Basis for automated proof: First-Order Resolution

Stéphane Devismes Pascal Lafourcade Michel Lévy Jean-François Monin (jean-francois.monin@imag.fr)

Université Joseph Fourier, Grenoble I

March 20, 2015

Plan

Introduction

Clausal form

Unification

First-Order Resolution

Completeness

FO Resolution Introduction

Plan

Introduction

Clausal form

Unification

First-Order Resolution

Completeness

Idea

Skolemization yields formulae without quantifier.

This course presents a generalization of resolution to first-order logic :

- clausal form of skolemized formulae.
- generalization of resolution.
- Correctness and completeness of the method.

FO Resolution Clausal form

Plan

Introduction

Clausal form

Unification

First-Order Resolution

Completeness

Litteral, clause

Definition 5.2.19

A positive litteral is an atomic formula. Ex : P(x, y)

A negative litteral is the negation of an atomic formula. Ex : $\neg Q(a)$

Every litteral is positive or negative.

A clause is a disjunction of litterals. Ex : $P(x, y) \lor \neg Q(a)$

Clausal form of a formula

Definition 5.2.20

Let A be a closed formula. The clausal form of A, F(A) is a set of clauses obtained from A in two steps :

- 1. Skolemize A into B
- 2. Replace *B* with an equivalent set Γ of clauses using distributivity of disjunction over conjunction.

FO Resolution
Clausal form

Clausal form of a formula

property 1

5.2.21

- ► The universal closure of the clausal form of a closed formula A has a model if and only if A is a consequence of ∀(F(A)).
- If A has a model, then $\forall (F(A))$ has a model.

Proof

Proof.

Let *A* be a closed formula, *B* its Skolem form and Γ its clausal form. From the properties of skolemization :

- A is a consequence of \forall (B).
- If A has a model then $\forall (B)$ has a model.

Since Γ is obtained using distributivity, *B* and Γ are equivalent, hence \forall (*B*) and \forall (Γ) are equivalent as well. Therefore, in the two properties above, \forall (*B*) can be replaced with \forall (Γ).

FO Resolution
Clausal form

Clausal form of a set of formulae

Definition 5.2.22

Let Γ be a set of closed formulae. We define the clausal form of Γ as the union of clausal forms of all formulae of Γ , paying attention, in the course of skolemization, to use a new symbol for each eliminated existential quantifier.

FO Resolution	
Clausal form	

Clausal form of a set of formulae

Corollary 5.2.23

Let Γ be a set of closed formulae and Δ the clausal form of $\Gamma.$ We have :

- F is a consequence of ∀(Δ)
- if Γ has a model then $\forall (\Delta)$ has a model.

Adapting Herbrand's theorem to clausal forms

Theorem 5.2.24

Let Γ be a set of closed formulae and Δ the clausal form of Γ . Γ is unsatisfiable if and only if there exists a finite unsatisfiable subset of instances of clauses of Δ on the signature of Δ .

Proof.

From Corollary 5.2.23, skolemization preserves satisfiability, then : Γ is unsatisfiable if and only if $\forall(\Delta)$ is unsatisfiable. From Corollary 5.1.18 of Herbrand's theorem, $\forall(\Delta)$ is unsatisfiable if and only if there exists a finite unsatisfiable subset of instances of clauses of Δ on the signature of Δ .

Example 5.2.25 (1/2)

Let $A = \exists y \forall z (P(z, y) \Leftrightarrow \neg \exists x (P(z, x) \land P(x, z)))$. Let's compute the clausal form of A.

1. We put *A* under normal form : $\exists y \forall z ((\neg P(z, y) \lor \forall x (\neg P(z, x) \lor \neg P(x, z))) \land \exists x (P(z, x) \land P(x, z)) \lor P(z, y))$

- 1. We put *A* under normal form : $\exists y \forall z ((\neg P(z, y) \lor \forall x (\neg P(z, x) \lor \neg P(x, z))) \land \exists x (P(z, x) \land P(x, z)) \lor P(z, y))$
- 2. Cleaning the result : $\exists y \forall z ((\neg P(z,y) \lor \forall x (\neg P(z,x) \lor \neg P(x,z))) \land \exists u (P(z,u) \land P(u,z)) \lor P(z,y))$

- 1. We put *A* under normal form : $\exists y \forall z ((\neg P(z, y) \lor \forall x (\neg P(z, x) \lor \neg P(x, z))) \land \exists x (P(z, x) \land P(x, z)) \lor P(z, y))$
- 2. Cleaning the result : $\exists y \forall z ((\neg P(z, y) \lor \forall x (\neg P(z, x) \lor \neg P(x, z))) \land \exists u (P(z, u) \land P(u, z)) \lor P(z, y))$
- 3. Eliminating existential quantifiers : $\forall z((\neg P(z, a) \lor \forall x(\neg P(z, x) \lor \neg P(x, z))) \land (P(z, f(z)) \land P(f(z), z)) \lor P(z, a))$

- 1. We put *A* under normal form : $\exists y \forall z ((\neg P(z, y) \lor \forall x (\neg P(z, x) \lor \neg P(x, z))) \land \exists x (P(z, x) \land P(x, z)) \lor P(z, y))$
- 2. Cleaning the result : $\exists y \forall z ((\neg P(z, y) \lor \forall x (\neg P(z, x) \lor \neg P(x, z))) \land \exists u (P(z, u) \land P(u, z)) \lor P(z, y))$
- 3. Eliminating existential quantifiers : $\forall z((\neg P(z,a) \lor \forall x(\neg P(z,x) \lor \neg P(x,z))) \land (P(z,f(z)) \land P(f(z),z)) \lor P(z,a))$
- 4. Removing universal quantifiers, we obtain the Skolem form of A : $((\neg P(z, a) \lor (\neg P(z, x) \lor \neg P(x, z))) \land (P(z, f(z)) \land P(f(z), z)) \lor P(z, a))$

- 1. We put *A* under normal form : $\exists y \forall z ((\neg P(z, y) \lor \forall x (\neg P(z, x) \lor \neg P(x, z))) \land \exists x (P(z, x) \land P(x, z)) \lor P(z, y))$
- 2. Cleaning the result : $\exists y \forall z ((\neg P(z, y) \lor \forall x (\neg P(z, x) \lor \neg P(x, z))) \land \exists u (P(z, u) \land P(u, z)) \lor P(z, y))$
- 3. Eliminating existential quantifiers : $\forall z((\neg P(z,a) \lor \forall x(\neg P(z,x) \lor \neg P(x,z))) \land (P(z,f(z)) \land P(f(z),z)) \lor P(z,a))$
- 4. Removing universal quantifiers, we obtain the Skolem form of A : $((\neg P(z, a) \lor (\neg P(z, x) \lor \neg P(x, z))) \land (P(z, f(z)) \land P(f(z), z)) \lor P(z, a))$
- 5. Transforming the latter into a product of sums of litterals, we get the clausal form of *A*, which is the following set of clauses :
 - $C_1 = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$
 - $C_2 = P(z, f(z)) \vee P(z, a)$
 - $C_3 = P(f(z), z) \vee P(z, a)$

FO Resolution

Example 5.2.25 (2/2)

