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FO Resolution

Introduction

Idea

Skolemization yields formulae without quantifier.

This course presents a generalization of resolution to first-order logic :

I clausal form of skolemized formulae.

I generalization of resolution.

I Correctness and completeness of the method.

S. Devismes et al (Grenoble I) FO Resolution March 20, 2015 4 / 57



FO Resolution

Clausal form

Plan

Introduction

Clausal form

Unification

First-Order Resolution

Completeness

S. Devismes et al (Grenoble I) FO Resolution March 20, 2015 5 / 57



FO Resolution

Clausal form

Litteral, clause

Definition 5.2.19

A positive litteral is an atomic formula. Ex : P(x ,y)

A negative litteral is the negation of an atomic formula. Ex : ¬Q(a)

Every litteral is positive or negative.

A clause is a disjunction of litterals. Ex : P(x ,y)∨¬Q(a)
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Clausal form

Clausal form of a formula

Definition 5.2.20

Let A be a closed formula. The clausal form of A, F(A) is a set of
clauses obtained from A in two steps :

1. Skolemize A into B

2. Replace B with an equivalent set Γ of clauses using distributivity
of disjunction over conjunction.
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FO Resolution

Clausal form

Clausal form of a formula

property 1

5.2.21

I The universal closure of the clausal form of a closed formula A
has a model if and only if A is a consequence of ∀(F(A)).

I If A has a model, then ∀(F(A)) has a model.
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Clausal form

Proof

Proof.

Let A be a closed formula, B its Skolem form and Γ its clausal form.
From the properties of skolemization :

I A is a consequence of ∀(B).

I If A has a model then ∀(B) has a model.

Since Γ is obtained using distributivity, B and Γ are equivalent, hence
∀(B) and ∀(Γ) are equivalent as well. Therefore, in the two properties
above, ∀(B) can be replaced with ∀(Γ). 2
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Clausal form

Clausal form of a set of formulae

Definition 5.2.22

Let Γ be a set of closed formulae. We define the clausal form of Γ as
the union of clausal forms of all formulae of Γ, paying attention, in the
course of skolemization, to use a new symbol for each eliminated
existential quantifier.
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Clausal form

Clausal form of a set of formulae

Corollary 5.2.23

Let Γ be a set of closed formulae and ∆ the clausal form of Γ. We
have :

I Γ is a consequence of ∀(∆)

I if Γ has a model then ∀(∆) has a model.
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Clausal form

Adapting Herbrand’s theorem to clausal forms

Theorem 5.2.24

Let Γ be a set of closed formulae and ∆ the clausal form of Γ. Γ is
unsatisfiable if and only if there exists a finite unsatisfiable subset of
instances of clauses of ∆ on the signature of ∆.

Proof.

From Corollary 5.2.23, skolemization preserves satisfiability, then : Γ is
unsatisfiable if and only if ∀(∆) is unsatisfiable.
From Corollary 5.1.18 of Herbrand’s theorem, ∀(∆) is unsatisfiable if
and only if there exists a finite unsatisfiable subset of instances of
clauses of ∆ on the signature of ∆. 2
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Clausal form

Example 5.2.25 (1/2)

Let A = ∃y∀z(P(z,y)⇔¬∃x(P(z,x)∧P(x ,z))). Let’s compute the clausal form
of A.

1. We put A under normal form :
∃y∀z((¬P(z,y)∨∀x(¬P(z,x)∨¬P(x ,z)))∧∃x(P(z,x)∧P(x ,z))∨P(z,y))

2. Cleaning the result :
∃y∀z((¬P(z,y)∨∀x(¬P(z,x)∨¬P(x ,z)))∧∃u(P(z,u)∧P(u,z))∨P(z,y))

3. Eliminating existential quantifiers :
∀z((¬P(z,a)∨∀x(¬P(z,x)∨¬P(x ,z)))∧ (P(z, f (z))∧P(f (z),z))∨P(z,a))

4. Removing universal quantifiers, we obtain the Skolem form of A :
((¬P(z,a)∨ (¬P(z,x)∨¬P(x ,z)))∧ (P(z, f (z))∧P(f (z),z))∨P(z,a))

5. Transforming the latter into a product of sums of litterals, we get the clausal
form of A, which is the following set of clauses :

I C1 = ¬P(z,a)∨¬P(z,x)∨¬P(x ,z)
I C2 = P(z, f (z))∨P(z,a)
I C3 = P(f (z),z)∨P(z,a)
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Clausal form

Example 5.2.25 (2/2)

