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First-order logic
Introduction

Homework : solution using ND

(p=NA(Ep=/)A(=m)=mVp

S. Devismes et al (Grenoble I) First-order logic February 27,2015 -  2/68



First-order logic

Introduction

Structure of first-order logic

A non-empty domain (more than two elements)

Three categories :

» Terms representing the elements of the domain or functions on
these elements

» Relations

» Formulae describing the interactions between the relations
thanks to connectives and quantifiers

Remark :
Two particular symbols (quantifiers) : V (universal quantification) and 3
(existential quantification).
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First-order logic
Introduction

Structure of first-order logic

Examples :
» the term parent(x) intended to mean the parent of x,

» the formula Vx3y parent(y, x) indicates that every individual has
a parent.
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First-order logic
Introduction

Syllogism

A cheap horse is rare.
Everything that is rare is expensive.
Hence a cheap horse is expensive.

Vx(horse(x) A cheap(x) = rare(x))

Vx(rare(x) = expensive(x))
Vx(horse(x) A cheap(x) = expensive(x))
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First-order logic
Introduction

Syllogism

A cheap horse is rare.
Everything that is rare is expensive.
Hence a cheap horse is expensive.
Nothing bothers you ?
Everything that is expensive is not cheap and vice versa.

Vx(cheap(x) < —expensive(x))

Now we have a contradiction.
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First-order logic
Introduction

Usage

First-order logic allows us to model :
» a single non-empty domain,
» functions over the domain, and

» relations over the domain.
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First-order logic
Introduction

Overview

Introduction

Language
(Strict) Formulae
Prioritized formulae

Free vs. bound

Truth value of formulae
Declaring a symbol
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Truth value of formulae

Conclusion
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First-order logic
Language
(Strict) Formulae

Vocabulary

» Two propositional constants : 1 and T

» Variables : sequence of letters and digits starting with one of the
following lower case letters : u,v,w,x,y,z.

» Connectives : =, A\,V,=, &

» Quantifiers : V the universal quantification and 3 the existential
quantification

» Punctuation : the comma <, > and the open < (> and closing
<) »parenthesis.

» Ordinary and special symbols :

» an ordinary symbol is a sequence of letters and digits not
starting by one of the following lower case letters : u,v,w,x,y,z.
» aspecial symbol is +, —,x*, /,=,#, <, <, > > ...
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First-order logic
Language

Example 4.1.1

» x,x1,x2,y are variables,

» man, parent, succ, 12, 24, f1 are ordinary symbols, the ordinary
symbols will represent :

» functions (numerical constants or multiple argument functions) or
» relations (propositional variables or multiple argument relations).

» x =y, z> 3 are examples for special symbols
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First-order logic
Language

Term

Definition 4.1.2

» an ordinary symbol is a term,
» avariable is a term,

» if ty,...,t, are terms and if s is a (ordinary or special) symbol
then s(t,...,t,) is a term.

Example 4.1.3
x,a,f(x1,x2,9(y)), +(x, #(y, 2)), +(5,42) are terms

On the contrary, f(L,2,y) is not a term.

Note that 42(1,y,3) is also a term, but by convention function and relation
names are ordinary symbols starting with letters.
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First-order logic
Language

Atomic formula

Definition 4.1.4 atomic formulae

» T and L are atomic formulae
» an ordinary symbol is an atomic formula

» if ty,...,t, are terms and if s is a (ordinary or special) symbol
then s(ti,...,t,) is an atomic formula.

Example 4.1.5 :

» f(1,+(5,42),9(2)), a, and +(x, *(y, z)) are atomic formulae
» x and AV f(4,2,6) are not atomic formulae
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First-order logic
Language

Syntax v.s. Semantics

The set of terms and the set of atomic formulae are not disjoint.
For example p(x) is a term and an atomic formula.

