The Coq proof assistant : principles and practice

J.-F. Monin

Université Grenoble Alpes
2016

Lecture 3

Outline

Introduction
Summary of previous lectures
Computation
Products and functions
Rules
Examples
Reduction
Reduction
Introduction, elimination, reduction

Summary of previous lectures
Computation

Rules
Examples

Reduction
Introduction, elimination, reduction

More on functions
Several arguments
Higher order functions
Fixpoints
Pattern matching
Equality and rewriting

Outline

Introduction
Summary of previous lectures
Computation
Products and functions
Rules
Examples

Reduction

Reduction
Introduction, elimination, reduction

More on functions

Several arguments
Higher order functions

Fixpoints

Pattern matching

Equality and rewriting.

Introduction

Summary of previous lectures
Computation

Rules

Examples

Reduction
Introduction, elimination, reduction

Summary of previous lectures

- We manipulate tree-like data structures called terms
- All trees have a type, which are themselves trees
- Notation: term : type
- Basic way to have new types: Inductive definitions declaring the complete set of its constructors example: enumerated types
- Constructors may have arguments \rightarrow hence trees
- Case analysis on an enumerated type (match)
- Definitions can be written directly or interactively
- In general, things are defined within an environment made of declarations variable : type
- pluging: works for all terms having the expected type
- functions of type $\forall x_{1}: t_{1}, \ldots \forall x_{n}: t_{n}, t_{\text {result }}$
where $t_{\text {result }}$ may depend on $x_{1} \ldots x_{n}$
example: funny: $\forall r: r g b$, Set_of r

Summary of previous lectures
Computation

Rules
Examples

Reduction
Introduction, elimination reduction

Several arguments
Higher order functions

Computation on trees

The whole point of computer science is computation
On trees, it means successive transformations

$$
\text { tree }_{0} \longrightarrow \text { tree }_{1} \longrightarrow \text { tree }_{2} \longrightarrow \ldots \text { tree }_{n} \longrightarrow \ldots
$$

- all tree $_{i}$ have the same type
- delimited transformations (neighboring nodes involved) called reductions
- reduction order irrelevant ****
- computation always terminates $* * * *$
- therefore, all tree $_{i}$ have the same value

We get stateless programming

Summary of previous lectures
Computation

Rules
Examples

Reduction
Introduction, elimination reduction

Several arguments
Higher order functions

Reduction of a case

Summary of previous lectures
Computation

Example

reduces to the "second" branch: _ co
Called ι-reduction

Reduction of a case

3ι-reductions for rgb

Summary of previous lectures
Computation

Rules
Examples

Reduction
Introduction, elimination, reduction

Several arguments
Higher order functions

Reduction of a case

3 ィ-reductions for rgb

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { match Rf with } \\
\mid \mathrm{Rf} \Rightarrow t_{1} \\
\mid \mathrm{Gf} \Rightarrow t_{2} \\
\mid \mathrm{Bf} \Rightarrow t_{3} \\
\text { end. }
\end{array}\right\} \quad \text { Reduces to } t_{1} \\
& \text { match Gf with } \\
& \text { | Rf }=>t_{1} \\
& \mid \mathrm{Gf}=>t_{2} \\
& \text { | } \mathrm{Bf}=>t_{3} \\
& \text { end. } \\
& \begin{array}{l}
\text { match } \mathrm{Bf} \\
\mid \mathrm{Rf} \Rightarrow t_{1}
\end{array} \\
& \text { | } \mathrm{Gf}=>t_{2} \\
& \text { | } \mathrm{Bf} \Rightarrow t_{3} \\
& \text { end. }
\end{aligned}
$$

Outline

Introduction

Summary of previous lectures
Computation
Products and functions
Rules
Examples

Reduction

Reduction
Introduction, elimination, reduction

More on functions

Several arguments
Higher order functions

Summary of previous lectures

Computation
Products and
functions
Rules
Examples

Reduction

Introduction, elimination, reduction

Fixpoints

Pattern matching

Equality and rewriting

Functions: example

```
Definition color_of : forall (r: rgb), color :=
    fun ( \(r\) : rgb) =>
    match \(r\) with
    | Rf => Red
    | Gf => Green
    | Bf => Blue
    end.
```