I C1 = ¬P(z,a)∨¬P(z,x)∨¬P(x ,z)

I C2 = P(z, f (z))∨P(z,a)

I C3 = P(f (z),z)∨P(z,a)

A has no model if and only if there is a finite unsatisfiable set of instances of
C1,C2,C3 on the signature of these clauses.
Looking for these instances :

I Let C′1 obtained with x := a,z := a in C1 : C′1 = ¬P(a,a)

I Let C′′1 obtained with x := a,z := f (a) in C1 :
C′′1 = ¬P(f (a),a)∨¬P(a, f (a))

I Let C′2 obtained with z := a in C2 : C′2 = P(a, f (a))∨P(a,a)

I Let C′3 obtained with z := a in C3 : C′3 = P(f (a),a)∨P(a,a)

The set of these instances is unsatisfiable, then A is unsatisfiable !
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Unification

Unification : expression, solution

Definition 5.3.1

I A term or a litteral is an expression.

I A substitution σ (see definition 5.1.3) is a solution of equation
e1 = e2, if the two expressions e1σ and e2σ are syntactically
identical.

I A substitution is a solution of a set of equations if it is a solution of
each equation of the set.
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Unification

Unification : carrier of substitution

Definition 5.3.3

The carrier of a substitution σ is the set of variables x such that
xσ 6= x .

We only consider substitutions with a finite carrier (a finite number of
variables).

Definition 5.3.3

A substitution σ with finite carrier is denoted by
< x1 := t1, . . . ,xn := tn > or just x1 := t1, . . . ,xn := tn when there is no
ambiguity.
Variables x1, . . . ,xn are distinct and the substitution satisfies :

I for i from 1 to n, xiσ = ti
I for all variables y such that y 6∈ {x1, . . . ,xn}, we have : yσ = y
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Unification

Unification : example 5.3.4

The equation P(x , f (y)) = P(g(z),z) has the solution :

x := g(f (y)),z := f (y).

The set of equations x = g(z), f (y) = z has the solution :

x := g(f (y)),z := f (y).
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Unification

Unification : composition of substitution

Definition 5.3.5

I Let σ and τ be 2 substitutions, we note στ the substitution such
that for all variable x , xστ = (xσ)τ.

I The substitution στ is an instance of σ.

I Two substitutions are equivalent if each of them is an instance of
the other.
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Unification

Unification : example 5.3.6

Consider substitutions
I σ1 =< x := g(z),y := z >

I σ2 =< x := g(y),z := y >

I σ3 =< x := g(a),y := a,z := a >

We have the following relations between these substitutions :

I σ1 = σ2 < y := z >

I σ2 = σ1 < z := y >

I σ3 = σ1 < z := a >

I σ3 = σ2 < y := a >

The substitutions σ1 and σ2 are equivalent.
The substitution σ3 is an instance of σ1 as well as of σ2, but they are
not equivalent.
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Unification

Unification : definition of the most general solution

Definition 5.3.7 (mgu)

A solution of a set of equations is said to be the most general if any
solution is an instance of it. Note that two � most general � solutions
are equivalent.

Example 5.3.8

Consider equation f (x ,g(z)) = f (g(y),x).

I σ1 =< x := g(z),y := z >,

I σ2 =< x := g(y),z := y >,

I σ3 =< x := g(a),y := a,z := a >

are 3 solutions.

σ1 and σ2 are its most general solutions.
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Unification

Unifier

Definition 5.3.2

Let σ be a substitution and E a set of expressions. Eσ = {tσ | t ∈ E}.
The substitution σ is a unifier of E if and only if the set Eσ has only
one element.

Let {ei |1≤ i ≤ n} a finite set of expressions. The substitution σ is a
unifier of this set if and only if it is a solution of the set of equations
{ei = ei+1|1≤ i < n}.
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FO Resolution

Unification

Most General Unifier

Definition 5.3.9

Let E be a set of expressions. Recall that an expression is a term or a
litteral. A unifier of E is said to be a most general (or principal) unifier if
any unifier is an instance of it.
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FO Resolution

Unification

Most General Unifier and most general solution

Remark 5.3.10

Let E = {ei | 1≤ i ≤ n} a set of expressions.
In the definition of a unifier, we mentioned that σ is a unifier of E if and
only if σ is a solution of the set S = {ei = ei+1 | 1≤ i < n}.
Therefore, the Most General Unifier of E is the most general solution
of S.
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FO Resolution

Unification

Unification : algorithm (sketch)

The algorithm separates equations into :
I equations to be solved, denoted by an equation

I solved equations, denoted by :=

Initially, there is no solved equations.