When t is a term and an atomic formula simultaneously, we distinguish
[[t]], the value of t seen as a term of [t], value of t seen as a formula.
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First-order logic
Language

(Strict) Formula

Definition 4.1.6

» an atomic formula is a formula,
» if Ais a formula then —Ais a formula,

» if Aand B are formulae and if o one of the following operations
V,\,=,< then (Ao B) is a formula ,

» if Ais a formula and if x is any variable then Vx A and dx A are
formulae.
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First-order logic
Language

Example 4.1.7

» man(x), parents(son(y), mother(Alice)), = (x,+(f(x),9(y)))

are atomic formulae, hence formulae.

» On the contrary

|

is a non-atomic formula.
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First-order logic
Language

(Strict) Formula : Examples

Among these expressions, which ones are strict formulae :

> X

> a

|

» (a(x)=b)Na(x)=b

|

» Ix((L = a(x)) Ab(x))

» Ix3Jy < (—(x,y),+(a,y))

» ((a<b)=((2xb) > (2%xa)))
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First-order logic
Language

Infix notations

Prioritized formulae : the symbols of the functions +, —,*, / and the
symbols of the relations =, #, <, >, <, > are written in the usual
manner.

Example 4.1.8

» <(x(8,x),+(y,5)) is abbreviated as

| |

» +(x,*(y,z)) is abbreviated as

| |
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First-order logic
Language

Inverse transformation

Prioritize

» connectives have a lower priority than the relations
» quantifiers have the same priority as negation.
» = #,<,<,>,> have a lower priority than +, —, %, /
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First-order logic
Language

Table 4.1 summary of priorities

Priorities decreasing from top to bottom.

OPERATIONS
—-+ unary
*, / binary left associative
+,— binary | left associative
RELATIONS
=#<5>,2>
NEGATION, QUANTIFIERS
-,V, 3
BINARY CONNECTIVES
A left associative
\Y left associative
= right associative
& left associative
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First-order logic

Language

Prioritized formulae

Definition 4.1.9 prioritized formulae

A prioritized formula is inductively defined as follows :

>

>

>

An atomic formula is a prioritized formula.
If Ais a prioritized formula then —A is a prioritized formula.

If Aand B are prioritized formulae then Ao B is a prioritized
formula.

If Ais a prioritized formula and if x is any variable then Vx A and
dx A are prioritized formulae.

If Ais a prioritized formula (A) is a prioritized formula.
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First-order logic
Language

Examples

Example 4.1.10

» VxP(x) AVxQ(x) < Vx(P(x) A Q(x)) is an abbreviation of

| |

» VxVyVz(x <y Ay < z= x < z)is an abbreviation of ?

| |
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First-order logic
Language

Tree representation

Example 4.1.11 VxP(x) = Q(x)

the left-hand side operand of the implication is VxP(x).

Vx/é\ Q

[
|
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First-order logic
Free vs. bound

Idea

» The meaning of the formula x +2 = 4 depends on x
The meaning of the formula x = x depends on x as well
x is free in the previous formulae

» The meaning of Vx(x +2 = y) does not depend on x
The meaning of Vx(x + 0 = x) does not depend on x
x is not free in these two formulae
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First-order logic
Free vs. bound

Free and bound occurrences

Definition 4.2.1

» InVx Aor dx A, the scope of the binding of x is A.

» An occurrence of x in Ais bound if it is in the scope of a binding
of x, otherwise it is said to be free

If we represent a formula by a tree :
» A bound occurrence of x is

| |

» An occurrence of x is free if

| |
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First-order logic
Free vs. bound

Example 4.2.2
VxP(x,y) A 3zR(x,z)
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First-order logic
Free vs. bound

Free, bound variables

Definition 4.2.3

» The variable x is a free variable of a formula if and only if there is a free occurrence of x in
the formula.

» A variable x is a bound variable of a formula if and only if there is abound occurence of x
in the formula.

» A formula without free variable is also called a closed formula.

Remark 4.2.4

A variable can be simultaneously free and bound. For example, in the formula YxP(x) V Q(x), x
is both free and bound.

