right)\right) \ldots\right)$ is a proof of $P(S n)$

Induction on natural numbers
Functional reading of Induction

Example: the product of 2 consecutive numbers is even

Formally: $\forall n, \underbrace{\exists k, n \cdot(S n)=2 . k}_{P n}$

- For $n=0$: we have $n .(S n)=0.1=0=2.0$, taking $k=0$ yields $P 0$
- (Uniform) proof of $\forall n, P n \Rightarrow P(S n)$
- For an arbitrary $n \in$ nat, assume $P n$ i.e. $n .(S n)=2 . y$ for some y
- Then $(S n) \cdot(S(S n))=(2+n) \cdot(S n)$ $=2 \cdot(S n)+2 \cdot y$
$=2 .(S n+y)$
- Taking $k=S n+y$, we get $P(S n)$,

Constructive (i.e. functional) reading

A proof of $\exists x, P x$ is a pair (ex_intro w p), written (w, p) for short, where w is a value (the witness) and p a proof of $P w$

Constructive (i.e. functional) reading

A proof of $\exists x, P x$ is a pair (ex_intro w p), written (w, p) for short, where w is a value (the witness) and p a proof of $P w$

Let g be the previous proof of $\forall n, \underbrace{\exists k, n \cdot(S n)=2 . k}_{P_{n}}$
which uses f, a proof of $\forall n, P n \Rightarrow P(S n)$

Constructive (i.e. functional) reading

A proof of $\exists x, P x$ is a pair (ex_intro w p), written (w, p) for short, where w is a value (the witness) and p a proof of $P w$

Let g be the previous proof of $\forall n, \underbrace{\exists k, n \cdot(S n)=2 . k}_{P n}$
which uses f, a proof of $\forall n, P n \Rightarrow P(S n)$
Reducing a proof of $g 10$ yields
$f 9\left(f 8\left(\ldots\left(f 0 p_{0}\right) \ldots\right)\right.$

Constructive (i.e. functional) reading

A proof of $\exists x, P x$ is a pair (ex_intro w p), written (w, p) for short, where w is a value (the witness) and p a proof of $P w$

Let g be the previous proof of $\forall n, \underbrace{\exists k, n .(S n)=2 . k}_{P n}$
which uses f, a proof of $\forall n, P n \Rightarrow P(S n)$
Reducing a proof of $g 10$ yields
$f 9\left(f 8\left(\ldots\left(f 0 p_{0}\right) \ldots\right)\right.$
which reduces to $\left(55, e_{110}\right)$:

- $p_{0}=\left(0, e_{0}\right)$
- $p_{1}=f 0 p_{0}$ reduces to $\left(1, e_{2}\right)$
- $p_{2}=f 1 p_{1}$ reduces to $\left(3, e_{6}\right)$

Where $e_{i}: i=i$ which reduces to reflexivity of equality on i

Outline

Fixpoints and induction

Induction
Induction on natural numbers
Functional reading of Induction
Refinements on Constructive Logic

Induction and quantifier management

Constructive reading in Set

However, reductions are not performed in Prop (except for theorems finishing with Defined instead of Qed)

Using the existence in Set:
A proof of $\{x \mid P x\}$ is a pair (exist w p),
written (w, p) for short, where w is a value (the witness) and p a proof of $P w$

Constructive reading in Set

However, reductions are not performed in Prop (except for theorems finishing with Defined instead of Qed)

Using the existence in Set:
A proof of $\{x \mid P x\}$ is a pair (exist w p),
written (w, p) for short, where w is a value (the witness) and p a proof of $P w$

Let g be the previous proof of $\forall n, \underbrace{\{k \mid n \cdot(S n)=2 . k\}}_{P_{n}}$
which uses f, a proof of $\forall n, P n \Rightarrow P(S n)$

Constructive reading in Set

However, reductions are not performed in Prop (except for theorems finishing with Defined instead of Qed)