The algorithm stops when :

I No equations are still to be solved : the list of solved equations is
the most general solution of the initial set of equations.

I or when it claims that there is no solution.
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FO Resolution

Unification

Unification : algorithm (rules)

I Remove the equation. If the 2 sides of an equation are identical.

I Decompose. If the 2 sides of an equation are distincts :

I ¬A = ¬B becomes A = B.
I f (s1, . . . ,sn) = f (t1, . . . , tn), becomes s1 = t1, . . . ,sn = tn.

For n = 0 this decomposition removes the equation.

I Failure of decomposition If an equation to be solved is of the form
f (s1, . . . ,sn) = g(t1, . . . , tp) with f 6= g then the algorithm claims that
there is no solution.
In particular a failure is detected if we look for a solution to an equation
between a positive litteral and a negative litteral.
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FO Resolution

Unification

Unification : algorithm (rules)

I Orient. If an equation is of the form t = x where t is a term which is not
a variable and x is a variable, then we replace the equation with x = t .

I Elimination of a variable. If an equation to be solved is of the form
x = t where x is a variable and t is a term without occurrence of x

1. remove it from equations to be solved
2. replace x by t in all equations (unsolved and solved)
3. add x := t to the solved part

I Failure of elimination. If an equation to be solved is of the form x = t
where x is a variable and t a term distinct from x and containing x then
the algorithm claims that there is no solution.
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FO Resolution

Unification

Unification : algorithm (example 5.3.11)

1. Solve f (x ,g(z)) = f (g(y),x).

By decomposition, we get : x = g(y),g(z) = x
By elimination of x , we get : x := g(y),g(z) = g(y)
By decomposition, we get : x := g(y),z = y
By elimination of z, we get the solution : x := g(y),z := y

2. Solve f (x ,x ,a) = f (g(y),g(a),y).

By decomposition, we get : x = g(y),x = g(a),a = y
By elimination of x , using the first equation, we get :
x := g(y),g(y) = g(a),a = y
By decomposition, we get : x := g(y),y = a,a = y
By elimination of y , we get : x := g(a),y := a,a = a
By cancellation of identity, we get : x := g(a),y := a

S. Devismes et al (Grenoble I) FO Resolution March 20, 2015 28 / 57



FO Resolution

Unification

Unification : algorithm (example 5.3.11)

1. Solve f (x ,g(z)) = f (g(y),x).

By decomposition, we get : x = g(y),g(z) = x
By elimination of x , we get : x := g(y),g(z) = g(y)
By decomposition, we get : x := g(y),z = y
By elimination of z, we get the solution : x := g(y),z := y

2. Solve f (x ,x ,a) = f (g(y),g(a),y).

By decomposition, we get : x = g(y),x = g(a),a = y
By elimination of x , using the first equation, we get :
x := g(y),g(y) = g(a),a = y
By decomposition, we get : x := g(y),y = a,a = y
By elimination of y , we get : x := g(a),y := a,a = a
By cancellation of identity, we get : x := g(a),y := a

S. Devismes et al (Grenoble I) FO Resolution March 20, 2015 28 / 57



FO Resolution

Unification

Unification : algorithm (example 5.3.11)

1. Solve f (x ,g(z)) = f (g(y),x).

By decomposition, we get : x = g(y),g(z) = x
By elimination of x , we get : x := g(y),g(z) = g(y)
By decomposition, we get : x := g(y),z = y
By elimination of z, we get the solution : x := g(y),z := y

2. Solve f (x ,x ,a) = f (g(y),g(a),y).

By decomposition, we get : x = g(y),x = g(a),a = y
By elimination of x , using the first equation, we get :
x := g(y),g(y) = g(a),a = y
By decomposition, we get : x := g(y),y = a,a = y
By elimination of y , we get : x := g(a),y := a,a = a
By cancellation of identity, we get : x := g(a),y := a

S. Devismes et al (Grenoble I) FO Resolution March 20, 2015 28 / 57



FO Resolution

Unification

Unification : algorithm (example 5.3.11)

1. Solve f (x ,g(z)) = f (g(y),x).

By decomposition, we get : x = g(y),g(z) = x

By elimination of x , we get : x := g(y),g(z) = g(y)
By decomposition, we get : x := g(y),z = y
By elimination of z, we get the solution : x := g(y),z := y