Remark 4.2.5

By definition, a variable which does not appear in a formula (0 occurrence) is NOT free in this
formula.

Example 4.2.6

The free variables of the formula of example 4.2.2 are x and y.
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First-order logic
Truth value of formulae

Declaring a symbol

Declaring a symbol

Definition 4.3.1

A symbol declaration is a triple denoted by s9" where :
» sis asymbol
» g one of the letters f (a function) or r (a relation)
» nis a natural number.

Remark 4.3.3

If the context gives an implicit declaration of a symbol, we omit the
exponent.

Example : equal is always a 2 arguments relation, we abbreviate the
declaration =" as =.
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First-order logic
Truth value of formulae

Declaring a symbol

Symbol declaration : Example

Example 4.3.2

» parent’? is a relation (r) with 2 arguments
» /2 is function (f) with 2 arguments

» man'' a unary relation
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First-order logic
Truth value of formulae
Signature

Signature

Definition 4.3.4

A signature is a set of symbol declarations.

Let n> 0 and X a signature, the symbol s'is :

1. a constant of the signature if and only if s® € ¥

2. a symbol of the function of n arguments of the signature, if and
onlyif s € ¥

3. a propositional variable of the signature if and only if s/® € ¥

4. a symbol of the relation of n arguments of the signature, if and
onlyif s € ¥
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First-order logic
Truth value of formulae

Examples in mathematics (1/2)

010,170 2 _12 42 _r2 s 3 signature for arithmetics.

Remark :
» We write : 0, 1, 4 and — (with two arguments), * and =.

» Note that plus and minus have two arguments, (the symbol will
not be used with only one argument).
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First-order logic
Truth value of formulae

Examples in mathematics (2/2)

Example 4.3.5 (Set theory)

A possible signature is €,=

All other operations can be defined from these relations.
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First-order logic
Truth value of formulae

Overloading

Definition 4.3.6
A symbol is overloaded in a signature, when this signature has two
distinct declarations of the same symbol.
Example 4.3.7 : the minus sign is often overloaded.
» the opposite of a number
» the subtraction of two numbers

In what follows, in this course, we prohibit the use of overloaded
symbols in signatures.
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First-order logic
Truth value of formulae

Term over a signature

Definition 4.3.8

Let X be a signature, a term over X is :
» either a variable,
» or a constant s where s € ¥,

» or a term of the form s(t,...,t,), where n > 1, s € ¥ and
ti,...,t, are terms over %.

The set of terms over the signature ¥ is denoted by Ty.
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First-order logic
Truth value of formulae

Atomic formula over a signature

Definition 4.3.9

Let > a signature, an atomic formula over ¥ is :
» either one of the constants T, |,
» or a propositional variable s where s/ € ¥,

» or an expression s(ty,...,t;) wheren>1,s" € X and t;,...,1t,
are terms over .
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First-order logic
Truth value of formulae

Formula over a signature

Definition 4.3.10
A formula over a signature X is a formula, whose atomic sub-formulae
are atomic formulae over X (according to definition 4.3.9).

Fs denotes the set of formulae over the signature ¥.
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First-order logic
Truth value of formulae

Example 4.3.11

Vx (p(x) = 3y q(x,y)) is a formula over signature
Yy = {pr1 qr2 hf1 CfO}‘

But it is also a formula over the signature ¥’ = {p’1 , q’z}, since the
symbols h and ¢ are not in the formula.
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First-order logic
Truth value of formulae

Associated signature

Definition 4.3.12
The signature associated to a formula is the smallest signature ¥ such

that the formula is a member of Fy, it is the smallest signature allowing
to write the formula.
Example 4.3.13

The associated signature of formula Vx (p(x) = 3y q(x,y)) is
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First-order logic
Truth value of formulae

Associated signature

Definition 4.3.14

The associated signature to a set of formulae is the union of the
associated signatures of all formulae of the set.