Using the existence in Set:
A proof of $\{x \mid P x\}$ is a pair (exist w p),
written (w, p) for short,
where w is a value (the witness) and p a proof of $P w$
Let g be the previous proof of $\forall n, \underbrace{\{k \mid n \cdot(S n)=2 . k\}}_{P_{n}}$
which uses f, a proof of $\forall n, P n \Rightarrow P(S n)$
Reducing a proof of $g 10$ yields
$f 9\left(f 8\left(\ldots\left(f 0 p_{0}\right) \ldots\right)\right.$

Constructive reading in Set

However, reductions are not performed in Prop
(except for theorems finishing with Defined instead of Qed)
Using the existence in Set:
A proof of $\{x \mid P x\}$ is a pair (exist w p),
written (w, p) for short,
where w is a value (the witness) and p a proof of $P w$
Let g be the previous proof of $\forall n, \underbrace{\{k \mid n \cdot(S n)=2 . k\}}_{P_{n}}$
which uses f, a proof of $\forall n, P n \Rightarrow P(S n)$
Reducing a proof of $g 10$ yields
$f 9\left(f 8\left(\ldots\left(f 0 p_{0}\right) \ldots\right)\right.$
which reduces to $\left(55, e_{110}\right)$
The proof e_{i} reduces, in principle, to reflexivity of equality on i, but reductions are not performed there (but we don't care)

About excluded middle

In Prop
A proof of $\forall n, \underbrace{\text { even } n \vee \neg \text { even } n}_{P n}$
is a function f which provides for each n a precise answer:

- either yes: n is even, here is a proof
- or no: n is not even, here is a proof
E.g., reducing $f 10$ will answer: yes + proof of even 10

About excluded middle

In Prop
A proof of $\forall n, \underbrace{\text { even } n \vee \neg \text { even } n}_{P n}$
is a function f which provides for each n a precise answer:

- either yes: n is even, here is a proof
- or no: n is not even, here is a proof
E.g., reducing $f 10$ will answer: yes + proof of even 10

2 possibilities

- Cheating, using classical logic: $\forall P, P \vee \neg P$
- Really provide a proof, by induction on n

About excluded middle

In Prop
A proof of $\forall n, \underbrace{\text { even } n \vee \neg \text { even } n}_{P n}$
is a function f which provides for each n a precise answer:

- either yes: n is even, here is a proof
- or no: n is not even, here is a proof
E.g., reducing $f 10$ will answer: yes + proof of even 10

2 possibilities

- Cheating, using classical logic: $\forall P, P \vee \neg P$
- Really provide a proof, by induction on n

In Set: testing functions returning additional knowledge
A proof of $\forall n, \underbrace{\{\text { even } n\}+\{\neg \text { even } n\}}_{P_{n}}$ must be constructive
Excluded middle not allowed

Outline

Fixpoints and induction

Induction

Induction on natural numbers
Induction on natural numbers
Functional reading of Induction

Constructive Logic

Functional reading of Induction
Refinements on Constructive Logic

Induction and quantifier management

What if there is no zero?

Subtelties with induction

Consider the following version of addition Coq syntax for function application, see below why

- addt $0 \mathrm{~m}=\mathrm{m}$
- $\operatorname{addt}(S n) m=\operatorname{addt} n(S m)$

Beyond primitive recursion, see explanation below

Induction on natural numbers
Functional reading of Induction

Subtelties with induction

Consider the following version of addition Coq syntax for function application, see below why

- addt $0 \mathrm{~m}=\mathrm{m}$
- $\operatorname{addt}(S n) m=\operatorname{addt} n(S m)$

Beyond primitive recursion, see explanation below
Prove addt $n m=n+m$ forall n and m

Induction on natural numbers
Functional reading of Induction

Subtelties with induction

Consider the following version of addition Coq syntax for function application, see below why

- addt $0 \mathrm{~m}=\mathrm{m}$
- $\operatorname{addt}(S n) m=\operatorname{addt} n(S m)$

Beyond primitive recursion, see explanation below
Prove addt $n m=n+m$ forall n and m
First try
Prove addt $n m=n+m$ by induction on n
(Previous model) \rightarrow Fails