- $C_1 = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$
- $\bullet \quad C_2 = P(z, f(z)) \vee P(z, a)$
- $C_3 = P(f(z), z) \vee P(z, a)$

FO Resolution

Example 5.2.25 (2/2)

- $C_1 = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$
- $\bullet \quad C_2 = P(z, f(z)) \vee P(z, a)$
- $C_3 = P(f(z), z) \vee P(z, a)$

A has no model if and only if there is a finite unsatisfiable set of instances of C_1, C_2, C_3 on the signature of these clauses. Looking for these instances :

• Let C'_1 obtained with x := a, z := a in $C_1 : C'_1 = \neg P(a, a)$

FO Resolution

Example 5.2.25 (2/2)

- $C_1 = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$
- $\bullet \quad C_2 = P(z, f(z)) \vee P(z, a)$
- $C_3 = P(f(z), z) \vee P(z, a)$

- Let C'_1 obtained with x := a, z := a in $C_1 : C'_1 = \neg P(a, a)$
- Let C''_1 obtained with x := a, z := f(a) in C_1 : $C''_1 = \neg P(f(a), a) \lor \neg P(a, f(a))$

FO Resolution

Example 5.2.25 (2/2)

- $C_1 = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$
- $\bullet \quad C_2 = P(z, f(z)) \vee P(z, a)$
- $C_3 = P(f(z), z) \vee P(z, a)$

- Let C'_1 obtained with x := a, z := a in $C_1 : C'_1 = \neg P(a, a)$
- ► Let C''_1 obtained with x := a, z := f(a) in C_1 : $C''_1 = \neg P(f(a), a) \lor \neg P(a, f(a))$
- Let C'_2 obtained with z := a in $C_2 : C'_2 = P(a, f(a)) \lor P(a, a)$

FO Resolution

Example 5.2.25 (2/2)

- $C_1 = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$
- $\bullet \quad C_2 = P(z, f(z)) \vee P(z, a)$
- $C_3 = P(f(z), z) \vee P(z, a)$

- Let C'_1 obtained with x := a, z := a in $C_1 : C'_1 = \neg P(a, a)$
- ► Let C''_1 obtained with x := a, z := f(a) in C_1 : $C''_1 = \neg P(f(a), a) \lor \neg P(a, f(a))$
- Let C'_2 obtained with z := a in $C_2 : C'_2 = P(a, f(a)) \lor P(a, a)$
- Let C'_3 obtained with z := a in $C_3 : C'_3 = P(f(a), a) \lor P(a, a)$

FO Resolution

Example 5.2.25 (2/2)

- $C_1 = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$
- $\bullet \quad C_2 = P(z, f(z)) \vee P(z, a)$
- $C_3 = P(f(z), z) \vee P(z, a)$

A has no model if and only if there is a finite unsatisfiable set of instances of C_1, C_2, C_3 on the signature of these clauses. Looking for these instances :

- Let C'_1 obtained with x := a, z := a in $C_1 : C'_1 = \neg P(a, a)$
- ► Let C''_1 obtained with x := a, z := f(a) in C_1 : $C''_1 = \neg P(f(a), a) \lor \neg P(a, f(a))$
- Let C'_2 obtained with z := a in $C_2 : C'_2 = P(a, f(a)) \lor P(a, a)$
- Let C'_3 obtained with z := a in $C_3 : C'_3 = P(f(a), a) \lor P(a, a)$

The set of these instances is unsatisfiable, then A is unsatisfiable !

FO Resolution Unification

Plan

Introduction

Clausal form

Unification

First-Order Resolution

Completeness

Unification : expression, solution

Definition 5.3.1

- A term or a litteral is an **expression**.
- A substitution σ (see definition 5.1.3) is a **solution** of equation $e_1 = e_2$, if the two expressions $e_1\sigma$ and $e_2\sigma$ are syntactically identical.
- A substitution is a solution of a set of equations if it is a solution of each equation of the set.

Unification : carrier of substitution

Definition 5.3.3

The carrier of a substitution σ is the set of variables *x* such that $x\sigma \neq x$.

We only consider substitutions with a finite carrier (a finite number of variables).

Definition 5.3.3

A substitution σ with finite carrier is denoted by

 $< x_1 := t_1, \dots, x_n := t_n >$ or just $x_1 := t_1, \dots, x_n := t_n$ when there is no ambiguity.

Variables x_1, \ldots, x_n are distinct and the substitution satisfies :

- for *i* from 1 to *n*, $x_i \sigma = t_i$
- ► for all variables *y* such that $y \notin \{x_1, ..., x_n\}$, we have : $y\sigma = y$

FO Resolution Unification

Unification : example 5.3.4

The equation P(x, f(y)) = P(g(z), z) has the solution :

The set of equations x = g(z), f(y) = z has the solution :

Unification : example 5.3.4

The equation P(x, f(y)) = P(g(z), z) has the solution :

x := g(f(y)), z := f(y).

The set of equations x = g(z), f(y) = z has the solution :

x := g(f(y)), z := f(y).

Unification : composition of substitution

Definition 5.3.5

- Let σ and τ be 2 substitutions, we note $\sigma\tau$ the substitution such that for all variable *x*, $x\sigma\tau = (x\sigma)\tau$.
- The substitution $\sigma \tau$ is an instance of σ .
- Two substitutions are equivalent if each of them is an instance of the other.

Unification : example 5.3.6

Consider substitutions

- $\sigma_1 = < x := g(z), y := z >$
- $\sigma_2 = < x := g(y), z := y >$
- $\sigma_3 = < x := g(a), y := a, z := a >$

We have the following relations between these substitutions :

Unification : example 5.3.6

Consider substitutions

- $\sigma_1 = < x := g(z), y := z >$
- $\sigma_2 = < x := g(y), z := y >$
- $\sigma_3 = < x := g(a), y := a, z := a >$

We have the following relations between these substitutions :

•
$$\sigma_1 = \sigma_2 < y := z >$$

•
$$\sigma_2 = \sigma_1 < z := y >$$

- $\sigma_3 = \sigma_1 < z := a >$
- $\sigma_3 = \sigma_2 < y := a >$

The substitutions σ_1 and σ_2 are equivalent. The substitution σ_3 is an instance of σ_1 as well as of σ_2 , but they are not equivalent.

Unification : definition of the most general solution

Definition 5.3.7 (mgu)

A solution of a set of equations is said to be the most general if any solution is an instance of it. Note that two < most general > solutions are equivalent.

Unification : definition of the most general solution

Definition 5.3.7 (mgu)

A solution of a set of equations is said to be the most general if any solution is an instance of it. Note that two < most general > solutions are equivalent.

Example 5.3.8

Consider equation f(x,g(z)) = f(g(y),x).

•
$$\sigma_1 = < x := g(z), y := z >,$$

•
$$\sigma_2 = < x := g(y), z := y >,$$

•
$$\sigma_3 = < x := g(a), y := a, z := a >$$

are 3 solutions.

σ_1 and σ_2 are its most general solutions.

FO Resolution

Unifier

Definition 5.3.2

Let σ be a substitution and *E* a set of expressions. $E\sigma = \{t\sigma \mid t \in E\}$. The substitution σ is a unifier of *E* if and only if the set $E\sigma$ has only one element.

