J.-F. Monin

Excluded middle

Discriminate

The Coq proof assistant : principles and practice

J.-F. Monin

Université Grenoble Alpes

2016

Lecture 5

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

J.-F. Monin

xcluded middle

Discriminate

Excluded middle

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○ ● ○ ○ ○ ○

J.-F. Monin

xcluded middle

Discriminate

Excluded middle

Discriminate

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○ ● ○ ○ ○ ○

J.-F. Monin

xcluded middle

Excluded middle

Discriminate

▲□▶▲□▶▲□▶▲□▶ □ りへぐ

A consequence of the computational reading of disjunction Constructive (intuitionistic) logic

- $P \lor \neg P$ is not a theorem
- ▶ $\neg \neg (P \lor \neg P)$ is a theorem
- similar for $\{P\} + \{\neg P\}$

Coq

J.-F. Monin

Excluded middle Discriminate

A consequence of the computational reading of disjunction Constructive (intuitionistic) logic

- $P \lor \neg P$ is not a theorem
- $\neg \neg (P \lor \neg P)$ is a theorem
- similar for $\{P\} + \{\neg P\}$

Examples

 $\blacktriangleright \forall n \ m : nat, \ \{n = m\} + \{\neg n = m\}$

Coq

J.-F. Monin

Excluded middle Discriminate

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

A consequence of the computational reading of disjunction Constructive (intuitionistic) logic

- $\blacktriangleright P \lor \neg P \text{ is not a theorem}$
- $\neg \neg (P \lor \neg P)$ is a theorem
- similar for $\{P\} + \{\neg P\}$

Examples

▶ $\forall n \ m : nat$, $\{n = m\} + \{\neg n = m\}$ OK... with work

Coq

J.-F. Monin

Excluded middle Discriminate

A consequence of the computational reading of disjunction Constructive (intuitionistic) logic

- $\blacktriangleright P \lor \neg P \text{ is not a theorem}$
- ▶ $\neg \neg (P \lor \neg P)$ is a theorem
- similar for $\{P\} + \{\neg P\}$

Examples

- ▶ $\forall n \ m : nat$, $\{n = m\} + \{\neg n = m\}$ OK... with work
- $\blacktriangleright \forall f : nat \rightarrow nat, \ \{\exists n, \ f \ n = 0\} + \{\forall n, \neg f \ n = 0\}$

Coq

J.-F. Monin

Excluded middle Discriminate

・ロト・西ト・日本・日本・日本

A consequence of the computational reading of disjunction Constructive (intuitionistic) logic

- $P \lor \neg P$ is not a theorem
- $\neg \neg (P \lor \neg P)$ is a theorem
- similar for $\{P\} + \{\neg P\}$

Examples

- ► $\forall n \ m : nat$, $\{n = m\} + \{\neg n = m\}$ OK... with work
- ► $\forall f : nat \rightarrow nat, \{\exists n, f n = 0\} + \{\forall n, \neg f n = 0\}$ just impossible

Coq

J.-F. Monin

Excluded middle Discriminate

A consequence of the computational reading of disjunction Constructive (intuitionistic) logic

- $\blacktriangleright P \lor \neg P \text{ is not a theorem}$
- $\neg \neg (P \lor \neg P)$ is a theorem
- similar for $\{P\} + \{\neg P\}$

Examples

- ► $\forall n \ m : nat$, $\{n = m\} + \{\neg n = m\}$ OK... with work
- ► $\forall f : nat \rightarrow nat, \{\exists n, f n = 0\} + \{\forall n, \neg f n = 0\}$ just impossible

Notes

► $\forall n, \neg P n$ is equivalent to $\neg \exists n, P n$

 $\blacktriangleright \forall f g : nat \rightarrow nat, \ f = g \lor \neg f = g$

Coq

J.-F. Monin

Excluded middle Discriminate

Admissible axioms

- P ∨ ¬P is admissible: Require Import Classical.
 Can be convenient, but often stronger than really needed Matter of taste...
- ► {P} + {¬P} is not admissible Consistent with confidentiality (see above)

Coq

J.-F. Monin

Excluded middle

J.-F. Monin

xcluded middle

Discriminate

Excluded middle

Discriminate

・ロト・西ト・ヨト・ヨー うへの

 A trivial consequence of absurdity (False) is that all values are equal, and that all types are equal as well (including in Set and Prop). Coq

J.-F. Monin

xcluded middle

Discriminate

- A trivial consequence of absurdity (False) is that all values are equal, and that all types are equal as well (including in Set and Prop).
- Conversely, if all values are equal in any type, including Prop, we get False = True, i.e., False becomes provable

Coq

J.-F. Monin

xcluded middle

Discriminate

4日 + 4回 + 4目 + 4目 + 900

- A trivial consequence of absurdity (False) is that all values are equal, and that all types are equal as well (including in Set and Prop).
- Conversely, if all values are equal in any type, including Prop, we get False = True, i.e., False becomes provable
- Pattern-matching on constructors allows us to map distinct constructors C_i to different expressions E_i if 2 constructors C_i and C_j happened to be equated, this confusion could then be propagated to the corresponding expressions E_i and E_j; Taking E_i = True and E_j = False, False becomes provable

Coq

J.-F. Monin

xcluded middle

- A trivial consequence of absurdity (False) is that all values are equal, and that all types are equal as well (including in Set and Prop).
- Conversely, if all values are equal in any type, including Prop, we get False = True, i.e., False becomes provable
- Pattern-matching on constructors allows us to map distinct constructors C_i to different expressions E_i if 2 constructors C_i and C_j happened to be equated, this confusion could then be propagated to the corresponding expressions E_i and E_j; Taking E_i = True and E_j = False, False becomes provable

See series5_false.v

J.-F. Monin

xcluded middle