The Coq proof assistant : principles and practice

J.-F. Monin

Université Grenoble Alpes
2016

Lecture 1

Outline

Introduction
Coq
Lambda-calculus
Inductive types (graphically: trees)
Graphical syntax
Composition of trees
Trees with variables
More general trees Several constructors Polymorphic trees

Outline

Introduction

Coq

Lambda-calculus
Inductive types (graphically: trees)
Graphical syntax
Composition of trees
Trees with variables
More general trees
Several constructors
Polymorphic trees

Overview of Formal Methods

Understanding Formal Methods, J.F. Monin, Springer, 2003

- Static analysis
- Model Checking
- Deductive techniques
- Soundness: LCF architecture, proof terms (can be checked independantly)

Trade off

- pencil-paper / tool support
- automatization / generality

In summary

- Describe a model
- Explain it
- Reason about it
- Be clean and precise

Use math and logic... and make it funny!

Coq teaching in the world

Now routinely taught in many highly ranked universities

- France: Paris, Grenoble, Lyon, Bordeaux, Strasbourg...
- Europe: UK, Italy,...
- USA: Harvard, Yale, U. Pennsyvania, MIT, Princeton...
- Australia
- China: Coq Summer School Tsinghua, Suzhou, Shanghai

Some industrial uses

Spacecrafts, airplanes (Airbus, Boing)
Microsoft
Intel
French railways
Telecom Operators
Nuclear power plants
Banks
Cryptography

Contents of this course

Discover 3 aspects of Coq

1. Coq as a proof assistant

- write precise and clear definitions
- how to state meaningful theorems
- how to prove them in a perfectly rigorous way this task is interactive: tedious parts can be discharged by the machine but creative part need input from a human.

Contents of this course

Discover 3 aspects of Coq
2. Coq as a challenging programming language

- many applications of Coq to problems arising in computer science

Contents of this course

3. Applications to reasoning about non-trivial programs

- lists, trees...
- data-structures implemented with pointers

Outline

Introduction

Coq

Lambda-calculus

Inductive types (graphically: trees)
Graphical syntax
Composition of trees

Expected benefits from this course

Trees with variables
More general trees
Several constructors
Polymorphic trees

Firsts steps to Coq

Key idea: abstraction

- take a concrete expression
- make some value (repeated or not) a parameter
- that's it

Simple but far reaching

The abstract thing can be

- a data, a function, a program, a type
- a family of them
- subtle combinations
e.g. a program may depend on a previously abstracted value; programs may depend on pgms, or on types, or conversely.

A very powerful logic

- Statements
- Proofs: concrete data
- More powerful than Peano arithmetic: Goodstein sequences

A way to compute proofs for given statements
\Rightarrow Programming comes first

A strange programming language

- Without state!!
- Called functional programming
- Components:

Components

- lambda-calculus (pure functions)
- inductive types

Remarks

- States can be simulated
- Actually lambda-calculus has the power of Turing machines

A strange programming language

State is a burden for reasoning
Immutable values are much more convenient
All proof assistants are related to a functional programming language

In the case of Coq (and others e.g. Agda, Matita, Lego,
Nuprl) the relationship is very tight

Outline

Introduction

Lambda-calculus
Inductive types (graphically: trees)
Graphical syntax
Composition of trees

Lambda-calculus

Receipe (part 1)

- Take your preferred programming language (C, Python, Ocaml, Java, Javascript,...)
- Remove objects, classes,...
- Remove state variables (global, static, local, ...)
- Remove assignments
- Remove goto statements
- Remove if statements, loops
- Remove all side effects

Lambda-calculus

What is left?

- expressions
- constants
- function calls
- (possibly recursive) function definitions

Receipe (part 2)

- Remove recursion

What you get is essentially lambda-calculus with constants
Lambda-calculus with constants

- Built-in computations on integers, Booleans, characters,...
- Function calls : replacement of formal parameters by actual parameters

Expected benefits from this course

Lambda-calculus

Receipe (part 3)

- Remove constants and built-in computations

What you get is essentially pure lambda-calculus
Pure lambda-calculus

- Function calls :
replacement of formal parameters by actual parameters
- Application: $U V$
- $(\lambda x . U) V \beta$-reduces to $U[x:=V]$
(in any context, i.e., at any position inside a λ-term)

Pure lambda-calculus

Just 3 things

- Variables: x, y, \ldots
- Application: UV
- Abstraction: $\lambda x . U$

Just 1 computation rule: β-reduction

- Variables: x, y, \ldots

In Coq: lambda-calculus + definitions

Math notation
$a \stackrel{\text { def }}{=} 3$
$f \xlongequal{\text { def }} \lambda x \cdot x+2$
Coq notation
Definition a := 3 .
Definition f := fun $x=>x+2$.