2. Solve f (x ,x ,a) = f (g(y),g(a),y).

By decomposition, we get : x = g(y),x = g(a),a = y
By elimination of x , using the first equation, we get :
x := g(y),g(y) = g(a),a = y
By decomposition, we get : x := g(y),y = a,a = y
By elimination of y , we get : x := g(a),y := a,a = a
By cancellation of identity, we get : x := g(a),y := a

S. Devismes et al (Grenoble I) FO Resolution March 20, 2015 28 / 57



FO Resolution

Unification

Unification : algorithm (example 5.3.11)

1. Solve f (x ,g(z)) = f (g(y),x).

By decomposition, we get : x = g(y),g(z) = x
By elimination of x , we get : x := g(y),g(z) = g(y)

By decomposition, we get : x := g(y),z = y
By elimination of z, we get the solution : x := g(y),z := y

2. Solve f (x ,x ,a) = f (g(y),g(a),y).

By decomposition, we get : x = g(y),x = g(a),a = y
By elimination of x , using the first equation, we get :
x := g(y),g(y) = g(a),a = y
By decomposition, we get : x := g(y),y = a,a = y
By elimination of y , we get : x := g(a),y := a,a = a
By cancellation of identity, we get : x := g(a),y := a

S. Devismes et al (Grenoble I) FO Resolution March 20, 2015 28 / 57



FO Resolution

Unification

Unification : algorithm (example 5.3.11)

1. Solve f (x ,g(z)) = f (g(y),x).

By decomposition, we get : x = g(y),g(z) = x
By elimination of x , we get : x := g(y),g(z) = g(y)
By decomposition, we get : x := g(y),z = y

By elimination of z, we get the solution : x := g(y),z := y

2. Solve f (x ,x ,a) = f (g(y),g(a),y).

By decomposition, we get : x = g(y),x = g(a),a = y
By elimination of x , using the first equation, we get :
x := g(y),g(y) = g(a),a = y
By decomposition, we get : x := g(y),y = a,a = y
By elimination of y , we get : x := g(a),y := a,a = a
By cancellation of identity, we get : x := g(a),y := a

S. Devismes et al (Grenoble I) FO Resolution March 20, 2015 28 / 57



FO Resolution

Unification

Unification : algorithm (example 5.3.11)

1. Solve f (x ,g(z)) = f (g(y),x).

By decomposition, we get : x = g(y),g(z) = x
By elimination of x , we get : x := g(y),g(z) = g(y)
By decomposition, we get : x := g(y),z = y
By elimination of z, we get the solution : x := g(y),z := y

2. Solve f (x ,x ,a) = f (g(y),g(a),y).

By decomposition, we get : x = g(y),x = g(a),a = y
By elimination of x , using the first equation, we get :
x := g(y),g(y) = g(a),a = y
By decomposition, we get : x := g(y),y = a,a = y
By elimination of y , we get : x := g(a),y := a,a = a
By cancellation of identity, we get : x := g(a),y := a

S. Devismes et al (Grenoble I) FO Resolution March 20, 2015 28 / 57



FO Resolution

Unification

Unification : algorithm (example 5.3.11)

1. Solve f (x ,g(z)) = f (g(y),x).

By decomposition, we get : x = g(y),g(z) = x
By elimination of x , we get : x := g(y),g(z) = g(y)
By decomposition, we get : x := g(y),z = y
By elimination of z, we get the solution : x := g(y),z := y

2. Solve f (x ,x ,a) = f (g(y),g(a),y).

By decomposition, we get : x = g(y),x = g(a),a = y
By elimination of x , using the first equation, we get :
x := g(y),g(y) = g(a),a = y
By decomposition, we get : x := g(y),y = a,a = y
By elimination of y , we get : x := g(a),y := a,a = a
By cancellation of identity, we get : x := g(a),y := a

S. Devismes et al (Grenoble I) FO Resolution March 20, 2015 28 / 57



FO Resolution

Unification

Unification : algorithm (example 5.3.11)

1. Solve f (x ,g(z)) = f (g(y),x).

By decomposition, we get : x = g(y),g(z) = x
By elimination of x , we get : x := g(y),g(z) = g(y)
By decomposition, we get : x := g(y),z = y
By elimination of z, we get the solution : x := g(y),z := y

2. Solve f (x ,x ,a) = f (g(y),g(a),y).

By decomposition, we get : x = g(y),x = g(a),a = y

By elimination of x , using the first equation, we get :
x := g(y),g(y) = g(a),a = y
By decomposition, we get : x := g(y),y = a,a = y
By elimination of y , we get : x := g(a),y := a,a = a
By cancellation of identity, we get : x := g(a),y := a

