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First-order logic

Interpretation (contd.)

Model, validity, consequence, equivalence

Defined as in propositional logic.

An assignment

I In propositional logic : V →{0,1}
I In first-order logic : (I,e) where

I I is a symbol interpretation
I e a variable state.

The truth value of a formula only depends on
its free variables and its symbols.

The state of variables is useless for evaluating
a formula with no free variables.

We use an interpretation instead of an assignment.
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First-order logic

Interpretation (contd.)

Instantiation

Definition 4.3.34

Let x a variable, t a term and A a formula.

1. A < x := t > is the formula obtained by replacing in formula A all
free occurrence of x with the term t .

2. The term t is free for x in A if the variables of t are not bound in
the free occurrences of x .
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First-order logic

Interpretation (contd.)

Instantiation : Example

Example 4.3.35

I The term z is free for x in formula ∃y p(x ,y).

I On the contrary the term y , as all term containing the variable y ,
is not free for x in this formula.

I By definition, the term x is free with respect to itself in all formula.

I Let A the formula (∀xP(x)∨Q(x)), the formula A < x := b >
equals
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First-order logic

Interpretation (contd.)

Properties

Theorem 4.3.36

Let A a formula and t a free term for the variable x in A. Let I an
interpretation and e a state of the interpretation. We have
[A < x := t >](I,e) = [A](I,e[x=d]), where d = JtK(I,e).

Corollary 4.3.38

Let A a formula and t a free term for x in A.
The formulae ∀xA⇒ A < x := t > and A < x := t >⇒∃xA are valid.
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First-order logic

Interpretation (contd.)

The condition on t is necessary :

The condition “t is a free term” is necessary in theorem 4.3.36.

Example 4.3.37

Let I the interpretation of domain {0,1} with pI = {(0,1)} and e, a
state where y = 0. Let A the formula ∃yp(x ,y) and t the term y . This
term is not free for x in A

I A < x := t >=

and [A < x := t >](I,e) =
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First-order logic

Interpretation (contd.)

The condition on t is necessary :

Example 4.3.37

I Let d = JtK(I,e) = JyK(I,e) = 0. In the assignment (I,e[x = d]), we
have x = 0. Hence [A](I,e[x=d]) =

Thus, [A < x := t >](I,e) 6= [A](I,e[x=d]), for d = JtK(I,e).
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First-order logic

Finite interpretation

Finite model

Definition

A finite model of a closed formula is an interpretation of the formula of
finite domain, which makes the formula true.

Remark

I The name of the elements of the domain is not important.

I Hence for a model with n elements, we’ll use the domain of
integers less than n.
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First-order logic

Finite interpretation

Building a finite model

Naive idea : In order to know whether a closed formula has a model of
domain {0, . . . ,n−1}, just

I enumerate all the possible interpretations of the associated
signature of the formula

I evaluate the formula for these interpretations.

Example

Let Σ = {af0, f f1,Pr2}, plus possibly the equality of truth value set.

Over a domain of 5 elements, Σ has 5×55×225 interpretations !

This method is unusable in practice.
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First-order logic

Finite interpretation

Software for building a finite model

MACE

I translation of first-order formulae in propositional formulae

I performant algorithms to find the satisfiability of a
propositional formula (e.g., different versions of the DPLL
algorithm)

http://www.cs.unm.edu/˜mccune/prover9/mace4.pdf
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First-order logic

Finite interpretation

Method for finding a finite model

Base case : Find models of n elements by reduction to the
propositional case for a formula with no function symbol and no
constant, except representations of integers less than n.

Construct the model of n elements

1. eliminate quantifiers by expansion to a domain of n elements,

2. replace equalities with their value

3. search for a model propositional assignment.
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First-order logic

Finite interpretation

Expansion of a formula

Definition 4.3.39

Let A a formula and n an integer. The n-expansion of A is the formula
which consists in replacing :

I all sub-formula of A of the form ∀xB with the conjunction
(∏i<n B < x := i >)

I all sub-formula of A of the form ∃xB with the disjunction
(∑i<n B < x := i >)

where i is the decimal representation of the integer i .

Example 4.3.40

The 2-expansion of the formula ∃xP(x)⇒∀xP(x) is
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First-order logic

Finite interpretation

Property of the n-expansion

Theorem 4.3.41

Let n be an integer and A be a formula containing only representations
of integers whose value are less than n.
Let B be the n-expansion of A.
All interpretation of domain {0, . . . ,n−1} assign the same value to A
and B.

The condition on A is necessary because if A contains a
representation of an integer which is at least equal to n, the value of
this representation will not be in the domain of the interpretation.
The proof of the theorem is by induction on the height of formulae.
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First-order logic

Finite interpretation

Idea of the induction : elimination of a universal quantifier

Reminder : theorem 4.3.36

Let A be a formula and t be a term which is free for the variable x in A. Let I
be an interpretation and e be a state of the interpretation. We have
[A < x := t >](I,e) = [A](I,e[x=d]), where d = JtK(I,e).