Expansion of a definition to its body
Called δ-reduction
f a reduces (in two δ steps) to $(\lambda x . x+2) 3$
Then $(\lambda x . x+2) 3 \beta$-reduces to $3+2$

Functions with two (or more) arguments

A function of x and y is a function of x which returns a function of y

- Example: λx. $(\lambda y, x+2 * y)$
- Shorthands:

$$
\begin{aligned}
& \lambda x \cdot(\lambda y \cdot x+2 * y) \\
& \lambda x y \cdot x+2 * y
\end{aligned}
$$

- Application:

$$
\begin{aligned}
& (\lambda x \cdot(\lambda y \cdot x+2 * y) 5) 1 \\
\xrightarrow{\beta} & (\lambda y \cdot 5+2 * y) 1 \\
\xrightarrow{\beta} & 5+2 * 1
\end{aligned}
$$

Functions everywhere

Pure λ-calculus deals only with functions

- Variables actually stand for functions
- Functions return functions
- Function take functions as arguments
- Such functions are called higher-order functions

Pure λ-calculus has the power of Turing machines

- Constants (numbers, Booleans, etc.) can be encoded by functions
- Data-structures (pairs, tuples, lists, trees) can be encoded by functions
- Loops (iteration, recursion) can be encoded by functions

Main properties of lambda-calculus (1)

Confluence (Church-Rosser)

- A redex is a position in a λ-term where a β-reduction is possible.
- A λ-term may contain several redexes
- Reducing a redex may produce 0,1 or several new redexes
- Therefore, there are in general many ways to compute (reduce and reduce) a given term
- However, the final result (if any) is always the same: we say that pure λ-calculus has the Church-Rosser property

Main properties of lambda-calculus (2)

Termination (Normalization)

- A term without redex is said to be normal (end of computations)
- We say that a term U is weakly (respectively strongly) normalizing if, respectively
- there exist a reduction sequence

$$
T=T_{0} \xrightarrow{\beta} T_{1} \xrightarrow{\beta} \ldots T_{n} \text { such that } T_{n} \text { is normal }
$$

- all reduction sequences $T=T_{0} \xrightarrow{\beta} T_{1} \xrightarrow{\beta} \ldots$ eventually end with a normal term T_{n}
- (Pure) λ-calculus contains non-normalizing terms, e.g., $\Omega \xlongequal{\text { def }} \Delta \Delta$ with $\Delta \xlongequal{\text { def }} \lambda x . x x$
- However, typed versions of λ-calculus, including Coq, don't allow such terms - actually all terms are strongly normalizing

Main properties of lambda-calculus (3)

The version of pure typed λ-calculus used in Coq is called the Calculus of Constructions (CoC , or CC).
The full λ-calculus used in Coq also contains inductive types; it is called the Calculus of Inductive Constructions (CIC).

Alltogether, confluence and normalization ensure that functions do provide a unique result for any input. That is, functions are total (defined everywhere).

Examples of λ-calculi with this feature include

- simply typed λ-calculus, contained in
- CoC, itself contained in
- CIC

We will see that these typed λ-calculi have a logical interpretation. Totality is mandatory for the underlying logic to be consistent, and then to be usable in a proof assistant!

A glance at typed lambda-calculus (1)

Simply typed λ-calculus

- Types are atomic types or arrow types $A \rightarrow B$
- All variables are provided such a type
- If U has type $A \rightarrow B$ and V has type A, then $U V$ has type B
- If x has type A and U has type B, then $\lambda x . U$ has type $A \rightarrow B$
- Example: $\lambda x . x$ has many types such as $A \rightarrow A$, $(A \rightarrow B) \rightarrow(A \rightarrow B)$, etc.