Let $\{e_i | 1 \le i \le n\}$ a finite set of expressions. The substitution σ is a unifier of this set if and only if it is a solution of the set of equations $\{e_i = e_{i+1} | 1 \le i < n\}$.

FO Resolution Unification

Most General Unifier

Definition 5.3.9

Let E be a set of expressions. Recall that an expression is a term or a litteral. A unifier of E is said to be a most general (or principal) unifier if any unifier is an instance of it.
Most General Unifier and most general solution

Remark 5.3.10

Let $E = \{e_i \mid 1 \le i \le n\}$ a set of expressions. In the definition of a unifier, we mentioned that σ is a unifier of E if and only if σ is a solution of the set $S = \{e_i = e_{i+1} \mid 1 \le i < n\}$. Therefore, the Most General Unifier of E is the most general solution of S.

Unification : algorithm (sketch)

The algorithm separates equations into :

- equations to be solved, denoted by an equation
- solved equations, denoted by :=

Initially, there is no solved equations.

The algorithm stops when :

- No equations are still to be solved : the list of solved equations is the most general solution of the initial set of equations.
- or when it claims that there is no solution.

Unification : algorithm (rules)

- Remove the equation. If the 2 sides of an equation are identical.
- Decompose. If the 2 sides of an equation are distincts :
 - $\neg A = \neg B$ becomes A = B.
 - ► $f(s_1,...,s_n) = f(t_1,...,t_n)$, becomes $s_1 = t_1,...,s_n = t_n$. For n = 0 this decomposition removes the equation.
- ► **Failure of decomposition** If an equation to be solved is of the form $f(s_1,...,s_n) = g(t_1,...,t_p)$ with $f \neq g$ then the algorithm claims that there is no solution.

In particular a failure is detected if we look for a solution to an equation between a positive litteral and a negative litteral.

FO Resolution Unification

Unification : algorithm (rules)

- Orient. If an equation is of the form t = x where t is a term which is not a variable and x is a variable, then we replace the equation with x = t.
- Elimination of a variable. If an equation to be solved is of the form x = t where x is a variable and t is a term without occurrence of x
 - 1. remove it from equations to be solved
 - 2. replace x by t in all equations (unsolved and solved)
 - 3. add x := t to the solved part
- ► Failure of elimination. If an equation to be solved is of the form x = t where x is a variable and t a term distinct from x and containing x then the algorithm claims that there is no solution.

FO	Resolution	
L.	Inification	

FO Resolution Unification

1. Solve f(x, g(z)) = f(g(y), x).

FO Resolution Unification

1. Solve f(x, g(z)) = f(g(y), x).

FO Resolution Unification

1. Solve f(x, g(z)) = f(g(y), x).

By decomposition, we get : x = g(y), g(z) = x

FO Resolution Unification

1. Solve f(x, g(z)) = f(g(y), x).

By decomposition, we get : x = g(y), g(z) = xBy elimination of x, we get : x := g(y), g(z) = g(y)

FO Resolution Unification

1. Solve f(x, g(z)) = f(g(y), x).

By decomposition, we get : x = g(y), g(z) = xBy elimination of x, we get : x := g(y), g(z) = g(y)By decomposition, we get : x := g(y), z = y

FO Resolution Unification

1. Solve f(x, g(z)) = f(g(y), x).

By decomposition, we get : x = g(y), g(z) = xBy elimination of x, we get : x := g(y), g(z) = g(y)By decomposition, we get : x := g(y), z = yBy elimination of z, we get the solution : x := g(y), z := y

Unification : algorithm (example 5.3.11)

1. Solve f(x,g(z)) = f(g(y),x).

By decomposition, we get : x = g(y), g(z) = xBy elimination of x, we get : x := g(y), g(z) = g(y)By decomposition, we get : x := g(y), z = yBy elimination of z, we get the solution : x := g(y), z := y

2. Solve f(x, x, a) = f(g(y), g(a), y).

Unification : algorithm (example 5.3.11)

1. Solve f(x, g(z)) = f(g(y), x).

By decomposition, we get : x = g(y), g(z) = xBy elimination of x, we get : x := g(y), g(z) = g(y)By decomposition, we get : x := g(y), z = yBy elimination of z, we get the solution : x := g(y), z := y

2. Solve f(x, x, a) = f(g(y), g(a), y).

By decomposition, we get : x = g(y), x = g(a), a = y

Unification : algorithm (example 5.3.11)

1. Solve f(x, g(z)) = f(g(y), x).

By decomposition, we get : x = g(y), g(z) = xBy elimination of x, we get : x := g(y), g(z) = g(y)By decomposition, we get : x := g(y), z = yBy elimination of z, we get the solution : x := g(y), z := y

2. Solve f(x, x, a) = f(g(y), g(a), y).

By decomposition, we get : x = g(y), x = g(a), a = yBy elimination of x, using the first equation, we get : x := g(y), g(y) = g(a), a = y

Unification : algorithm (example 5.3.11)

1. Solve f(x, g(z)) = f(g(y), x).

By decomposition, we get : x = g(y), g(z) = xBy elimination of x, we get : x := g(y), g(z) = g(y)By decomposition, we get : x := g(y), z = yBy elimination of z, we get the solution : x := g(y), z := y

2. Solve f(x, x, a) = f(g(y), g(a), y).

By decomposition, we get : x = g(y), x = g(a), a = yBy elimination of x, using the first equation, we get : x := g(y), g(y) = g(a), a = yBy decomposition, we get : x := g(y), y = a, a = y

Unification : algorithm (example 5.3.11)

1. Solve f(x, g(z)) = f(g(y), x).

By decomposition, we get : x = g(y), g(z) = xBy elimination of x, we get : x := g(y), g(z) = g(y)By decomposition, we get : x := g(y), z = yBy elimination of z, we get the solution : x := g(y), z := y

2. Solve f(x, x, a) = f(g(y), g(a), y).

By decomposition, we get : x = g(y), x = g(a), a = yBy elimination of x, using the first equation, we get : x := g(y), g(y) = g(a), a = yBy decomposition, we get : x := g(y), y = a, a = yBy elimination of y, we get : x := g(a), y := a, a = a

Unification : algorithm (example 5.3.11)

1. Solve f(x, g(z)) = f(g(y), x).

By decomposition, we get : x = g(y), g(z) = xBy elimination of x, we get : x := g(y), g(z) = g(y)By decomposition, we get : x := g(y), z = yBy elimination of z, we get the solution : x := g(y), z := y

2. Solve f(x, x, a) = f(g(y), g(a), y).

By decomposition, we get : x = g(y), x = g(a), a = yBy elimination of x, using the first equation, we get : x := g(y), g(y) = g(a), a = yBy decomposition, we get : x := g(y), y = a, a = yBy elimination of y, we get : x := g(a), y := a, a = aBy cancellation of identity, we get : x := g(a), y := a

FO Resolution Unification

1. Solve f(x, x, x) = f(g(y), g(a), y).

FO Resolution Unification

1. Solve f(x, x, x) = f(g(y), g(a), y).

By decomposition, we get : x = g(y), x = g(a), x = y

FO Resolution Unification

1. Solve f(x, x, x) = f(g(y), g(a), y).

By decomposition, we get : x = g(y), x = g(a), x = yBy elimination of x, we get : x := g(y), g(y) = g(a), g(y) = y

FO Resolution Unification

1. Solve f(x, x, x) = f(g(y), g(a), y).

By decomposition, we get : x = g(y), x = g(a), x = yBy elimination of x, we get : x := g(y), g(y) = g(a), g(y) = yOrienting equations, we get : x := g(y), g(y) = g(a), y = g(y)

FO Resolution Unification

1. Solve f(x, x, x) = f(g(y), g(a), y).

By decomposition, we get : x = g(y), x = g(a), x = yBy elimination of x, we get : x := g(y), g(y) = g(a), g(y) = yOrienting equations, we get : x := g(y), g(y) = g(a), y = g(y)Equation y = g(y) generates a failure. Then equation f(x, x, x) = f(g(y), g(a), y) has no solution.