Let (I,e) be an interpretation and a state of domain {0, . . . ,n−1} assigning
to the representation of an integer the value of the represented integer. By
definition :

[∀xB](I,e) = ∏
i<n

[B](I,e[x=i])

According to theorem 4.3.36 and the fact that the value of the representation
of the integer i is i , we have :

[B](I,e[x=i]) = [B < x := i >](I,e)

Therefore : [∀xB](I,e) = ∏i<n[B < x := i >](I,e) = [∏i<n B < x := i >](I,e).
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First-order logic

Finite interpretation

From assignment to interpretation

Let n be an integer and A be a closed formula, with no quantifier, no
equality, no function symbol, and no constant except the
representations of integers less than n. Let P be the set of atomic
formulae of A (except > and ⊥ whose truth value are fixed).

Theorem 4.3.42

Let v be a propositional assignment of P in {0,1} ; then there exists
an interpretation I of A such that [A]I = [P]v .

Proof.

See handout course notes. 2

S. Devismes et al (Grenoble I) First-order logic March 06, 2015 18 / 44



First-order logic

Finite interpretation

Example 4.3.43

Let v the assignment defined by p(0) = 1,p(1) = 0.

v gives the value 0 to the formula (p(0)∨p(1))⇒ (p(0)∧p(1)).

Hence the interpretation I defined by pI = {0} also gives the value 0 to
the same formula.

This example shows that v and I are two analogous ways of
presenting an interpretation, the second one is often more concise.
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First-order logic

Finite interpretation

From interpretation to assignment

Let n an integer and A a closed formula, with no quantifier, no equality,
no function symbol, no constant except for the representations of
integers less than n. Let P the set of atomic formulae of A (except >
and ⊥ whose truth value is fixed).

Theorem 4.3.44

Let I an interpretation of A then there exist an assignment v of P such
that

[A]I = [P]v .

Proof.

See handout course notes. 2
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First-order logic

Finite interpretation

Finding a finite model of a closed formula without
function symbol

Procedure under the same hypotheses.

1. Replace A by its n-expansion B
2. In B,

I replace equalities by their truth constants, i.e., i = j is replaced by
⊥ if i 6= j and by > if i = j .

I Simplification using equivalences
x ∨⊥= x , x ∨>=>, x ∧⊥=⊥, x ∧>= x .

Let C be the obtained formula.
3. Look for a propositional assignment v of the atomic formulae of

C, which is a model of C :
I if such an assignment does not exist, A has no model
I otherwise the interpretation I deduced from v is a model of A.
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First-order logic

Finite interpretation

Correctness proof of the method

1. Suppose there is no model propositional assignment of C, but
that A has a model I.

I According to theorem 4.3.41, I is a model of B, hence of C.
I According to theorem 4.3.44, there is a model propositional

assignment of C.

From this contradiction, we deduce that A has no model with n
elements.

2. Suppose there exist a propositional assignment v of atomic
formulae of C which is a model of C.
Hence, the interpretation I constructed as indicated in theorem
4.3.42 is a model of C.
Hence it is a model of B
Hence according to theorem 4.3.41, it is a model of A.
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First-order logic

Finite interpretation

Example 4.3.45
A = ∃xP(x)∧∃x¬P(x)∧∀x∀y(P(x)∧P(y)⇒ x = y))

A has no model of one element, since we have P and its negation.

2-expansion de A

We replace equalities by their truth constants

S. Devismes et al (Grenoble I) First-order logic March 06, 2015 23 / 44



First-order logic

Finite interpretation

Finding a finite model of a closed formula with a function
symbol

Let A be a closed formula which can contain representations of
integers of value less than n.

Procedure

I Replace A by its expansion

I Enumerate the choices of symbol values, by propagating as
much as possible each of the realized choices.

Similar to DPLL algorithm.
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First-order logic

Finite interpretation

Example 4.3.46 : A = ∃yP(y)⇒ P(a)

Look for a counter-model with 2 elements.
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First-order logic

Finite interpretation

Example 4.3.47 : P(a),∀x(P(x)⇒ P(f (x))),¬P(f (b))
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First-order logic

Substitution and replacement

Substitution

Recall that, in propositional logic, substituting a proposition to a valid
propositional formula gives a valid formula. This extends to first-order
logic.

Example :

Let σ(p) = ∀x q(x).
p∨¬p is valid, the same holds for

σ(p∨¬p) = ∀x q(x)∨¬∀x q(x)
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First-order logic

Substitution and replacement

Replacement

The principle of replacement for propositional logic extends as well to
first-order logic since it follows from the following elementary
properties :

For all formulae A and B and all variable x :

I (A⇔ B) |= (∀xA⇔∀xB)

I (A⇔ B) |= (∃xA⇔∃xB)
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First-order logic

Important equivalences

Relation between ∀ and ∃

Lemma 4.4.1

Let A be a formula and x be a variable.