A glance at typed lambda-calculus (2)

Polymorphic typed λ-calculus

- Simple types + universally quantified types, e.g. $\forall X, X \rightarrow X$
(a satisfactory type for $\lambda x . x$)
- Such types are called polymorphic types

CoC (Calculus of Constructions)

- simple types
- polymorphic types
- dependent types (see later)

CIC (Calculus of Inductive Constructions)

- COC + inductive types

Expressive power of untyped lambda-calculus

Terms similar to Ω can be used to define general recursion. E.g. $Y \xlongequal{\text { def }} \lambda f .(\lambda x . f(x x))(\lambda x . f(x x))$.

Exercise: check that $\mathrm{Y} f$ is a fixed point of f, that is, it β-reduces to a term which is equivalent to $f(\mathrm{Y} f)$.

Any "recursive" definition of a function can be defined using Y. Therefore, untyped pure λ-calculus has the power of Turing machines.

However, strong normalization is lost, since such a
computation contains infinite sequences of reductions (Hint: look a the redex inside Y).
Untyped pure λ-calculus is logically inconsistent (Technically, Y could be used to prove False).

Expressive power of typed lambda-calculi

Y is not typable even in CoC

- Good news: the underlying logic is consistent
- Bad news: general recursion is lost; is it serious?

Limited forms of recursion are typable:
(higher order) iteration and primitive recursion.
Expressive power of some typed λ-calculi

- simply typed λ-calculus: very weak (polynomials), moreover unconvenient
- CoC: very powerful - any practically provably total function can be represented (reminder: Goodstein sequences); however, still not very convenient
- CIC: very powerful (similar to CoC) but much more convenient

Live Demo

J.-F. Monin

Expected benefits from this course

Outline

Introduction

Inductive types (graphically: trees)
Graphical syntax
Composition of trees

Types everywhere

Very powerful types
Everything has a type, even types
We can compute on types and on values at the same time.
Examples: families of types.

- Example: n -tuples, with $\mathrm{n}=1,2 \ldots$ even 0 .
... So it will become complex...
We start with a graphical syntax

Types having finitely many values

The simplest are called an enumeration

Example

```
Red : color
Red_f : rgb
Orange : color
Yellow : color
Green : color
Blue : color
Indigo : color
Violet : color
Green_f : rgb
Blue_f: rgb
\begin{tabular}{ll} 
Red : color & Red_f : rgb \\
Orange : color & \\
Yellow : color & \\
Green : color & Green_f : rgb \\
Blue : color & Blue_f: rgb \\
Indigo : color &
\end{tabular}
```

Warning: a value has only one type

What is the type of color and rgb?

```
color : Set
rgb : Set
```

What is the type of Set?

Set : Type

What is the type of Type?

Several constructors
Polymorphic trees
Type(i) : Type(i+1)

Graphical syntax

Outline

Introduction

Expected benefits from this course

Inductive types (graphically: trees)

Graphical syntax

Composition of trees

Trees with variables

More general trees
Several constructors
Polymorphic trees

Graphical syntax

$\overline{\text { color }}$ Red $\overline{\text { color }}$ Orange \quad color \quad Yellow \quad color Green
$\overline{\text { color }} \quad \overline{\text { color }}$ Indigo $\quad \overline{\text { color }}$ Violet

The horizontal bar means: MAKES
Red, Orange,... are called CONSTRUCTORS
At the same time we have
-color
Set

Intermezzo: definitions

In order to save space, we use definitions.
E.g. (Coq syntax)

Definition R := Red.
means that R is definitionally the same as Red.
Definition co := color.
means that co is definitionally the same as color.
Hence
Red:color, Red:co, R:color and R:co are all the same judgement

Graphical syntax

Definition 0 := Orange. Definition Y := Yellow. Definition G := Green. Definition B := Blue. Definition I := Indigo. Definition V := Violet.