Application: by juxtaposition
color_of Bf

Products and functions

Consider an environment containing $x: t$ (and may be other types variables) where we define a term $U_{x}: u$

More generally, u may depend on x.
Consider an environment containing $x: t$ (and may be other types variables) where we define

- a type u_{x}
- a term $U_{x}: u_{x}$

Then fun $x \Rightarrow U_{x}$ is a function defined for all x, and returning U_{x} each time it applied to some argument for x.

$$
\text { fun } x: t \Rightarrow U_{x}: \quad \forall x: t, u_{x}
$$

Application
If $f: \forall x: t, u_{x}$ and $A: t$
then f can be applied to A and the type of the result is u_{A}

Summary of previous lectures
Computation

Rules (general)

Summary of previous lectures
Computation

Rules

Examples

Reduction
Introduction, elimination reduction

$$
\begin{gathered}
\vdots U \\
\frac{u_{x}}{\forall x: t, u_{x}} \text { fun }[\mathrm{x}]
\end{gathered}
$$

Warning: this x makes sense only in U, i.e. is available only from $x: t$ to u_{x}

When the type of the result does not depend on x

Summary of previous lectures
Computation

Rules

Examples

Reduction
Introduction, elimination, reduction

Several arguments
Higher order functions

Warning: this x makes sense only in U, i.e. is available only from $x: t$ to u

Other syntax: $t \rightarrow u$ instead of $\forall x: t, u$

$$
\begin{gathered}
{[x: t]} \\
\vdots U \\
\frac{u}{t \rightarrow u} \text { fun }[\mathrm{x}]
\end{gathered}
$$

Summary of previous lectures
Computation

Rules

Examples

Reduction
Introduction, elimination reduction

Warning: this x makes sense only in U,
i.e. is available only from $x: t$ to u

Example 1

```
Definition color_of : forall (r: rgb), color :=
    fun ( \(r\) : rgb) =>
    match \(r\) with
    | Rf => Red
    | Gf \(=>\) Green
    | Bf => Blue
    end.
```

Definition color_of : rgb -> color :=
fun (r : rgb) =>
match r with
| Rf => Red
| Gf => Green
| Bf => Blue
end.

Question: where r is available?

Example 2

```
Definition Set_of : forall (r: rgb), Set :=
    fun (r: rgb) =>
    match \(r\) with
    | Rf => rgb
    | Gf => color
    | Bf => tuple4
    end.
```

Definition Set_of : rgb -> Set :=
fun (r: rgb) =>
match r with
| Rf => rgb
| Gf => color
| Bf => tuple4
end.

Question: where r is available?

Example 3

```
Definition Set_of : rgb -> Set :=
    fun ( \(r\) : rgb) =>
    match \(r\) with
    | Rf => rgb
    | Gf => color
    | Bf => tuple4
    end.
Definition funny : forall (r: rgb), Set_of r :=
    fun (r: rgb) =>
    match \(r\) with
    | Rf \(=>\) Gf
    | Gf => Yellow
    | \(\mathrm{Bf}=>\mathrm{t} 1\)
    end.
```

Remark: Yellow : Set_of Gf because Set_of Gf reduces to color

Outline

Introduction

Summary of previous lectures
Computation
Products and functions
Rules
Examples

Reduction

Reduction
Introduction, elimination, reduction

More on functions

Several arguments
Higher order functions

Fixpoints

Pattern matching

Equality and rewriting

Summary of previous lectures
Computation

Rules

Examples
Reduction
Reduction
Introduction, elimination, reduction

Reduction of function $=$ application to an argum ${ }^{t}$

Summary of previous lectures
Computation

Rules
Examples

Reduction
Introduction, elimination, reduction

Substitution: U [x : $=\mathrm{A}$] is U where all free occurrences of x are replaced by A .