S. Devismes et al (Grenoble I) FO Resolution March 20, 2015 28 / 57



FO Resolution

Unification

Unification : algorithm (example 5.3.11)

1. Solve f (x ,g(z)) = f (g(y),x).

By decomposition, we get : x = g(y),g(z) = x
By elimination of x , we get : x := g(y),g(z) = g(y)
By decomposition, we get : x := g(y),z = y
By elimination of z, we get the solution : x := g(y),z := y

2. Solve f (x ,x ,a) = f (g(y),g(a),y).

By decomposition, we get : x = g(y),x = g(a),a = y
By elimination of x , using the first equation, we get :
x := g(y),g(y) = g(a),a = y

By decomposition, we get : x := g(y),y = a,a = y
By elimination of y , we get : x := g(a),y := a,a = a
By cancellation of identity, we get : x := g(a),y := a

S. Devismes et al (Grenoble I) FO Resolution March 20, 2015 28 / 57



FO Resolution

Unification

Unification : algorithm (example 5.3.11)

1. Solve f (x ,g(z)) = f (g(y),x).

By decomposition, we get : x = g(y),g(z) = x
By elimination of x , we get : x := g(y),g(z) = g(y)
By decomposition, we get : x := g(y),z = y
By elimination of z, we get the solution : x := g(y),z := y

2. Solve f (x ,x ,a) = f (g(y),g(a),y).

By decomposition, we get : x = g(y),x = g(a),a = y
By elimination of x , using the first equation, we get :
x := g(y),g(y) = g(a),a = y
By decomposition, we get : x := g(y),y = a,a = y

By elimination of y , we get : x := g(a),y := a,a = a
By cancellation of identity, we get : x := g(a),y := a

S. Devismes et al (Grenoble I) FO Resolution March 20, 2015 28 / 57



FO Resolution

Unification

Unification : algorithm (example 5.3.11)

1. Solve f (x ,g(z)) = f (g(y),x).

By decomposition, we get : x = g(y),g(z) = x
By elimination of x , we get : x := g(y),g(z) = g(y)
By decomposition, we get : x := g(y),z = y
By elimination of z, we get the solution : x := g(y),z := y

2. Solve f (x ,x ,a) = f (g(y),g(a),y).

By decomposition, we get : x = g(y),x = g(a),a = y
By elimination of x , using the first equation, we get :
x := g(y),g(y) = g(a),a = y
By decomposition, we get : x := g(y),y = a,a = y
By elimination of y , we get : x := g(a),y := a,a = a

By cancellation of identity, we get : x := g(a),y := a

S. Devismes et al (Grenoble I) FO Resolution March 20, 2015 28 / 57



FO Resolution

Unification

Unification : algorithm (example 5.3.11)

1. Solve f (x ,g(z)) = f (g(y),x).

By decomposition, we get : x = g(y),g(z) = x
By elimination of x , we get : x := g(y),g(z) = g(y)
By decomposition, we get : x := g(y),z = y
By elimination of z, we get the solution : x := g(y),z := y

2. Solve f (x ,x ,a) = f (g(y),g(a),y).

By decomposition, we get : x = g(y),x = g(a),a = y
By elimination of x , using the first equation, we get :
x := g(y),g(y) = g(a),a = y
By decomposition, we get : x := g(y),y = a,a = y
By elimination of y , we get : x := g(a),y := a,a = a
By cancellation of identity, we get : x := g(a),y := a

S. Devismes et al (Grenoble I) FO Resolution March 20, 2015 28 / 57



FO Resolution

Unification

Unification : algorithm (example 5.3.11)

1. Solve f (x ,x ,x) = f (g(y),g(a),y).

By decomposition, we get : x = g(y),x = g(a),x = y
By elimination of x , we get : x := g(y),g(y) = g(a),g(y) = y
Orienting equations, we get : x := g(y),g(y) = g(a),y = g(y)
Equation y = g(y) generates a failure. Then equation
f (x ,x ,x) = f (g(y),g(a),y) has no solution.

Remark : correctness and termination proofs for unification algorithm
are in handout course notes.
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FO Resolution

First-Order Resolution

Plan

Introduction

Clausal form

Unification

First-Order Resolution

Completeness
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FO Resolution

First-Order Resolution

Idea

Let Γ be a set of clauses. Suppose that ∀(Γ) has no model. What can
be done ?

Rules of � factorization, copy, binary resolution � allow us to infer ⊥
from Γ.