Example 4.3.15

The associated signature of a set of two formulae
Vx(p(x) = 3y q(x,y)),Yu Vv (u+s(v) = s(u)+v)is

|
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First-order logic

Interpretation

Interpretation

Definition 4.3.16

An interpretation / over a signature X is defined by a non-empty
domain D and an application which maps every symbol s9” € X to its
value s{" as follows :

1. s/%is an element of D.

2. s"where n> 1 is a function from D" to D, in other words, a
function of n arguments.

3. si%is0ort.

4. s;" where n > 1, is a subset of D", in other words, a relation
having n arguments.
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First-order logic
Interpretation

Example 4.3.17

Let / be the interpretation of domain D = {1,2,3} where the binary
relation friend is true for pairs (1,2), (1,3) and (2,3), i.e.,
friend/® = {(1,2),(1,3),(2,3)}.

friend(2,3) is true in interpretation /. On the other hand, friend(2,1) is
false in interpretation /.

Remark 4.3.18
In all interpretations, the symbol = maps to the set {(d,d) | d € D}.
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First-order logic
Interpretation

Example 4.3.19

Let us consider the following signature.

» Anne’®, Bernard™ and Claude™ : the first names Anne, Bernard,
and Claude denote constants,

» a2 : the letter a denotes a two-argument relation (we read a(x,y)
as x likes y) and

» ¢! : the letter ¢ denotes a single argument function (we read
¢(x) as the friend of x).

A possible interpretation over this signature is the interpretation / of
domain D = {0,1,2} where :

» Annel® =0, Bernard[® = 1, and Claude[® = 2.

> a* ={(0,1),(1,0),(2,0)}.

» c/'(0) =1,c/"(1) = 0,c!"(2) = 2. Note that the domain of any
function is D. In particular, function ¢!' is defined everywhere,
which makes it necessary to artificially define c!'(2) even if
Claude, denoted by 2, has no friend.
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First-order logic
Interpretation

Interpretation of a set of formulae

Definition 4.3.20

The interpretation of a set of formulae is an interpretation for the
signature associated to this set of formulae.
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First-order logic
Interpretation

State, assignment

Definition 4.3.21

A state e of an interpretation is an application from the set of variables
to the interpretation domain.

Definition 4.3.22

An assignment is a pair (/, ) composed of an interpretation / and a
state e.
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First-order logic
Interpretation

Example 4.3.23

Let the domain D = {1,2,3} and the interpretation / where the binary
relation friend is true only for the pairs (1,2), (1,3) and (2,3), i.e.,
friend/® = {(1,2),(1,3),(2,3)}.

Let e the state which maps x to 2 and y to 1.

The assignment (/, e) makes the relation friend(x, y) false.
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First-order logic
Truth value of formulae

Remark 4.3.24

The truth value of a formula depends only on its free variables and on
its symbols. In order to evaluate a formula without free variables, the
state is useless.
» For a formula with no free variables, simply give an interpretation
I of the symbols of the formula. For any state e, we will identify
(1,e) and I. Depending on the context, / will be considered either
as an interpretation or as an assignment of an arbitrary state.
» For a formula with free variables, we therefore need an
assignment.
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First-order logic
Truth value of formulae

Terms

Definition 4.3.25 Evaluation

The evaluation of a term ¢ is inductively defined as :

1. if tis a variable, then [t] ;) = e(t),
2. if tis a constant, then [t] ¢y = t/°,

3. ift=s(t,...,t;) where s is a symbol and t;,
then [t]¢.ey = sI"([t1](1.e)s - - > [tal 1,6))-
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First-order logic
Truth value of formulae

Example 4.3.26

Let / the interpretation of domain N which maps the symbols
170 %2 12 {0 their usual values.

Let e the state such that x =2,y = 3.