Definition Rf := Red_f. Definition Gf := Green_f. Definition Bf := Blue_f.

$$
\overline{\mathrm{rgb}} \mathrm{Rf} \quad \overline{\mathrm{rgb}} \mathrm{Gf} \quad \overline{\mathrm{rgb}} \mathrm{Bf}
$$

Outline

Introduction

Expected benefits from this course

Coq

Lambda-calculus
Inductive types (graphically: trees)
Graphical syntax
Composition of trees
Trees with variables
More general trees
Several constructors
Polymorphic trees

Using a value

We know how to make (or construct) a value in color or in rgb.

Next issue: how to use a value

- use a given value
- use a (still) unknown value

Composition of n-tuples

Making a 4-tuple of rgb

$$
\frac{\mathrm{rgb}}{\mathrm{rgb}} \mathrm{rgb} \quad \mathrm{rgb} \mathrm{Mk} 4
$$

The constructor Mk4 makes a tuple4 from

- a rgb
- a rgb
- a rgb
- a rgb

At the same time we have

$$
\overline{\text { Set }} \text { tuple4 }
$$

Pluging rgb into Mk4

Building blocks

$\overline{\mathrm{rgb}} \mathrm{Gf}$	$\overline{\mathrm{rgb}} \mathrm{Rf}$	$\overline{\mathrm{rgb}} \mathrm{Gf}$	$\overline{\mathrm{rgb}} \mathrm{Bf}$
$\frac{\mathrm{rgb}}{}$	rgb	rgb	rgb
	tuple 4		

Connecting them yields the concrete 4-tuple of rgb
$\frac{\overline{\mathrm{rgb}} \mathrm{Gf} \quad \overline{\mathrm{rgb}} \mathrm{Rf} \quad \overline{\mathrm{rgb}} \mathrm{Gf} \quad \overline{\mathrm{rgb}} \mathrm{Bf}}{\operatorname{tuple} 4} \mathrm{Mk4}$

Others trees for 4-tuples

$\overline{r g b} B f$	$\overline{\mathrm{rgb}} \mathrm{Gf}$	$\frac{r_{\mathrm{g}} \mathrm{gb}}{\mathrm{Bf}}$	$\overline{\mathrm{rgb}} \mathrm{Gf}$
	tup		

$\frac{\overline{\mathrm{rgb}} \mathrm{Rf} \quad \overline{\mathrm{rgb}} \mathrm{Rf} \quad \overline{\mathrm{rgb}} \mathrm{Rf} \quad \overline{\mathrm{rgb}} \mathrm{Rf}}{\mathrm{mk} 4}$

Another view on Mk4

As a building block

$\frac{\text { rgb }}{\substack{\text { tuple4 }}}$| rgb | Mk4 |
| :---: | :---: |

As a tree

$\overline{\mathrm{rgb}}^{\stackrel{\downarrow}{x_{1}}}$	$\overline{\mathrm{rgb}}^{\stackrel{\downarrow}{x_{2}}}$	$\frac{\mathrm{rgb}^{\stackrel{\downarrow}{x_{3}}}}{\stackrel{\downarrow}{2}}$	$\frac{{ }_{\mathrm{rgb}}}{\stackrel{\downarrow}{x_{4}}}$
			Mk

This is called an open tree

Outline

Introduction

Expected benefits from this course

Coq

Lambda-calculus

Inductive types (graphically: trees)
Graphical syntax
Composition of trees

Trees with variables

More general trees
Several constructors
Polymorphic trees

Closed and open trees

The meaning (or value) of
$\frac{\overline{\mathrm{rgb}} \mathrm{Gf} \quad \overline{\mathrm{rgb}} \mathrm{Rf} \quad \overline{\mathrm{rgb}} \mathrm{Gf} \quad \overline{\mathrm{rgb}} \mathrm{Bf}}{\text { tuple4 }}$
is completely defined: this is called a closed tree.
In contrast, the meaning of the open tree

depends on x_{2} and x_{4}.