Completeness of these rules is based on Herbrand’s Theorem. The
unification algorithm is used to find suitable instances of these clauses.
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FO Resolution

First-Order Resolution

Three rules

1. Factorization : from P(x , f (y))∨P(g(z),z)∨Q(z,x) infer
P(g(f (y)), f (y))∨Q(f (y),g(f (y))). The inferred clause is
obtained by computing the most general solution
x := g(f (y)),z := f (y) of P(x , f (y)) = P(g(z),z).

2. The copy rule which renames the variables of a clause.

3. Binary resolution (BR) : from two premises without common
variable P(x ,a)∨Q(x) and ¬P(b,y)∨R(f (y)) infer the
resolvant Q(b)∨R(f (a)), by computing the most general solution
x := b,y := a of P(x ,a) = P(b,y).
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FO Resolution

First-Order Resolution

Resolution : 3 Rules

1. factorization,

2. copy,

3. resolvant

A clause, (a disjunction of litterals), is identified with the set of its
litterals.
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FO Resolution

First-Order Resolution

Factorization

Definition 5.4.2

The clause C′ is a factor of clause C if C′ = C or if there exists a
subset E of C such that E has two elements at least, E is unifiable and
C′ = Cσ where σ is the most general unifier of E .

Example 5.4.3

The clause P(x)∨Q(g(x ,y))∨P(f (a)) has two factors :

itself and the factor P(f (a))∨Q(g(f (a),y)) obtained by applying to
the clause, the most general unifier x := f (a) of the two underlined
litterals.
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First-Order Resolution

Factorization

property 1

5.4.1 Let A be a formula without quantifier and B an instance of A.
∀(A) |= ∀(B)

Proof.

See handout course notes. 2

property 1

5.4.4 Let C′ be a factor of the clause C.
∀(C) |= ∀(C′)

Proof.

Since C′ is an instance of C, it is a consequence of the property 5.4.1. 2
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First-Order Resolution

Copy

Definition 5.4.5

Let C be a clause and σ a substitution, which changes only the
variables of C and whose restriction ot variables of C is a bijection
between thoses variables and variables of clause Cσ.

The clause Cσ is a copy of the clause C.

We also say that the substitution σ is a renaming of C.
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First-Order Resolution

Copy

Definition 5.4.6

Let C be a clause and σ be a renaming of C. Let f the restriction of σ

to variables of C and f−1 the inverse of f . Let σ
−1
C be the substitution

defined for all variable x as follows :
I If x is a variable of Cσ then xσ

−1
C = xf−1

I Otherwise xσ
−1
C = x .

This substitution is called the inverse of the renaming σ of C.
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First-Order Resolution

Copy

Example 5.4.7

Let σ = < x := u,y := v >.

σ is a renaming of P(x ,y).

The litteral P(u,v), where P(u,v) = P(x ,y)σ, is a copy of P(x ,y).

Let τ = < u := x ,v := y >. τ is the inverse of the renaming σ of
P(x ,y).

Note that P(u,v)τ = P(x ,y) : the litteral P(x ,y) is a copy of P(u,v)
by the renaming τ.
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First-Order Resolution

Copy

property 1

5.4.8 Let C be a clause and σ a renaming of C.

1. σ
−1
C is a renaming of Cσ.

2. for all expressions or clauses E , whose variables are the ones of C, Eσσ
−1
C = E .

Then Cσσ
−1
C = C and therefore C is a copy of Cσ.

Proof.

Let f be the restriction of σ to variables of C. By the definition of renaming, f is a bijection
between the variables of C and the variables of Cσ.

1. By definition of σ
−1
C , this substitution changes only variables of Cσ and its restriction to

variables of Cσ is the bijection f−1. Therefore, σ
−1
C is a renaming of Cσ.

2. Let x a variable of C. By definition of f , xσσ
−1
C = xff−1 = x . Therefore, by induction on

terms, litterals and clauses, for all expressions or clauses E , whose variables are
variables of C, we have Eσσ

−1
C = E .

2

S. Devismes et al (Grenoble I) FO Resolution March 20, 2015 39 / 57



FO Resolution

First-Order Resolution

Copy

property 1

5.4.9 Given two clauses which are a copy of each other, their universal
closures are equivalent.

Proof.

Let C′ be a copy of C. By definition, C′ is an instance of C and by the
previous property, C is a copy of C′, hence an instance of C.

Therefore by Property 5.4.1, the universal closure of C is a
consequence of the universal closure of C′ and conversely. Therefore,
these two universal closures are equivalent. 2
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First-Order Resolution

Binary resolvant

Definition 5.4.10

Let C and D be two clauses without common variables. The clause E
is a binary resolvant of C and D if there is a litteral L ∈ C and a litteral
M ∈ D such that L and Mc are unifiable and if
E = ((C−{L})∪ (D−{M}))σ where σ is the most general solution
of equation L = Mc .