Called β-reduction

Example

```
Set_of Gf \(\delta\)-reduces to
    (fun (r: rgb) =>
    match \(r\) with
    | Rf => rgb
    | Gf => color
    | Bf => tuple4
    end) Gf
\(\beta\)-reduces to
    match Gf with
    | Rf => rgb
    | Gf => color
    | Bf => tuple4
    end
```

match Gf with
| Rf => rgb
| Gf => color
| Bf => tuple4
end
ı-reduces to

Summary of previous lectures
Computation

Rules
Examples

Reduction
Introduction, elimination reduction

Introduction, elimination, reduction

General statement from Proof Theory

In each type we have corresponding introduction and elimination rules, as well as reductions

For inductive types

- introduction $=$ constructor
- elimination $=$ case
- reduction $=\iota$-reduction

For functions

- introduction $=$ fun
- elimination $=$ application
- reduction $=\beta$-reduction

Summary of previous lectures
Computation

Rules
Examples

Reduction
Introduction, elimination, reduction

Introduction, elimination, reduction

Introduction, elimination, reduction work together

- Observation: reducing a tree yields a constructor at its root
- The latter can be the key argument of a case
- Therefore, case analysis on constructors is exhaustive

Outline

Introduction

Summary of previous lectures
Computation
Products and functions
Rules
Examples
Reduction
Reduction
Introduction, elimination, reduction

Rules
Examples

Reduction

Introduction, elimination, reduction

More on functions
Several arguments
Higher order functions
Fixpoints
Pattern matching
Equality and rewriting

Functions of several arguments

In $\forall x, u_{x}, \quad u_{x}$ can itself be a product type $\forall y, v_{x y}$
We get $\forall x, \forall y, v_{x y}$ which reads $\forall x,\left(\forall y, v_{x y}\right)$
Typing:

- $x: t$
- $U_{x}: u_{x}$
- $y: r_{x}$ (the type of y may depend on $x!$)

Alltogether: $\forall x: t, \forall y: r_{x}, v_{x y}$
In particular, $\forall x: t, r_{x} \rightarrow v_{x}$ reads $\forall x: t,\left(r_{x} \rightarrow v_{x}\right)$ and $t \rightarrow r \rightarrow v$ reads $t \rightarrow(r \rightarrow v)$

Consistently, $f A B$ reads $(f A) B$,

given $f: t \rightarrow(r \rightarrow v)$,	$A: t$	and	$B: r$
or $\quad f: \forall x: t, \forall y: r_{x}, v_{x y}$,	$A: t$	and	$B: r_{A}$

Summary of previous lectures
Computation

Rules
Examples

Reduction
Introduction, elimination, reduction

Example: identity function (specific)

```
Definition id_rgb : forall (r: rgb), rgb :=
    fun ( \(r\) : rgb) =>
    match \(r\) with
    | Rf \(=>R f\)
    | Gf => Gf
    | Bf \(=>B f\)
    end.
```


Simpler

Definition id_rgb : forall (x: rgb), rgb := fun (x: rgb) => x.

Similarly

Definition id_color : forall (x: color), color := fun (x: color) => x.

Example: identity function (general)

Definition id_rgb : forall (x: rgb), rgb := fun (x: rgb) => x.

Definition id_rgb : rgb -> rgb := fun (x: rgb) => x.

Generalization

Summary of previous
lectures
Computation

Rules

Definition id : forall (X: Set), forall (x: X), X := fun (X: Set) (x: X) $\Rightarrow x$.

Definition id : forall (X: Set), X $->$ X := fun (X: Set) (x: X) $\Rightarrow \mathrm{x}$.

Definition id_rgb : forall (x: rgb), rgb := id rgb.

Application of a function to several arguments

Definition id : forall (X: Set), X -> X := fun (X: Set) (x: X) => x.

The term id rgb Gf reads (id rgb) Gf
And similarly for functions expecting $3,4 \ldots$ arguments
Constructors as functions

Mk4rgb : forall $x 1, x 2, x 3, x 4: r g b, ~ t u p l e 4$
Mk4rgb : rgb -> rgb -> rgb -> rgb -> tuple4
Mk4rgb Gf Rf Gf Bf

Summary of previous lectures

Rules
Examples

Reduction
Introduction, elimination reduction

Partial application of a function

We have already seen: id rgb
What is meaning and the type of Mk 4 rgb Gf Rf ?

Reduction
Introduction, elimination reduction

Several arguments
Higher order functions

Functions as first class objects

We have seen that the result of a function can be a function
Similarly, a function can be passed as an argument of a function

Example: id (rgb \rightarrow color) color_of

Exercises:

- Reduce the previous expression
- Reduce: id (rgb \rightarrow color) color_of Bf

Conclusion on functions

Functions are one of the prominent feature of Coq, where they live in a very general setting.