FO Resolution Unification

1. Solve f(x, x, x) = f(g(y), g(a), y).

By decomposition, we get : x = g(y), x = g(a), x = yBy elimination of x, we get : x := g(y), g(y) = g(a), g(y) = yOrienting equations, we get : x := g(y), g(y) = g(a), y = g(y)Equation y = g(y) generates a failure. Then equation f(x, x, x) = f(g(y), g(a), y) has no solution.

Remark : correctness and termination proofs for unification algorithm are in handout course notes.

Plan

Introduction

Clausal form

Unification

First-Order Resolution

Completeness

ldea

Let Γ be a set of clauses. Suppose that $\forall(\Gamma)$ has no model. What can be done ?

Idea

Let Γ be a set of clauses. Suppose that $\forall(\Gamma)$ has no model. What can be done ?

Rules of « factorization, copy, binary resolution » allow us to infer \perp from $\Gamma.$

Idea

Let Γ be a set of clauses. Suppose that $\forall(\Gamma)$ has no model. What can be done ?

Rules of « factorization, copy, binary resolution » allow us to infer \bot from $\Gamma.$

Completeness of these rules is based on Herbrand's Theorem. The unification algorithm is used to find suitable instances of these clauses.

Three rules

- 1. Factorization : from $P(x, f(y)) \lor P(g(z), z) \lor Q(z, x)$ infer $P(g(f(y)), f(y)) \lor Q(f(y), g(f(y)))$. The inferred clause is obtained by computing the most general solution x := g(f(y)), z := f(y) of P(x, f(y)) = P(g(z), z).
- 2. The copy rule which renames the variables of a clause.
- 3. Binary resolution (BR) : from two premises without common variable $P(x, a) \lor Q(x)$ and $\neg P(b, y) \lor R(f(y))$ infer the resolvant $Q(b) \lor R(f(a))$, by computing the most general solution x := b, y := a of P(x, a) = P(b, y).

Resolution : 3 Rules

- 1. factorization,
- 2. copy,
- 3. resolvant

Resolution : 3 Rules

- 1. factorization,
- 2. сору,
- 3. resolvant

A clause, (a disjunction of litterals), is identified with the set of its litterals.

Definition 5.4.2

The clause *C'* is a factor of clause *C* if C' = C or if there exists a subset *E* of *C* such that *E* has two elements at least, *E* is unifiable and $C' = C\sigma$ where σ is the most general unifier of *E*.

Definition 5.4.2

The clause *C'* is a factor of clause *C* if C' = C or if there exists a subset *E* of *C* such that *E* has two elements at least, *E* is unifiable and $C' = C\sigma$ where σ is the most general unifier of *E*.

Example 5.4.3

The clause $P(x) \lor Q(g(x,y)) \lor P(f(a))$ has two factors :

Definition 5.4.2

The clause *C'* is a factor of clause *C* if C' = C or if there exists a subset *E* of *C* such that *E* has two elements at least, *E* is unifiable and $C' = C\sigma$ where σ is the most general unifier of *E*.

Example 5.4.3

The clause $P(x) \lor Q(g(x,y)) \lor P(f(a))$ has two factors :

itself and the factor $P(f(a)) \lor Q(g(f(a), y))$ obtained by applying to the clause, the most general unifier x := f(a) of the two underlined litterals.

property 1

5.4.1 Let *A* be a formula without quantifier and *B* an instance of *A*. $\forall (A) \models \forall (B)$

Proof.

See handout course notes.

property 1

5.4.1 Let *A* be a formula without quantifier and *B* an instance of *A*. $\forall (A) \models \forall (B)$

Proof.

See handout course notes.

property 1

5.4.4 Let C' be a factor of the clause C. $\forall (C) \models \forall (C')$

Proof.

Since C' is an instance of C, it is a consequence of the property 5.4.1.

Copy

Definition 5.4.5

Let *C* be a clause and σ a substitution, which changes only the variables of *C* and whose restriction ot variables of *C* is a bijection between thoses variables and variables of clause $C\sigma$.

The clause $C\sigma$ is a copy of the clause C.

We also say that the substitution σ is a renaming of *C*.
Definition 5.4.6

Let *C* be a clause and σ be a renaming of *C*. Let *f* the restriction of σ to variables of *C* and f^{-1} the inverse of *f*. Let σ_C^{-1} be the substitution defined for all variable *x* as follows :

- If x is a variable of $C\sigma$ then $x\sigma_C^{-1} = xf^{-1}$
- Otherwise $x\sigma_C^{-1} = x$.

This substitution is called the inverse of the renaming σ of *C*.

Example 5.4.7

Let $\sigma = \langle x := u, y := v \rangle$.

```
\sigma is a renaming of P(x, y).
```

The litteral P(u, v), where $P(u, v) = P(x, y)\sigma$, is a copy of P(x, y).

Let $\tau = \langle u := x, v := y \rangle$. τ is the inverse of the renaming σ of P(x, y).

Note that $P(u, v)\tau = P(x, y)$: the litteral P(x, y) is a copy of P(u, v) by the renaming τ .

property 1

5.4.8 Let C be a clause and σ a renaming of C.

1. σ_c^{-1} is a renaming of $C\sigma$.

2. for all expressions or clauses *E*, whose variables are the ones of *C*, $E\sigma\sigma_{C}^{-1} = E$.

Then $C\sigma\sigma_c^{-1} = C$ and therefore *C* is a copy of $C\sigma$.

Proof.

Let *f* be the restriction of σ to variables of *C*. By the definition of renaming, *f* is a bijection between the variables of *C* and the variables of $C\sigma$.

- By definition of σ_C⁻¹, this substitution changes only variables of Cσ and its restriction to variables of Cσ is the bijection f⁻¹. Therefore, σ_C⁻¹ is a renaming of Cσ.
- 2. Let *x* a variable of *C*. By definition of *f*, $x\sigma\sigma_{C}^{-1} = xff^{-1} = x$. Therefore, by induction on terms, litterals and clauses, for all expressions or clauses *E*, whose variables are variables of *C*, we have $E\sigma\sigma_{C}^{-1} = E$.

property 1

5.4.9 Given two clauses which are a copy of each other, their universal closures are equivalent.

Proof.

Let C' be a copy of C. By definition, C' is an instance of C and by the previous property, C is a copy of C', hence an instance of C.