Example 5.4.11

Let C = P(x ,y)∨P(y ,k(z)) and D = ¬P(a, f (a,y1)).

< x := a,y := f (a,y1) > is the most general solution of
P(x ,y) = P(a, f (a,y1)), then P(f (a,y1),k(z)) is a binary resolvant of
clauses C and D.
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First-Order Resolution

Binary resolvant

property 1

5.4.12 Let E be a resolvant binary of clauses C and D :
∀(C),∀(D) |= ∀(E).

Proof.

See handout course notes. 2
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First-Order Resolution

Resolution :

Definition 5.4.13

Let Γ be a set of clauses and C be a clause.

A proof of C from Γ is a sequence of clauses terminated by C, where
each clause is

I a member of Γ,

I a factor of a previous clause in the proof,

I a copy of a previous clause in the proof or

I a binary resolvant of 2 previous clauses in the proof.

C is first-order inferred from Γ, denoted by Γ `1fcb C, if there is a proof
of C from Γ.

When there is no ambiguity, we remplace `1fcb by `.
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First-Order Resolution

Resolution : Consistency

property 1

5.4.14 Let Γ be a set of clauses and C be a clause.

If Γ `1fcb C then ∀(Γ) |= ∀(C)

This property is an immediate consequence of consistency of
factorization, copy and binary resolution, using induction. See
exercise 91.
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First-Order Resolution

Resolution : Example 5.4.15

Given the two clauses

1. C1 = P(x ,y)∨P(y ,x)

2. C2 = ¬P(u,z)∨¬P(z,u)

Show by resolution that ∀(C1,C2) has no model.

1. P(x ,y)∨P(y ,x) Hyp C1

2. P(y ,y) Factor of 1 by < x := y >

3. ¬P(u,z)∨¬P(z,u) Hyp C2

4. ¬P(z,z) Factor of 3 by < u := z >

5. ⊥ BR 2, 4 by < y := z >

This example shows, a contrario, that binary resolution alone is
incomplete : without factorization, the empty clauses cannot be
inferred.
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FO Resolution

First-Order Resolution

Resolution : Example 5.4.16
1. C1 = ¬P(z,a)∨¬P(z,x)∨¬P(x ,z)

2. C2 = P(z, f (z))∨P(z,a)

3. C3 = P(f (z),z)∨P(z,a)

We give a proof that ∀(C1,C2,C3) has no model.

1. ¬P(z,a)∨¬P(z,x)∨¬P(x ,z) Hyp C1

2. P(z, f (z))∨P(z,a) Hyp C2

3. P(v0, f (v0))∨P(v0,a) Copy 2 by < z := v0 >

4. ¬P(f (v0),a)∨¬P(f (v0),v0)∨P(v0,a) BR 1(3), 3(1) by <z:=f (v0);x:=v0 >

5. ¬P(f (a),a)∨P(a,a) Fact 4 by < v0 := a >

6. ¬P(a,a) Fact 1 by < x := a;z := a >

7. P(f (z),z)∨P(z,a) Hyp C3

8. P(f (a),a) BR 6(1), 7(2) by < z := a >

9. P(a,a) BR 5(1), 8(1)

10. ⊥ BR 6(1), 9(1)
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First-Order resolution

We define a new rule, first-order resolution, which is a combination of
factorization, copy and binary resolution.

Definition 5.4.17

The clause E is a first-order resolvant of clauses C and D if E is a
binary resolvant of C′ and D′ where C′ is a factor of C and D′ is a copy
of a factor of D without common variable with C′,

The rule which infers E from C and D is called first-order resolution.
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Example 5.4.18

Let C = ¬P(z,a)∨¬P(z,x)∨¬P(x ,z) and D = P(z, f (z))∨P(z,a).

C′ = ¬P(a,a) is a factor of C.
The clause P(a, f (a)) is a binary resolvant of C′ and of D (which is
factor of itself) then it is a first-order resolvant of C and D.
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Three notions of proof by resolution

Let Γ be a set of clauses and C a clause.

Notations

1. Γ `p C : proof of C from Γ by propositional resolution (without
substitution).

2. Γ `1fcb C : proof of C from Γ by factorization, copy and binary
resolution.

3. Γ `1r C : proof of C from Γ obtained by first-order resolution.