Induction on natural numbers
Functional reading of Induction

Subtelties with induction

Consider the following version of addition
Coq syntax for function application, see below why

- addt $0 \mathrm{~m}=\mathrm{m}$
- $\operatorname{addt}(S n) m=\operatorname{addt} n(S m)$

Beyond primitive recursion, see explanation below
Prove addt $n m=n+m$ forall n and m
First try
Prove addt $n m=n+m$ by induction on n
(Previous model) \rightarrow Fails
Second try
Prove $\forall m$, addt $n m=n+m$ by induction on n Works

Explanations on addt

- addt $0 \mathrm{~m}=\mathrm{m}$
- $\operatorname{addt}(S n) m=\operatorname{addt} n(S m)$

Means
Induction on natural numbers
Functional reading of Induction

- addt $0=$ fun $m \Rightarrow m$
- $\operatorname{addt}(S n)=$ fun $m \Rightarrow \operatorname{addt} n(S m)$

Explanations on addt

- addt $0 \mathrm{~m}=\mathrm{m}$
- $\operatorname{addt}(S n) m=\operatorname{addt} n(S m)$

Means

- addt $0=$ fun $m \Rightarrow m$
- $\operatorname{addt}(S n)=$ fun $m \Rightarrow \operatorname{addt} n(S m)$

Official name in the jargon of logic:
higher order primitive recursion

More advanced example (homework)

- fib $0=1$
- fib1 = 1
- $\operatorname{fib}(S(S n))=\operatorname{fib} n+\operatorname{fib}(S n)$

Harmless shorthand for a truly primitive recursion, where we define fib n and fib (S n) at the same time.

More advanced example (homework)

- fib $0=1$
- $\operatorname{fib} 1=1$
- fib $(S(S n))=$ fib $n+\operatorname{fib}(S n)$

Harmless shorthand for a truly primitive recursion, where we define fib n and fib (S n) at the same time.

- Ifib 0 a $b=a$
- Ifib (S n) a $b=\operatorname{Ifib} n b(a+b)$

Induction on natural numbers
Functional reading of Induction

More advanced example (homework)

- fib $0=1$
- fib $1=1$
- fib $(S(S n))=$ fib $n+\operatorname{fib}(S n)$

Harmless shorthand for a truly primitive recursion, where we define fib n and fib (S n) at the same time.

- Ifib $0 a b=a$
- Ifib (S n) a $b=\operatorname{Ifib} n b(a+b)$

Prove $\forall n$, Ifib n $11=$ fib n.

Outline

Fixpoints and induction

Induction

Induction on natural numbers
Functional reading of Induction
Refinements on Constructive Logic
Induction on natural numbers
Functional reading of Induction

Refinements on
Constructive Logic

Induction and quantifier management

What if there is no zero?

What if there is no zero?

On nat

Inductive nat : Set :=
| 0 : nat
| S : nat $->$ nat.

$$
\frac{P 0 \quad \forall n, P n \rightarrow P(\mathrm{~S} \mathrm{n})}{\forall x, P x}
$$

Induction on natural numbers
Functional reading of Induction

Refinements on
Constructive Logic

What if there is no zero?

On nat
Inductive nat : Set :=
| 0 : nat
| S : nat -> nat.

$$
\frac{P 0 \quad \forall n, P n \rightarrow P(\mathrm{~S} n)}{\forall x, P x}
$$

On wrongnat

Inductive wrongnat : Set := | Swn : wrongnat -> wrongnat.

$$
\frac{\forall n, P n \rightarrow P(\operatorname{Swn} n)}{\forall x, P x}
$$

Interpretation

A value in an inductive type
is made with finitely many constructors

Interpretation

A value in an inductive type is made with finitely many constructors

- A nat comes from 0
- A wrongnat comes from nowhere The conclusion of

$$
\frac{\forall n, P n \rightarrow P(\operatorname{Swn} n)}{\forall x, P x}
$$

can only be applied to some wrongnat But assuming such a value is inconsistent!

- Application: take for P the predicate constantly false: fun $n \rightarrow$ False

