The Coq proof assistant : principles and practice

J.-F. Monin

Université Grenoble Alpes
2016

Lecture 5

Outline

Excluded middle

Outline

Excluded middle

Discriminate

Outline

Excluded middle

Discriminate

Excluded middle

A consequence of the computational reading of disjunction
Constructive (intuitionistic) logic

- $P \vee \neg P$ is not a theorem
- $\neg \neg(P \vee \neg P)$ is a theorem
- similar for $\{P\}+\{\neg P\}$

Excluded middle

A consequence of the computational reading of disjunction
Constructive (intuitionistic) logic

- $P \vee \neg P$ is not a theorem
- $\neg \neg(P \vee \neg P)$ is a theorem
- similar for $\{P\}+\{\neg P\}$

Examples

- $\forall n m$: nat, $\{n=m\}+\{\neg n=m\}$

Excluded middle

A consequence of the computational reading of disjunction
Constructive (intuitionistic) logic

- $P \vee \neg P$ is not a theorem
- $\neg \neg(P \vee \neg P)$ is a theorem
- similar for $\{P\}+\{\neg P\}$

Examples

- $\forall n m$: nat, $\{n=m\}+\{\neg n=m\}$ OK... with work

Excluded middle

A consequence of the computational reading of disjunction
Constructive (intuitionistic) logic

- $P \vee \neg P$ is not a theorem
- $\neg \neg(P \vee \neg P)$ is a theorem
- similar for $\{P\}+\{\neg P\}$

Examples

- $\forall n m$: nat, $\{n=m\}+\{\neg n=m\}$ OK... with work
- $\forall f:$ nat \rightarrow nat, $\{\exists n, f n=0\}+\{\forall n, \neg f n=0\}$

Excluded middle

A consequence of the computational reading of disjunction
Constructive (intuitionistic) logic

- $P \vee \neg P$ is not a theorem
- $\neg \neg(P \vee \neg P)$ is a theorem
- similar for $\{P\}+\{\neg P\}$

Examples

- $\forall n m$: nat, $\{n=m\}+\{\neg n=m\}$ OK... with work
- $\forall f:$ nat \rightarrow nat, $\{\exists n, f n=0\}+\{\forall n, \neg f n=0\}$ just impossible

Excluded middle

A consequence of the computational reading of disjunction
Constructive (intuitionistic) logic

- $P \vee \neg P$ is not a theorem
- $\neg \neg(P \vee \neg P)$ is a theorem
- similar for $\{P\}+\{\neg P\}$

Examples

- $\forall n m$: nat, $\{n=m\}+\{\neg n=m\}$ OK... with work
- $\forall f:$ nat \rightarrow nat, $\{\exists n, f n=0\}+\{\forall n, \neg f n=0\}$ just impossible

Notes

- $\forall n, \neg P n$ is equivalent to $\neg \exists n, P n$
- $\forall f g$: nat \rightarrow nat, $f=g \vee \neg f=g$

More on Excluded middle

Admissible axioms

- $P \vee \neg P$ is admissible:

Require Import Classical.
Can be convenient, but often stronger than really needed Matter of taste...

- $\{P\}+\{\neg P\}$ is not admissible

Consistent with confidentiality (see above)

Outline

Excluded middle

Discriminate

How to discriminate constructors

Aburd $=$ extreme confusion

- A trivial consequence of absurdity (False) is that all values are equal, and that all types are equal as well (including in Set and Prop).

How to discriminate constructors

Aburd $=$ extreme confusion

- A trivial consequence of absurdity (False) is that all values are equal, and that all types are equal as well (including in Set and Prop).
- Conversely, if all values are equal in any type, including Prop, we get False $=$ True, i.e., False becomes provable

How to discriminate constructors

Aburd $=$ extreme confusion

- A trivial consequence of absurdity (False) is that all values are equal, and that all types are equal as well (including in Set and Prop).
- Conversely, if all values are equal in any type, including Prop, we get False = True, i.e., False becomes provable
- Pattern-matching on constructors allows us to map distinct constructors C_{i} to different expressions E_{i} if 2 constructors C_{i} and C_{j} happened to be equated, this confusion could then be propagated to the corresponding expressions E_{i} and E_{j}; Taking $E_{i}=$ True and $E_{j}=$ False, False becomes provable

How to discriminate constructors

Aburd $=$ extreme confusion

- A trivial consequence of absurdity (False) is that all values are equal, and that all types are equal as well (including in Set and Prop).
- Conversely, if all values are equal in any type, including Prop, we get False = True, i.e., False becomes provable
- Pattern-matching on constructors allows us to map distinct constructors C_{i} to different expressions E_{i} if 2 constructors C_{i} and C_{j} happened to be equated, this confusion could then be propagated to the corresponding expressions E_{i} and E_{j}; Taking $E_{i}=$ True and $E_{j}=$ False, False becomes provable

See series5_false.v