By definition we have : Γ `1r C implies Γ `1fcb C
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Lifting theorem (1/3)

Theorem 5.4.19

Let C and D be two clauses. Let C′ be an instance of C and D′ be an instance of D.
Let E ′ be a propositional resolvant of C′ and D′, there exists E a first-order resolvant
of C and D having E ′ an an instance.

Proof.

See handout course notes. 2

Example 5.4.20

Let C = P(x)∨P(y)∨R(y) and D = ¬Q(x)∨P(x)∨¬R(x)∨P(y).

I The clauses C′ = P(a)∨R(a) and D′ = ¬Q(a)∨P(a)∨¬R(a) are
respectively instances of C and D.

I The clause E ′ = P(a)∨¬Q(a) is a propositional resolvant of C′ and D′.

I The clause E = P(x)∨¬Q(x) is a first-order resolvant of C and D having E ′ as
an instance.
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Lifting theorem (2/3)

Theorem 5.4.21

Let Γ be a set of clauses and ∆ a set of instances of clauses from Γ, and C1, . . . ,Cn a
proof by propositional resolution from ∆.

There exists a proof D1, . . . ,Dn by first-order resolution from Γ such that for i between
1 and n, the clause Ci is a instance of Di .

Proof.

By induction on n.

Let C1, . . . ,Cn,Cn+1 a proof by propositional resolution starting
with ∆. By induction, there exists a proof D1, . . . ,Dn by first-order resolution starting
from Γ such that, for i between 1 and n, the clause Ci is an instance of Di .

1. Suppose that Cn+1 ∈∆. There exists E ∈ Γ where Cn+1 is an instance then
we take Dn+1 = E .

2. Suppose that Cn+1 is a propositional resolvant of Cj and Ck where j,k ≤ n.
From the previous slide, there exists E , first-order resolvant of Dj and Dk : we
take Dn+1 = E .

2
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Lifting theorem (3/3)

Corollary 5.4.22

Let Γ be a set of clauses and ∆ a set of instances of clauses of Γ.

Suppose that ∆ `p C.

There exists D such that Γ `1r D and C is an instance of D.
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Example 5.4.23

Consider the set of clauses
P(f (x))∨P(u),¬P(x)∨Q(z),¬Q(x)∨¬Q(y).
The universal closure of this set of clauses is unsatisfiable and we
show it in three ways

1. By instanciation on the Herbrand’s domain a, f (a), f (f (a)), . . . :

P(f (x))∨P(u) is instanciated by x := a,u := f (a) to P(f (a))
¬P(x)∨Q(z) is instanciated by x := f (a),z := a to
¬P(f (a))∨Q(a)
¬Q(x)∨¬Q(y) is instanciated by x := a,y := a to ¬Q(a)
These these 3 instances together are unsatisfiable, as shown in
the following proof by propositional resolution :

P(f (a)) ¬P(f (a))∨Q(a)
Q(a) ¬Q(a)

⊥
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Example 5.4.23

P(f (x))∨P(u), ¬P(x)∨Q(z), ¬Q(x)∨¬Q(y).

2. This proof by propositional resolution is lifted to a proof by
first-order resolution :

P(f (x))∨P(u) ¬P(x)∨Q(z)
Q(z) ¬Q(x)∨¬Q(y)

⊥
3. Each first-order resolution rule is decomposed into factorization,

copy and binary resolution :
P(f (x))∨P(u)

P(f (x))
fact
¬P(x)∨Q(z)
¬P(y)∨Q(z)

copy

Q(z) rb ¬Q(x)∨¬Q(y)
¬Q(x) fact

⊥ rb
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Refutational completeness of first-order resolution

Theorem 5.4.24

Let Γ be a set of clauses. Propositions : (1) Γ `1r ⊥, (2) Γ `1fcb ⊥, and
(3) ∀(Γ) |=⊥ are equivalent.

Proof.

I (1) implies (2) because first-order resolution is a combinaison of factorization,
copy and binary resolution.

I (2) implies (3) because factorization, copy and binary resolution are consistent.

I (3) implies (1). Suppose that ∀(Γ) |=⊥, that is, ∀(Γ) is unsatisfiable. By
Herbrand’s theorem, there is a finite set ∆ of instances without variable of
clauses of Γ which has no propositional model. By completeness of
propositional resolution, we have : ∆ `p ⊥. From the lifting corollary 5.4.22,
there exists D such that Γ `1r D and ⊥ is an instance of D. But in this case, we
have D =⊥.

2
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Conclusion

Thanks of your attention.

Questions ?
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