Therefore by Property 5.4.1, the universal closure of C is a consequence of the universal closure of C' and conversely. Therefore, these two universal closures are equivalent.

Definition 5.4.10

Let *C* and *D* be two clauses without common variables. The clause *E* is a binary resolvant of *C* and *D* if there is a litteral $L \in C$ and a litteral $M \in D$ such that *L* and M^c are unifiable and if $E = ((C - \{L\}) \cup (D - \{M\}))\sigma$ where σ is the most general solution of equation $L = M^c$.

Definition 5.4.10

Let *C* and *D* be two clauses without common variables. The clause *E* is a binary resolvant of *C* and *D* if there is a litteral $L \in C$ and a litteral $M \in D$ such that *L* and M^c are unifiable and if $E = ((C - \{L\}) \cup (D - \{M\}))\sigma$ where σ is the most general solution of equation $L = M^c$.

Example 5.4.11

Let $C = P(x, y) \lor P(y, k(z))$ and $D = \neg P(a, f(a, y_1))$.

Definition 5.4.10

Let *C* and *D* be two clauses without common variables. The clause *E* is a binary resolvant of *C* and *D* if there is a litteral $L \in C$ and a litteral $M \in D$ such that *L* and M^c are unifiable and if $E = ((C - \{L\}) \cup (D - \{M\}))\sigma$ where σ is the most general solution of equation $L = M^c$.

Example 5.4.11

Let $C = P(x, y) \vee P(y, k(z))$ and $D = \neg P(a, f(a, y_1))$.

 $< x := a, y := f(a, y_1) >$ is the most general solution of $P(x, y) = P(a, f(a, y_1))$, then $P(f(a, y_1), k(z))$ is a binary resolvant of clauses *C* and *D*.

property 1

5.4.12 Let *E* be a resolvant binary of clauses *C* and *D* : \forall (*C*), \forall (*D*) $\models \forall$ (*E*).

Proof.

See handout course notes.

Resolution :

Definition 5.4.13

Let Γ be a set of clauses and *C* be a clause.

A proof of *C* from Γ is a sequence of clauses terminated by *C*, where each clause is

- a member of Γ,
- a factor of a previous clause in the proof,
- a copy of a previous clause in the proof or
- ► a binary resolvant of 2 previous clauses in the proof.

C is first-order inferred from Γ , denoted by $\Gamma \vdash_{1fcb} C$, if there is a proof of *C* from Γ .

When there is no ambiguity, we remplace \vdash_{1fcb} by \vdash .

```
Resolution : Consistency
```

property 1

5.4.14 Let Γ be a set of clauses and *C* be a clause.

If $\Gamma \vdash_{1fcb} C$ then $\forall(\Gamma) \models \forall(C)$

This property is an immediate consequence of consistency of factorization, copy and binary resolution, using induction. See exercise 91.

Given the two clauses

- 1. $C_1 = P(x, y) \vee P(y, x)$
- 2. $C_2 = \neg P(u,z) \lor \neg P(z,u)$

Given the two clauses

- 1. $C_1 = P(x,y) \lor P(y,x)$
- 2. $C_2 = \neg P(u,z) \lor \neg P(z,u)$

Show by resolution that $\forall (C_1, C_2)$ has no model.

1. $P(x,y) \lor P(y,x)$ Hyp C_1

Given the two clauses

- 1. $C_1 = P(x,y) \vee P(y,x)$
- 2. $C_2 = \neg P(u,z) \lor \neg P(z,u)$

- 1. $P(x,y) \lor P(y,x)$ Hyp C_1
- 2. P(y, y) Factor of 1 by < x := y >

Given the two clauses

- 1. $C_1 = P(x,y) \lor P(y,x)$
- 2. $C_2 = \neg P(u,z) \lor \neg P(z,u)$

- 1. $P(x,y) \lor P(y,x)$ Hyp C_1
- 2. P(y, y) Factor of 1 by < x := y >
- 3. $\neg P(u,z) \lor \neg P(z,u)$ Hyp C_2

Given the two clauses

- 1. $C_1 = P(x,y) \vee P(y,x)$
- 2. $C_2 = \neg P(u,z) \lor \neg P(z,u)$

1.
$$P(x,y) \lor P(y,x)$$
 Hyp C_1

2.
$$P(y, y)$$
 Factor of 1 by $< x := y >$

3.
$$\neg P(u,z) \lor \neg P(z,u)$$
 Hyp C_2

4.
$$\neg P(z,z)$$
 Factor of 3 by $\langle u := z \rangle$

Given the two clauses

- 1. $C_1 = P(x,y) \lor P(y,x)$
- 2. $C_2 = \neg P(u,z) \lor \neg P(z,u)$

1.
$$P(x,y) \lor P(y,x)$$
 Hyp C_1
2. $P(y,y)$ Factor of 1 by $< x := y >$
3. $\neg P(u,z) \lor \neg P(z,u)$ Hyp C_2
4. $\neg P(z,z)$ Factor of 3 by $< u := z >$
5. \bot BR 2, 4 by $< y := z >$

Given the two clauses

- 1. $C_1 = P(x,y) \lor P(y,x)$
- 2. $C_2 = \neg P(u,z) \lor \neg P(z,u)$

Show by resolution that $\forall (C_1, C_2)$ has no model.

1.
$$P(x, y) \lor P(y, x)$$
 Hyp C_1

2.
$$P(y, y)$$
 Factor of 1 by $< x := y >$

3.
$$\neg P(u,z) \lor \neg P(z,u)$$
 Hyp C_2

4.
$$\neg P(z,z)$$
 Factor of 3 by $\langle u := z \rangle$

5.
$$\perp$$
 BR 2, 4 by $< y := z >$

This example shows, a contrario, that binary resolution alone is incomplete : without factorization, the empty clauses cannot be inferred.

S. Devismes et al (Grenoble I)

4

First-Order Resolution

Resolution : Example 5.4.16 1. $C_1 = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$ 2. $C_2 = P(z, f(z)) \lor P(z, a)$ 3. $C_3 = P(f(z), z) \lor P(z, a)$

First-Order Resolution

Resolution : Example 5.4.16 1. $C_1 = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$

- 2. $C_2 = P(z, f(z)) \vee P(z, a)$
- 3. $C_3 = P(f(z), z) \vee P(z, a)$

We give a proof that $\forall (C_1, C_2, C_3)$ has no model.

