The Coq proof assistant : principles and practice

J.-F. Monin

Université Grenoble Alpes

2016

Lecture 4

Coq

J.-F. Monin

Propositions and proofs

More Logic

More Logic

More on Prop and Set

Propositions and proofs

More Logic

Nore Logic

More on Prop and Set

Propositions and proofs

More Logic

```
I-F Monin
```

```
Definition funny:
```

```
forall (r: rgb), Set_of r :=
fun (r: rgb) => some body
```

```
Theorem plus id example:
  \forall n m:nat, n=m -> n+n=m+m.
```

Or, equivalently:

```
Theorem plus_id_example :
  \forall n m:nat, \forall e:n=m, n+n=m+m.
```

Its proof is a function

- \triangleright taking as arguments n, m and e a proof of n = m
- returning a proof of n + n = m + m

Nore Logic

More on Prop and Set

Theorems are just definitions

Hypotheses are just variables

The type of propositions is called Prop

Example: 3 = 2 + 1: Prop

WARNING

Prop is at the same level as Set, not bool

Some subtle differences between Prop and Set to be discussed later

```
Propositions and proofs
```

More Logic

iet

```
Section my_propositional_logic.
```

We have

P_or_Q_intro_left:P_or_Q	P_or_Q:Prop
true:bool	bool:Set

P_or_Q is like bool:

- Enriched version of bool, where each constructor embeds an additional proof tree
- ► Minor difference: it is in Prop instead of Set

An inductive type may have parameters as follows:

```
Inductive list (A Set) : Set :=
   | Nil : list A
   | Cons : forall (h:A) (t:list A), list A
.
```

Full definition of disjunction (standard library)

```
Inductive or (P Q: Prop) : Prop :=
  | or_intro_left : forall p:P, or P Q
  | or_intro_right : forall q:Q, or P Q
```

Next, instead of or P Q, use the usual infix notation P \bigvee Q

Propositions and proofs

lore Logic

Nore Logic

More on Prop and Set

Logic	Proposition	Proof	Lemma inlining
Programming	Type	Term	Reduction

A little bit of history

In the 20th century, logic and functionnal programming were developed separately

Actually the same ideas have been discovered twice with different names

Curry-Howard in practice

Coq

J.-F. Monin

Propositions and proofs

ore Logic

More on Prop and Set

Logic	V	\wedge	\forall \rightarrow	False
Programming	Sum	product	function	empty

Note: the negation $\neg P$ of a proposition P is defined as P \rightarrow False. For instance, \neg False is easy to prove...

Correctness proofs of functions follow their shape match \longrightarrow case or destruct fixpoint \longrightarrow induction or fix

Choose convenient definitions 1 + n or S n better than n + 1

More Logic

More on Prop and Set

Propositions and proofs

More Logic

1ore Logic

```
Inductive True: Prop :=
    | I : True.
Inductive False: Prop := .
```

- No way to prove False
 in an empty environment
- From False we can get a proof of anything
- From False we can get an element in any type

More Logic

More on Prop and Set

A proof of $\exists x : A, P x$ is a pair made of

- ▶ a witness x
- ightharpoonup a proof of Px

More Logic

More on Prop and Set

Inductive P248 : nat -> Prop :=

| is2 : P248 2

| is4 : P248 4 | is8 : P248 8.

Elimination principle?

$$P2 \rightarrow P4 \rightarrow P8 \rightarrow \forall n, P248 \ n \rightarrow Pn$$

Remark

- ▶ (P248 2) has a unique canonical proof it is like True
- similar for 2 and 4
- ▶ (P248 1) has no proof it is like False but not that easy

More Logic

More on Prop and Set

Propositions and proofs

More Logic

Informative Booleans: sumbool

Propositions and proofs

More Logic

```
Inductive sumbool (P Q: Prop) : Set :=
  | left : forall p:P, sumbool P Q
  | right: forall q:Q, sumbool P Q.
Notation: \{P\}+\{Q\}
Qualified values: sig
Inductive sig (A : Type) (P : A -> Prop) : Type :=
    exist : forall x : A, P x \rightarrow sig P.
Notation: \{x:A \mid P \mid x\}
```

More Logic

More on Prop and Set

Corresponding counterparts in Prop

logic	data types
$P \vee Q$	$\{P\} + \{Q\}$
$\exists x, P x$	$\{x: A \mid Px\}$

Easier to construct and to use in interactive mode

More on Prop and

In general, we don't care about normal form of proofs

```
E.g. in \{x: nat \mid even x\}, consider (20 \times 15, p), where p is a proof that 20 \times 15 is even
```

- ▶ 20×15 reduces to 300: useful, e.g., we may want to compute pred (20×15)
- p may rely on a lemma saying that n × m is even if n is even; reducing p to the constructors of even has no special interest

Coq

J.-F. Monin

Propositions and proofs

More Logic

More on Prop and Set

Bottom line

Case analysis on p:P:Prop to get a value in A:Set

is not allowed

Can be read as confidentiality

The information contents of proofs in Prop is secret:

- it is visible only in other proofs in Prop
- it is hidden to the world of datatypes and computations Set (and Type)

J.-F. Monin

Propositions and proofs

Nore Logic

More on Prop and Set

Advanced (not discussed here)

Prop is impredicative while Set may be predicative