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Excluded middle
A consequence of the computational reading of disjunction
Constructive (intuitionistic) logic

I P ∨ ¬P is not a theorem
I ¬¬(P ∨ ¬P) is a theorem
I similar for {P} + {¬P}

Examples
I ∀n m : nat, {n = m} + {¬n = m} OK... with work
I ∀f : nat → nat, {∃n, f n = 0} + {∀n, ¬f n = 0}

just impossible

Notes
I ∀n, ¬P n is equivalent to ¬∃n, P n
I ∀f g : nat → nat, f = g ∨ ¬f = g
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More on Excluded middle

Admissible axioms
I P ∨ ¬P is admissible:

Require Import Classical.
Can be convenient, but often stronger than really needed
Matter of taste...

I {P} + {¬P} is not admissible
Consistent with confidentiality (see above)
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How to discriminate constructors

Aburd = extreme confusion
I A trivial consequence of absurdity (False) is that all

values are equal, and that all types are equal as well
(including in Set and Prop).

I Conversely, if all values are equal in any type, including
Prop, we get False = True, i.e., False becomes
provable

I Pattern-matching on constructors allows us to map
distinct constructors Ci to different expressions Ei
if 2 constructors Ci and Cj happened to be equated,
this confusion could then be propagated to the
corresponding expressions Ei and Ej ;
Taking Ei = True and Ej = False, False becomes
provable

See series5 false.v
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