1. $\neg P(z,a) \lor \neg P(z,x) \lor \neg P(x,z)$ Hyp C_1

First-Order Resolution

Resolution : Example 5.4.16 1. $C_1 = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$

- 2. $C_2 = P(z, f(z)) \vee P(z, a)$
- 3. $C_3 = P(f(z), z) \vee P(z, a)$

- 1. $\neg P(z,a) \lor \neg P(z,x) \lor \neg P(x,z)$ Hyp C_1
- 2. $P(z, f(z)) \lor P(z, a)$ Hyp C_2

First-Order Resolution

Resolution : Example 5.4.16 1. $C_1 = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$

- 2. $C_2 = P(z, f(z)) \vee P(z, a)$
- 3. $C_3 = P(f(z), z) \vee P(z, a)$

- 1. $\neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$ Hyp C_1
- 2. $P(z, f(z)) \lor P(z, a)$ Hyp C_2
- 3. $P(v_0, f(v_0)) \lor P(v_0, a)$ Copy 2 by $< z := v_0 >$

First-Order Resolution

Resolution : Example 5.4.16 1. $C_1 = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$

- 2. $C_2 = P(z, f(z)) \vee P(z, a)$
- 3. $C_3 = P(f(z), z) \vee P(z, a)$

- 1. $\neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$ Hyp C_1
- 2. $P(z, f(z)) \vee P(z, a)$ Hyp C_2
- 3. $P(v_0, f(v_0)) \lor P(v_0, a)$ Copy 2 by $< z := v_0 >$
- 4. $\neg P(f(v_0), a) \lor \neg P(f(v_0), v_0) \lor P(v_0, a)$ BR 1(3), 3(1) by $\langle z := f(v_0); x := v_0 \rangle$

First-Order Resolution

Resolution : Example 5.4.16 1. $C_1 = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$

- 2. $C_2 = P(z, f(z)) \vee P(z, a)$
- 3. $C_3 = P(f(z), z) \vee P(z, a)$

- 1. $\neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$ Hyp C_1
- 2. $P(z, f(z)) \vee P(z, a)$ Hyp C_2
- 3. $P(v_0, f(v_0)) \lor P(v_0, a)$ Copy 2 by $< z := v_0 >$
- 4. $\neg P(f(v_0), a) \lor \neg P(f(v_0), v_0) \lor P(v_0, a)$ BR 1(3), 3(1) by $\langle z := f(v_0); x := v_0 \rangle$
- 5. $\neg P(f(a), a) \lor P(a, a)$ Fact 4 by $< v_0 := a >$

First-Order Resolution

Resolution : Example 5.4.16 1. $C_1 = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$

- 2. $C_2 = P(z, f(z)) \vee P(z, a)$
- 3. $C_3 = P(f(z), z) \vee P(z, a)$

1.
$$\neg P(z,a) \lor \neg P(z,x) \lor \neg P(x,z)$$
 Hyp C_1

- 2. $P(z, f(z)) \lor P(z, a)$ Hyp C_2
- 3. $P(v_0, f(v_0)) \lor P(v_0, a)$ Copy 2 by $< z := v_0 >$

4.
$$\neg P(f(v_0), a) \lor \neg P(f(v_0), v_0) \lor P(v_0, a)$$
 BR 1(3), 3(1) by $\langle z := f(v_0); x := v_0 \rangle$

5.
$$\neg P(f(a), a) \lor P(a, a)$$
 Fact 4 by $< v_0 := a >$

6.
$$\neg P(a, a)$$
 Fact 1 by $< x := a; z := a >$

Resolution : Example 5.4.16 1. $C_1 = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$

- 2. $C_2 = P(z, f(z)) \vee P(z, a)$
- 3. $C_3 = P(f(z), z) \vee P(z, a)$

We give a proof that $\forall (C_1, C_2, C_3)$ has no model.

1.
$$\neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$$
 Hyp C_1

2.
$$P(z, f(z)) \lor P(z, a)$$
 Hyp C_2

3. $P(v_0, f(v_0)) \lor P(v_0, a)$ Copy 2 by $< z := v_0 >$

4.
$$\neg P(f(v_0), a) \lor \neg P(f(v_0), v_0) \lor P(v_0, a)$$
 BR 1(3), 3(1) by $\langle z := f(v_0); x := v_0 \rangle$

5.
$$\neg P(f(a), a) \lor P(a, a)$$
 Fact 4 by $< v_0 := a >$

6.
$$\neg P(a, a)$$
 Fact 1 by $< x := a; z := a >$

7. $P(f(z), z) \lor P(z, a)$ Hyp C_3

Resolution : Example 5.4.16 1. $C_1 = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$

- 2. $C_2 = P(z, f(z)) \vee P(z, a)$
- 3. $C_3 = P(f(z), z) \vee P(z, a)$

We give a proof that $\forall (C_1, C_2, C_3)$ has no model.

1.
$$\neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$$
 Hyp C_1

- 2. $P(z, f(z)) \lor P(z, a)$ Hyp C_2
- 3. $P(v_0, f(v_0)) \lor P(v_0, a)$ Copy 2 by $< z := v_0 >$

4.
$$\neg P(f(v_0), a) \lor \neg P(f(v_0), v_0) \lor P(v_0, a)$$
 BR 1(3), 3(1) by $\langle z := f(v_0); x := v_0 \rangle$

5.
$$\neg P(f(a), a) \lor P(a, a)$$
 Fact 4 by $< v_0 := a >$

6.
$$\neg P(a, a)$$
 Fact 1 by $< x := a; z := a >$

7. $P(f(z), z) \lor P(z, a)$ Hyp C_3

8.
$$P(f(a), a)$$
 BR 6(1), 7(2) by $< z := a >$

Resolution : Example 5.4.16 1. $C_1 = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$

- 2. $C_2 = P(z, f(z)) \vee P(z, a)$
- 3. $C_3 = P(f(z), z) \vee P(z, a)$

We give a proof that $\forall (C_1, C_2, C_3)$ has no model.

1.
$$\neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$$
 Hyp C_1

- 2. $P(z, f(z)) \lor P(z, a)$ Hyp C_2
- 3. $P(v_0, f(v_0)) \lor P(v_0, a)$ Copy 2 by $< z := v_0 >$

4.
$$\neg P(f(v_0), a) \lor \neg P(f(v_0), v_0) \lor P(v_0, a)$$
 BR 1(3), 3(1) by $\langle z := f(v_0); x := v_0 \rangle$

5.
$$\neg P(f(a), a) \lor P(a, a)$$
 Fact 4 by $< v_0 := a >$

6.
$$\neg P(a, a)$$
 Fact 1 by $< x := a; z := a >$

7. $P(f(z), z) \lor P(z, a)$ Hyp C_3

8.
$$P(f(a), a)$$
 BR 6(1), 7(2) by $< z := a >$

Resolution : Example 5.4.16 1. $C_1 = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$

- 2. $C_2 = P(z, f(z)) \vee P(z, a)$
- 3. $C_3 = P(f(z), z) \vee P(z, a)$

1.
$$\neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$$
 Hyp C_1

- 2. $P(z, f(z)) \lor P(z, a)$ Hyp C_2
- 3. $P(v_0, f(v_0)) \lor P(v_0, a)$ Copy 2 by $< z := v_0 >$

4.
$$\neg P(f(v_0), a) \lor \neg P(f(v_0), v_0) \lor P(v_0, a)$$
 BR 1(3), 3(1) by $\langle z := f(v_0); x := v_0 \rangle$

5.
$$\neg P(f(a), a) \lor P(a, a)$$
 Fact 4 by $< v_0 := a >$

- 6. $\neg P(a, a)$ Fact 1 by < x := a; z := a >
- 7. $P(f(z), z) \lor P(z, a)$ Hyp C_3
- 8. P(f(a), a) BR 6(1), 7(2) by < z := a >
- 9. P(a,a) BR 5(1), 8(1)

Resolution : Example 5.4.16 1. $C_1 = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$

- 2. $C_2 = P(z, f(z)) \vee P(z, a)$
- 3. $C_3 = P(f(z), z) \vee P(z, a)$

We give a proof that $\forall (C_1, C_2, C_3)$ has no model.