In particular we will see that proofs are always trees and are even functions most of the time

Hence the importance of

- defining functions
- using functions (application)
- typing functions

Next important notions

- pattern matching
- application to logic
- recursive functions (fixpoints) and induction

Summary of previous lectures
Computation

Rules
Examples

Reduction
Introduction, elimination, reduction

Several arguments

Outline

Introduction

Summary of previous lectures
Computation

Products and functions

Rules Examples

Reduction

Reduction
Introduction, elimination, reduction

Several arguments

Higher order functions

Fixpoints

Fixpoints

Pattern matching

Equality and rewriting

Definitions in general

Definition some_name : some_type := BODY
where BODY is some code depending on previously defined names BUT NOT on yet undefined names including some_name

Equality

$$
\text { some_name }=B O D Y
$$

Performing replacement of some_name by BODY

- lazily: δ-reductions are mixed with other reductions
- statically, at the begining: the process terminates in 1 step for each occurrence of some_name this is the essence of a definition

Summary of previous lectures
Computation

Rules
Examples

Reduction
Introduction, elimination, reduction

Definitions of functions: as before

Definition my_function : forall (x: A), B := fun $\mathrm{x}=>B O D Y$
where $B O D Y$ is some code depending on

$$
\mathrm{x}
$$

other previously defined names
but not on my_function and other undefined names

Equalities (δ immediately followed by new β)

$$
\text { my_function } a=B O D Y \text { [x replaced by a] }
$$

where a is any argument of type A
Performing replacement of my_function

- lazily: δ-reductions are mixed with other reductions
- statically: essence of a definition

Recursive "definitions"

Definition? some_name : some_type := BODY

Recursivity: when BODY does contain occurrences of some_type

Performing replacement of some_name

- statically: impossible, this is an endless process this is not a definition
- lazily: mixing δ-reductions with other reductions may terminate if sensible parts of the term are deleted by interleaved reductions
- remember that ι-reductions deletes subterms
- relevant for ι-reductions inside functions

Computationally meaningful, definitionally meaningless

A mathematical point of view

Definition? some_name : some_type := BODY
Let us consider some_name as a parameter of $B O D Y$, and rename it as sn .

Definition auxFP : some_type \rightarrow some_type := fun sn => BODY'

Assuming the equation some_name $=B O D Y$ we get
auxFP some_name
$=B O D Y^{\prime}$ [sn replaced by some_name]
= BODY
= some_name
The "definition" actually specifies
a solution to a fixpoint equation
Makes sense as a mathematical definition if existence and unicity of a solution are ensured

Computationally irrelevant example

Definition? mynat : nat := 2 - mynat

Definition auxFP : nat \rightarrow nat := fun x => 2 - x

Assuming the equation mynat $=2$ - mynat we get
auxFP mynat
$=$ (fun x => $2-x$) mynat
= 2 - mynat
$=$ mynat
mynat is specified as a solution of auxFP $\mathrm{x}=\mathrm{x}$
In this example, reductions are of no help
for finding the fixpoint: 2-(2-(2-...))
However a mathematical solution exists : 1

Can be computationally relevant for functions

Definition? my_function :

```
    forall (x: A), B :=
    fun x => BODY
```

Replacing all occurrences of my_function by f in $B O D Y$:
Definition auxFP :

$$
\begin{aligned}
& \text { (forall (x: A), B) } \rightarrow \text { (forall (x: A), B) := } \\
& \text { fun } f=>\left(f u n ~ x ~=>B O D Y^{\prime}\right)
\end{aligned}
$$

We get: auxFP my_function = my_function which states that my_function is a fixpoint of auxFP

Makes computational sense if
termination of (necessary) reductions is ensured

Fixpoints in Coq

In Coq fixpoints make sense because
Recursive calls are allowed only on structurally smaller argument

Structural recursion

- A term t is structurally smaller than t, iff t is a strict subterm of t '
- obtained using pattern matching

Important application

Induction principles are special cases of fixpoints
To be understood later, when considering proof-trees and functions over proof-trees

Outline

Introduction

Summary of previous lectures
Computation

Products and functions

Rules
Examples

Reduction

Reduction
Introduction, elimination, reduction

More on functions

Several arguments
Higher order functions

Several arguments

Higher order functions

Fixpoints

Pattern matching

Equality and rewriting

Pattern matching

- The destruct tactic and the match construct in the case where constructors have arguments
- More general pattern matching
- See related coq files
- Much better than Lisp or C style
- Important special case: empty inductive type

Example: lists

Here we consider list of Booleans for simplicity
Inductive list : Set := | Nil : list | Cons : bool -> list -> list.