1. ¬∀xA≡ ∃x¬A

2. ∀xA≡ ¬∃x¬A

3. ¬∃xA≡ ∀x¬A

4. ∃xA≡ ¬∀x¬A

Let us prove the first two equivalences, the other are in exercise 76
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First-order logic

Important equivalences

Proof of ¬∀xA≡ ∃x¬A
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First-order logic

Important equivalences

Proof of ∀xA≡ ¬∃x¬A
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First-order logic

Important equivalences

Moving quantifiers

Let x , y be two variables and A, B be two formulae.

1. ∀x∀yA≡ ∀y∀xA

2. ∃x∃yA≡ ∃y∃xA

3. ∀x(A∧B)≡ (∀xA∧∀xB)

4. ∃x(A∨B)≡ (∃xA∨∃xB)

5. Let Q be a quantifier among ∀,∃, let ◦ be an operation among
∧,∨. Suppose that x is not a free variable of A.
5.1 QxA≡ A,
5.2 Qx(A◦B)≡ (A◦QxB)
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First-order logic

Important equivalences

Example 4.4.2

Let us eliminate useless quantifiers from these two formulae :

I ∀x∃xP(x)≡

I ∀x(∃xP(x)∨Q(x))≡
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First-order logic

Important equivalences

Change of bound variables (1/4)

Theorem 4.4.3

Let Q be a quantifier among ∀,∃. Suppose that y is a variable not
occurring in QxA then : QxA≡ QyA < x := y >.

Example 4.4.4

I ∀x p(x ,z)≡ ∀y p(y ,z).

I ∀x p(x ,z) 6≡ ∀z p(z,z).
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First-order logic

Important equivalences

Change of bound variables (2/4)

Definition 4.4.5

Two formulae are equal with respect to a change of bound variables if
we can obtain one starting from the other by replacing sub-formulae of
the form QxA by

QyA < x := y >

where Q is a quantifier and y is a variable not appearing in QxA.

The two formulae are α-equivalent or a copy of each other, denoted
A =α B
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First-order logic

Important equivalences

Change of bound variables (3/4)

Theorem 4.4.6

If two formulae are equal with respect to a change of bound variables
then they are equivalent.
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First-order logic

Important equivalences

Change of bound variables (4/4)

Example 4.4.7

Let us show that the formulae ∀x∃yP(x ,y) and ∀y∃xP(y ,x) are equal
with respect to a change of bound variables and therefore that they are
equivalent.

S. Devismes et al (Grenoble I) First-order logic March 06, 2015 39 / 44



First-order logic

Important equivalences

α-equivalence howto

Technique

I Draw lines between each quantifier and the variables that it binds.

I Erase the name of bound variables.

If after this transformation, the two formulae become identical, it
means that they are equal with respect to a change of bound variables.

Example 4.4.8

Let ∀x∃yP(y ,x) and ∀y∃xP(x ,y) two formulae.
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First-order logic

Important equivalences

Exercise

Compute the transformation for

I A = ∀x∀y R(x ,y ,y)

I B = ∀x∀y R(x ,x ,y)

Are A and B α-equivalent ?
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First-order logic

Important equivalences

Property =α

Theorem 4.4.9

1. Let A be an atomic formula, A =α A′ if and only if A′ = A

2. ¬B =α A′ if and only if A′ = ¬B′ and B =α B′

3. (B ◦C) =α A′ if and only if A′ = (B′ ◦C′) and B =α B′ and C =α C′,
where ◦ is one of the connectives ∧,∨,⇒,⇔.

4. If ∀xB =α A′ then A′ = ∀x ′B′ and for every variable z not in the
formulae B and B′, we have :
B < x := z >=α B′ < x ′ := z >.

5. If ∃xB =α A′ then A′ = ∃x ′B′ and for every variable z not in the
formulae B and B′, we have :
B < x := z >=α B′ < x ′ := z >.

6. If there is one variable z not in the formulae B and B′ such that
B < x := z >=α B′ < x ′ := z > then ∀xB =α ∀x ′B′ et ∃xB =α ∃x ′B′.
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First-order logic

Important equivalences

Algorithm for testing alpha-equivalence

The test data are two formulae A and A′.
The result is yes if A =α A′, no if A 6=α A′.

Example 4.4.10

We only study the case where A = ∀xB.

1. If A′ is not of the form ∀x ′B′, then, according to point (4) of the
theorem, the answer is no.

2. If A′ = ∀x ′B′ then we choose any variable z not in B and B′.
2.1 If B < x := z >=α B′ < x ′ := z > then, according to point (6) of

the theorem, the answer is yes.
2.2 If B < x := z >6=α B′ < x ′ := z > then, according to point (4) of

the theorem, the answer is no.
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First-order logic

Important equivalences

Conclusion

Thank you for your attention.

Questions ?
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