1.
$$\neg P(z,a) \lor \neg P(z,x) \lor \neg P(x,z)$$
 Hyp C_1

2.
$$P(z, f(z)) \lor P(z, a)$$
 Hyp C_2

3.
$$P(v_0, f(v_0)) \lor P(v_0, a)$$
 Copy 2 by $< z := v_0 >$

4.
$$\neg P(f(v_0), a) \lor \neg P(f(v_0), v_0) \lor P(v_0, a)$$
 BR 1(3), 3(1) by $\langle z := f(v_0); x := v_0 \rangle$

5.
$$\neg P(f(a), a) \lor P(a, a)$$
 Fact 4 by $< v_0 := a >$

6.
$$\neg P(a, a)$$
 Fact 1 by $< x := a; z := a >$

- 7. $P(f(z), z) \lor P(z, a)$ Hyp C_3
- 8. P(f(a), a) BR 6(1), 7(2) by < z := a >
- 9. P(a,a) BR 5(1), 8(1)

10. \perp BR 6(1), 9(1)

FO Resolution Completeness

Plan

Introduction

Clausal form

Unification

First-Order Resolution

Completeness

We define a new rule, first-order resolution, which is a combination of factorization, copy and binary resolution.

Definition 5.4.17

The clause *E* is a first-order resolvant of clauses *C* and *D* if *E* is a binary resolvant of C' and D' where C' is a factor of *C* and D' is a copy of a factor of *D* without common variable with C',

The rule which infers *E* from *C* and *D* is called first-order resolution.

FO Resolution Completeness

Example 5.4.18

Let $C = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$ and $D = P(z, f(z)) \lor P(z, a)$.

FO Resolution Completeness

Example 5.4.18

Let $C = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$ and $D = P(z, f(z)) \lor P(z, a)$. $C' = \neg P(a, a)$ is a factor of C. The clause P(a, f(a)) is a binary resolvant of C' and of D (which is

factor of itself) then it is a first-order resolvant of *C* and *D*.

FO Resolution
Completeness

Three notions of proof by resolution

Let Γ be a set of clauses and *C* a clause.

Notations

Three notions of proof by resolution

Let Γ be a set of clauses and *C* a clause.

Notations

Γ ⊢_ρ C : proof of C from Γ by propositional resolution (without substitution).

Three notions of proof by resolution

Let Γ be a set of clauses and *C* a clause.

Notations

- Γ ⊢_ρ C : proof of C from Γ by propositional resolution (without substitution).
- 2. $\Gamma \vdash_{1fcb} C$: proof of *C* from Γ by factorization, copy and binary resolution.
Three notions of proof by resolution

Let Γ be a set of clauses and *C* a clause.

Notations

- Γ ⊢_ρ C : proof of C from Γ by propositional resolution (without substitution).
- 2. $\Gamma \vdash_{1fcb} C$: proof of *C* from Γ by factorization, copy and binary resolution.
- 3. $\Gamma \vdash_{1r} C$: proof of *C* from Γ obtained by first-order resolution.

Three notions of proof by resolution

Let Γ be a set of clauses and *C* a clause.

Notations

- Γ ⊢_ρ C : proof of C from Γ by propositional resolution (without substitution).
- 2. $\Gamma \vdash_{1fcb} C$: proof of *C* from Γ by factorization, copy and binary resolution.
- 3. $\Gamma \vdash_{1r} C$: proof of *C* from Γ obtained by first-order resolution.

```
By definition we have : \Gamma \vdash_{1r} C implies \Gamma \vdash_{1fcb} C
```

Theorem 5.4.19

Let *C* and *D* be two clauses. Let *C'* be an instance of *C* and *D'* be an instance of *D*. Let *E'* be a propositional resolvant of *C'* and *D'*, there exists *E* a first-order resolvant of *C* and *D* having *E'* an an instance.

Proof.

See handout course notes.

Theorem 5.4.19

Let *C* and *D* be two clauses. Let *C'* be an instance of *C* and *D'* be an instance of *D*. Let *E'* be a propositional resolvant of *C'* and *D'*, there exists *E* a first-order resolvant of *C* and *D* having *E'* an an instance.

Proof.

See handout course notes.

Example 5.4.20

Let $C = P(x) \lor P(y) \lor R(y)$ and $D = \neg Q(x) \lor P(x) \lor \neg R(x) \lor P(y)$.

Theorem 5.4.19

Let *C* and *D* be two clauses. Let *C'* be an instance of *C* and *D'* be an instance of *D*. Let *E'* be a propositional resolvant of *C'* and *D'*, there exists *E* a first-order resolvant of *C* and *D* having *E'* an an instance.

Proof.

See handout course notes.

Example 5.4.20

Let $C = P(x) \lor P(y) \lor R(y)$ and $D = \neg Q(x) \lor P(x) \lor \neg R(x) \lor P(y)$.

▶ The clauses $C' = P(a) \lor R(a)$ and $D' = \neg Q(a) \lor P(a) \lor \neg R(a)$ are respectively instances of *C* and *D*.

Г

Theorem 5.4.19

Let *C* and *D* be two clauses. Let *C'* be an instance of *C* and *D'* be an instance of *D*. Let *E'* be a propositional resolvant of *C'* and *D'*, there exists *E* a first-order resolvant of *C* and *D* having *E'* an an instance.

Proof.

See handout course notes.

Example 5.4.20

Let $C = P(x) \lor P(y) \lor R(y)$ and $D = \neg Q(x) \lor P(x) \lor \neg R(x) \lor P(y)$.

- ▶ The clauses $C' = P(a) \lor R(a)$ and $D' = \neg Q(a) \lor P(a) \lor \neg R(a)$ are respectively instances of *C* and *D*.
- The clause $E' = P(a) \lor \neg Q(a)$ is a propositional resolvant of C' and D'.

Г

Theorem 5.4.19

Let *C* and *D* be two clauses. Let *C'* be an instance of *C* and *D'* be an instance of *D*. Let *E'* be a propositional resolvant of *C'* and *D'*, there exists *E* a first-order resolvant of *C* and *D* having *E'* an an instance.

Proof.

See handout course notes.

Example 5.4.20

Let $C = P(x) \lor P(y) \lor R(y)$ and $D = \neg Q(x) \lor P(x) \lor \neg R(x) \lor P(y)$.

- ► The clauses $C' = P(a) \lor R(a)$ and $D' = \neg Q(a) \lor P(a) \lor \neg R(a)$ are respectively instances of *C* and *D*.
- The clause $E' = P(a) \lor \neg Q(a)$ is a propositional resolvant of C' and D'.
- ► The clause $E = P(x) \lor \neg Q(x)$ is a first-order resolvant of *C* and *D* having *E'* as an instance.

Theorem 5.4.21

Let Γ be a set of clauses and Δ a set of instances of clauses from Γ , and C_1, \ldots, C_n a proof by propositional resolution from Δ .

There exists a proof D_1, \ldots, D_n by first-order resolution from Γ such that for *i* between 1 and *n*, the clause C_i is a instance of D_i .