Compute [x (¥ +1)](e)-
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First-order logic
Truth value of formulae

Formulae

Definition 4.3.27 Truth value of an atomic formula
The truth value of an atomic formula is given by the following inductive
rules :
1. [Tlue) = 1,[Ll(1,e) = 0. In the example, we allow the
replacement of T by its value 1 and L by its value 0.
2. Let s a propositional variable, [s](; ¢) = s/o.
3. Let A=s(ty,...,t,) where sis a symbol and ti,...,t, are terms.
If ([[h]](ﬂe)? ey [[tn]](,’e)) € s;" then [A](I,e) =1else [A](Le) =0.
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First-order logic
Truth value of formulae

Example 4.3.31

Let / be the interpretation of domain D = {1,2,3} where the binary
relation friend is true for the pairs (1,2), (1,3) and (2,3), i.e.,
friend/® = {(1,2),(1,3),(2,3)}.

The formula friend(1,2) A friend(2,3) = friend(1,3) is true in the
interpretation 1, i.e., [friend(1,2) A friend(2,3) = friend(1,3)]; = 1.
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First-order logic
Truth value of formulae

Example 4.3.29

Let us consider the following signature.

» Anne’®, Bernard™ and Claude™ : the first names Anne, Bernard,
and Claude denote constants,

» a2 : letter a denotes a two-argument relation (we read a(x,y) as
x likes y) and

» ¢! : the letter ¢ denotes a one-argument function (we read c(x)
as the friend of x).

Let / the interpretation of domain D = {0, 1,2} over this signature
where :

» Annel® =0, Bernard[® = 1, and Claude[® = 2.

> a® ={(0,1),(1,0),(2,0)}.

» c/1(0) =1,c/"(1) = 0,c!"(2) = 2. Note that the domain of any
function is D. In particular, function ¢!' is defined everywhere,
which makes it necessary to artificially define c!'(2) even if
Claude, denoted by 2, has no friend.
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First-order logic
Truth value of formulae

Example 4.3.29

We obtain :
» [a(Anne, Bernard)|; =

|

» [a(Anne, Claude)], =

|

S. Devismes et al (Grenoble I) First-order logic

February 27, 2015

60/68



First-order logic
Truth value of formulae

Example 4.3.29

Let e the state x =0,y = 2. We have :
> [a(x,c(x))](.e) =

> [a(y,c(¥)e) =

Make sure to distinguish (depending on the context), the elements of
the domain 0,1 and the truth values 0,1.
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First-order logic
Truth value of formulae

Example 4.3.29

We have :
» [(Anne = Bernard)]; =

» [(c(Anne) = Anne)|, =

> [(c(c(Anne)) = Anne)|,; =
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First-order logic
Truth value of formulae

Truth value of a formula 4.3.30

1. Propositional connectives have the same meaning as in propositional logic.

2. Let x a variable and B a formula. [VxB](; ¢) = 1 if and only if [B](; ) = 1 for all
state f identical to e, except for x. Let d € D. Let us denote e[x = d] the state
identical to the e, except for the variable x, whose state e[x = d] associates the
value d. The above definition can be written as :

[VxBl(1,6y = Minacp[Bl (1 epx=a)) = [ ] [Bl(1e[x=d]):
deD

where the product is the boolean product.

3. [3xB](1¢) = 1ifand only if there is a state f identical to e, except for x, such
that [B](;,r) = 1. The above definition can be written as :

[3xB](1.e) = maxaen Bl (1epx=d]) = Y [Bl(1.e[x=d]):
deD

where the sum is the boolean sum.
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First-order logic
Truth value of formulae

Example 4.3.32

Let us use the interpretation / given in example 4.3.19.
(Reminder D = {0,1,2})
> [Bx a(x, )] =

> [Vx3y a(x,y)]i =
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First-order logic
Truth value of formulae

Example 4.3.32

> [Fyvxa(x,y)]i =

Remark 4.3.33

The formulae Vx3y a(x,y) and JyVx a(x,y) do not have the same value.
Exchanging an existential quantification and an universal quantification does
not preserve the truth value of a formula.
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First-order logic
Conclusion

Conclusion : Next course

» Interpret a first order formula (contd.)

» Important equivalences
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First-order logic
Conclusion

Conclusion

Thank you for your attention.

Questions ?
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