General shape: trees

Interpretation

- At positions 1, 2, 3, 4 : types
- 1, 2, 3: inputs
- 4: output (or result)

Makes the output from the inputs

Pluging trees

Environment

The tree

has a meaning for all trees plugged into x_{2} and x_{4}.
The variables $x_{2}: r g b$ and $x_{4}: r g b$ make up the environment of this tree

Outline

Introduction

Lambda-calculus

Inductive types (graphically: trees)

Graphical syntax

Composition of trees

More general trees
Several constructors
Polymorphic trees

More 4-tuples

WRONG

4-tuple of rgb

$\overline{r g b} G f$	$\overline{\mathrm{rgb}} \mathrm{Rf}$	$\overline{\mathrm{rgb}} \mathrm{Gf}$	$\overline{\mathrm{rgb}} \mathrm{Bf}$
	tup		

4-tuple of color

$$
\begin{array}{cccc}
\frac{\overline{\mathrm{co}} \mathrm{O}}{} & \overline{\mathrm{co}} \mathrm{Y} & \overline{\mathrm{co}} \mathrm{~B} & \overline{\mathrm{co}} \mathrm{~V} \\
& \text { tuple4 }
\end{array}
$$

Mk4 must be applied to arguments of a given type

How to make 4-tuples more general

Solution 1: have different constructors

$\frac{{ }_{\mathrm{rgb}}}{\stackrel{\downarrow}{x_{1}}}$	$\frac{r^{2}}{} \frac{\downarrow}{x_{2}}$	$\overline{r g b}^{\frac{\downarrow}{x_{3}}}$	$\overline{\mathrm{rgb}}^{\stackrel{\downarrow}{x_{4}}}$
			Mk4rgb

At the same time we have

$$
\overline{\text { Set }} \text { tuple4 }
$$

How to make 4-tuples more general

Remark

Beyond Mk4rgb, Mk4co, Mk4t4, we can imagine hererogeneous 4-tuples, for instance:

Many possibilities... to be considered again later.

How to make 4-tuples more general

Solution 2: only one constructor, but more general

But where does A come from?
We want the previous tree for all A...

The magic

Solution 2: only one constructor, but more general

$\overline{S e t}^{\downarrow}{ }^{\downarrow}$	$-\frac{\downarrow}{\mathrm{A}}{ }^{\frac{\downarrow}{x_{1}}}$	$-\stackrel{\downarrow}{\stackrel{\downarrow}{x}}{ }^{\text {a }}$	$\mathrm{A}^{-\stackrel{\downarrow}{\times 3}}$	$-\stackrel{\downarrow}{\mathrm{A}_{4}}$

As usual, at the same time we have

$$
\overline{\text { Set }} \text { gtuple4 }
$$

Intermezzo: a shorthand for trees

Where t 1 is for example defined as

And so on for t2, etc.

Concrete example

$\overline{S e t}^{r g b}$	$\overline{\overline{\mathrm{rgb}}} \mathrm{u} 1$	$\overline{\overline{\mathrm{rgb}}} \mathrm{u} 2$	$\overline{\overline{\mathrm{rgb}}} \mathrm{u} 3$	$\overline{\overline{\mathrm{rgb}}} \mathrm{u} 4$
		ple4		

General homogeneous 4-tuples

$$
\begin{array}{llll}
\overline{\overline{\text { Set }} \mathrm{A}} & \overline{\mathrm{~A}} \mathrm{u} & \overline{\bar{A}} \mathrm{u} 2 & \overline{\bar{A}} \mathrm{u}
\end{array} \underset{\overline{\mathrm{~A}}}{\mathrm{u}} \mathrm{u} 4
$$

The type A can be many things beyond rgb

- gtuple4
- a complex tree

The trees $u 1, u 2, u 3, u 4$ and A can be open (they can depend on variables).

Exercises

1) Write trees for examples of 4-tuples of 4-tuples using tuple4 and gtuple4.
Some of them, closed, some of them open
E.g. $\left\langle\langle\mathrm{R}, \mathrm{Y}, \mathrm{B}, \mathrm{B}\rangle,\left\langle\mathrm{B}, \mathrm{O}, x_{4}, \mathrm{R}\right\rangle,\left\langle x_{7}, x_{7}, x_{7}, \mathrm{~V}\right\rangle,\langle\mathrm{V}, \mathrm{Y}, \mathrm{O}, \mathrm{R}\rangle\right\rangle$
2) Trees for heterogeneous pairs (2-tuples) and for heterogeneous triples.
3) Trees for homogeneous n-tuples, where n can be 1,2 or 3 .
4) Trees for heterogeneous n-tuples, where n can be 0,1 or 2 .