Theorem 5.4.21

Let Γ be a set of clauses and Δ a set of instances of clauses from Γ , and C_1, \ldots, C_n a proof by propositional resolution from Δ .

There exists a proof D_1, \ldots, D_n by first-order resolution from Γ such that for *i* between 1 and *n*, the clause C_i is a instance of D_i .

Proof.

By induction on *n*. Let $C_1, \ldots, C_n, C_{n+1}$ a proof by propositional resolution starting with Δ . By induction, there exists a proof D_1, \ldots, D_n by first-order resolution starting from Γ such that, for *i* between 1 and *n*, the clause C_i is an instance of D_i .

- 1. Suppose that $C_{n+1} \in \Delta$. There exists $E \in \Gamma$ where C_{n+1} is an instance then we take $D_{n+1} = E$.
- 2. Suppose that C_{n+1} is a propositional resolvant of C_j and C_k where $j, k \le n$. From the previous slide, there exists E, first-order resolvant of D_j and D_k : we take $D_{n+1} = E$.

FO Resolution Completeness

Corollary 5.4.22

Let Γ be a set of clauses and Δ a set of instances of clauses of Γ .

Suppose that $\Delta \vdash_p C$.

There exists *D* such that $\Gamma \vdash_{1r} D$ and *C* is an instance of *D*.

Consider the set of clauses $P(f(x)) \lor P(u), \neg P(x) \lor Q(z), \neg Q(x) \lor \neg Q(y)$. The universal closure of this set of clauses is unsatisfiable and we show it in three ways

1. By instanciation on the Herbrand's domain $a, f(a), f(f(a)), \ldots$:

Consider the set of clauses

 $P(f(x)) \lor P(u), \neg P(x) \lor Q(z), \neg Q(x) \lor \neg Q(y).$

The universal closure of this set of clauses is unsatisfiable and we show it in three ways

 By instanciation on the Herbrand's domain a, f(a), f(f(a)),...: P(f(x)) ∨ P(u) is instanciated by x := a, u := f(a) to P(f(a)) ¬P(x) ∨ Q(z) is instanciated by x := f(a), z := a to ¬P(f(a)) ∨ Q(a) ¬Q(x) ∨ ¬Q(y) is instanciated by x := a, y := a to ¬Q(a) These these 3 instances together are unsatisfiable, as shown in the following proof by propositional resolution :

Consider the set of clauses

 $P(f(x)) \lor P(u), \neg P(x) \lor Q(z), \neg Q(x) \lor \neg Q(y).$

The universal closure of this set of clauses is unsatisfiable and we show it in three ways

 By instanciation on the Herbrand's domain a, f(a), f(f(a)),...: P(f(x)) ∨ P(u) is instanciated by x := a, u := f(a) to P(f(a)) ¬P(x) ∨ Q(z) is instanciated by x := f(a), z := a to ¬P(f(a)) ∨ Q(a) ¬Q(x) ∨ ¬Q(y) is instanciated by x := a, y := a to ¬Q(a) These these 3 instances together are unsatisfiable, as shown in the following proof by propositional resolution :

$$\frac{P(f(a)) \quad \neg P(f(a)) \lor Q(a)}{Q(a)} \quad \neg Q(a)$$

FO Resolution Completeness

 $P(f(x)) \lor P(u), \neg P(x) \lor Q(z), \neg Q(x) \lor \neg Q(y).$

 $P(f(x)) \lor P(u), \neg P(x) \lor Q(z), \neg Q(x) \lor \neg Q(y).$

2. This proof by propositional resolution is lifted to a proof by first-order resolution :

 $P(f(x)) \lor P(u), \neg P(x) \lor Q(z), \neg Q(x) \lor \neg Q(y).$

2. This proof by propositional resolution is lifted to a proof by first-order resolution :

$$\frac{\frac{P(f(x))\vee P(u) \quad \neg P(x)\vee Q(z)}{Q(z)} \quad \neg Q(x)\vee \neg Q(y)}{\bot}$$

 $P(f(x)) \lor P(u), \neg P(x) \lor Q(z), \neg Q(x) \lor \neg Q(y).$

This proof by propositional resolution is lifted to a proof by first-order resolution : $P(f(x)) \lor P(u) = \neg P(x) \lor Q(z)$

 $\neg O(x) \lor \neg O(y)$

3. Each first-order resolution rule is decomposed into factorization, copy and binary resolution :

 $P(f(x)) \lor P(u), \neg P(x) \lor Q(z), \neg Q(x) \lor \neg Q(y).$

2. This proof by propositional resolution is lifted to a proof by first-order resolution :

$$\frac{P(f(x)) \lor P(u) \qquad \neg P(x) \lor Q(z)}{Q(z)} \qquad \neg Q(x) \lor \neg Q(y)$$

3. Each first-order resolution rule is decomposed into factorization, copy and binary resolution :

$$\frac{\frac{P(f(x))\vee P(u)}{P(f(x))} _{fact} \frac{\neg P(x)\vee Q(z)}{\neg P(y)\vee Q(z)} _{copy}}{Q(z)} rb \qquad \frac{\neg Q(x)\vee \neg Q(y)}{\neg Q(x)} fact}{\bot} rb$$

Theorem 5.4.24

Let Γ be a set of clauses. Propositions : (1) $\Gamma \vdash_{1r} \bot$, (2) $\Gamma \vdash_{1fcb} \bot$, and (3) $\forall (\Gamma) \models \bot$ are equivalent.

Theorem 5.4.24

Let Γ be a set of clauses. Propositions : (1) $\Gamma \vdash_{1r} \bot$, (2) $\Gamma \vdash_{1fcb} \bot$, and (3) $\forall (\Gamma) \models \bot$ are equivalent.

Proof.

 (1) implies (2) because first-order resolution is a combinaison of factorization, copy and binary resolution.

Theorem 5.4.24

Let Γ be a set of clauses. Propositions : (1) $\Gamma \vdash_{1r} \bot$, (2) $\Gamma \vdash_{1fcb} \bot$, and (3) $\forall (\Gamma) \models \bot$ are equivalent.

Proof.

- (1) implies (2) because first-order resolution is a combinaison of factorization, copy and binary resolution.
- ► (2) implies (3) because factorization, copy and binary resolution are consistent.

Theorem 5.4.24

Let Γ be a set of clauses. Propositions : (1) $\Gamma \vdash_{1r} \bot$, (2) $\Gamma \vdash_{1fcb} \bot$, and (3) $\forall (\Gamma) \models \bot$ are equivalent.

Proof.

- (1) implies (2) because first-order resolution is a combinaison of factorization, copy and binary resolution.
- ► (2) implies (3) because factorization, copy and binary resolution are consistent.
- (3) implies (1). Suppose that $\forall(\Gamma) \models \bot$, that is, $\forall(\Gamma)$ is unsatisfiable. By Herbrand's theorem, there is a finite set Δ of instances without variable of clauses of Γ which has no propositional model. By completeness of propositional resolution, we have : $\Delta \vdash_p \bot$. From the lifting corollary 5.4.22, there exists *D* such that $\Gamma \vdash_{1r} D$ and \bot is an instance of *D*. But in this case, we have $D = \bot$.

FO Resolution
Completeness

Conclusion

Thanks of your attention.

Questions?