Scheme of use for pattern matching:

Summary of previous lectures
Computation

Rules
Examples

Reduction
Introduction, elimination reduction

```
match l with
| Nil => expression_1
| Cons h t => expression_2 of h and t
end.
```


Why pattern matching is nice

Definition of the length of a list using pattern matching

$$
\begin{aligned}
& \text { Fixpoint length (l: list) : nat := } \\
& \text { match l with } \\
& \text { | Nil }=>0 \\
& \text { | Cons } \mathrm{h} \text { t }=>\mathrm{S} \text { (length } \mathrm{t} \text {) } \\
& \text { end. }
\end{aligned}
$$

Compare with (in Lisp or C-like style)
...if beq_list 1 Nil then 0 else S (length (tail l))
Here, tail makes sense only if its argument is a non-empty list, but it is non trivial that the else branch of beq_list 1 Nil ensures that (the correctness of our definition of beq_list is questionnable).
In contrast, pattern-matching provides a comfortable environment for expression_2, where h and t are available with the right type for free.

Empty inductive type

An inductive may have any number of constructors, including 0 .

Inductive empty : Set := .
Pattern matching: no case (0 branch) to consider:
Variable e: empty.
match e return nat with end.
Note the return clause in the match construct: it aims at providing the type of expressions on the different branches, when it cannot be guessed from the context.

Summary of previous lectures
Computation

Rules
Examples

Reduction
Introduction, elimination, reduction

Dependent inductive types

Pattern matching is still more powerful in the case of dependent inductive types

Dependent type
When a type depends on values or types provided by the current environment
Example: funny in previous lectures.
Hint: perform Print funny in the coq file.
Inductive dependent type
See more advanced lectures
Very important special case

Equality

Summary of previous lectures
Computation

Rules
Examples

Reduction
Introduction, elimination, reduction

Dependent inductive types

Example without special meaning

Inductive dontcare : bool -> Set :=
| DO : dontcare true
| D1 : forall (b:bool) (n: nat),
even n-> dontcare b -> dontcare (negb b).
Scheme of use for pattern matching, assuming d : dontcare b

Summary of previous lectures
Computation

Rules
Examples

```
match d with
| DO => expression_1
| D1 b' n e d' => expression_2 of b', n, e and d'
end
```


Outline

Introduction

Summary of previous lectures
Computation

Products and functions

Rules
Examples

Reduction

Reduction
Introduction, elimination, reduction

More on functions

Several arguments
Higher order functions

Fixpoints

Pattern matching

Equality and rewriting

Several arguments

Higher order functions

Summary of previous lectures
Computation

Rules

Examples

Reduction

Introduction, elimination, reduction
-

Special case: equality

Theory
The notation $\mathrm{x}=\mathrm{y}$ is a shorthand for eq x y , where eq is inductively defined.
The precise definition involves some subtelties, to be introduced later.

For practice it is much simpler
Summary of previous lectures
Computation

Rules
Examples

Reduction
Introduction, elimination reduction

We just need:

- For all type A, and $x, y: A$, $x=y$ is something that we can try to prove
- Canonical proofs of equality are by reflexivity
- Destructing (i.e., using) equalities: rewrite

Equality in practice

Proving an equality
Canonical proofs of equality are by reflexivity, a shorthand for apply eq_refl

$$
\text { eq_ref1 }: \forall A, \forall x: A, x=x
$$

Using an equality
If

- the environment contains e: $X=Y$
- the current goal concludes to $P X$

Then rewrite e yields $P Y$

Variants:

- rewrite -> e (same effect)
- rewrite <-e $\quad($ replaces $P Y$ by $P X)$

