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Skolemization

Introduction

Introduction

Herbrand’s theorem applies to the domain closure of a set of formulae
with no quantifier.

For formulae with existential quantification, use skolemization.

This transformation was introduced by Thoralf Albert Skolem (1887 -
1963), Norvegian mathematician and logician.
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Skolemization

Introduction

General view

Skolemization

I transforms a set of closed formulae to the domain closure of a set
of formulae with no quantifier.

I preserves the existence of a model.
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Skolemization

Examples and properties

Example 5.2.1

The formula ∃xP(x) is skolemized as P(a).

We note the following relations between the two formulae :

1. ∃xP(x) is a consequence of P(a)

2. P(a) is not a consequence of ∃xP(x), but a model of ∃x P(x)
� provides � a model of P(a).

Indeed, let I be a model of ∃xP(x). Hence there exists d ∈ PI .

Let J be the interpretation such that PJ = PI and aJ = d .

J is model of P(a).
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Skolemization

Examples and properties

Example 5.2.2

The formula ∀x∃yQ(x ,y) is skolemized as ∀xQ(x , f (x)).

Again :

1. ∀x∃yQ(x ,y) is a consequence of ∀xQ(x , f (x))

2. ∀xQ(x , f (x)) is not a consequence of ∀x∃yQ(x ,y) ; but a model
of ∀x∃yQ(x ,y) � provides � a model of ∀xQ(x , f (x)).

Let I be a model of ∀x∃yQ(x ,y) and let D be the domain of I.

For every d ∈ D, the set {e ∈ D | (d ,e) ∈ QI} is not empty, hence
there exists a function g : D→ D such that for every d ∈ D,
g(d) ∈ {e ∈ D | (d ,e) ∈ QI}.

Let J be the interpretation J such that QJ = QI and fJ = g : J is a
model of ∀xQ(x , f (x)).
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Skolemization

Examples and properties

Properties

Skolemization eliminates existential quantifiers and transforms a
closed formula A to a formula B such that :

I A is a consequence of B, (B |= A)

I every model of A � provides � a model of B

Hence, A has a model if and only if B has a model : skolemization
preserves the existence of a model, in other words it preserves
satisfiability.
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Skolemization

Skolemization

Definitions

Definition 5.2.3

A closed formula is said to be proper, if it does not contain any variable
which is bound by two distinct quantifiers.

Example 5.2.4
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Skolemization

Skolemization

Definitions : generalized normal form

A first-order logic formula is in normal form if it does not contain
equivalences, implications, and if negations only apply to atomic
formulae.
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Skolemization

Skolemization

How to skolemize a closed formula A ?

Definition 5.2.5 (skolemization)

Let A a closed formula and E the normal formula with no quantifier,
obtained by the following transformation : E is the Skolem form of A.

1. B = normalization of A

2. C = make B proper

3. D= Elimination of existential quantifiers from C.
This transformation only preserves the existence of a model.

4. E = Transformation of the closed, normal, proper formula with no
existential quantifiers D into a normal formula without quantifiers.
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Skolemization

Skolemization

Normalization

1. Eliminate the equivalences

2. Eliminate the implications

3. Move the negations towards the atomic formulae

Rules

A⇔ B ≡ (A⇒ B)∧ (B⇒ A)

A⇒ B ≡ ¬A∨B

¬¬A≡ A

¬(A∧B)≡ ¬A∨¬B

¬(A∨B)≡ ¬A∧¬B

¬∀xA≡ ∃x¬A

¬∃xA≡ ∀x¬A

Hint : replace ¬(A⇒ B) by A∧¬B
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Skolemization

Skolemization

Example 5.2.7

The normal form of ∀y(∀xP(x ,y)⇔ Q(y)) is :
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Skolemization

Skolemization

Transformation to a proper formula

Change the name of correctly linked variables, e.g., by choosing new
variables at every change of a name.

Example 5.2.8

I The formula ∀xP(x)∨∀xQ(x) is changed to

I The formula ∀x(P(x)⇒∃xQ(x)∧∃yR(x ,y)) is changed to
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Skolemization

Skolemization

Elimination of existential quantifiers

Theorem 5.2.9

Let A be a closed normal and proper formula having one occurrence of
the sub-formula ∃yB. Let x1, . . .xn be the free variables of ∃yB, with
n ≥ 0. Let f be a symbol not appearing in A. Let A′ be the formula
obtained by replacing this occurrence of ∃yB by
B < y := f (x1, . . .xn) > (If n = 0, f is a constant).
The formula A′ is a closed normal and proper formula satisfying :

1. A is a consequence of A′

2. If A has a model then A′ has an identical model up to the truth
value of f .
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Skolemization

Skolemization

Theorem proof 5.2.9

Let us show that A is a consequence of A′.

Since the formula A is closed and proper, the free variables of ∃yB,
which are bound outside ∃yB, are not bound by any quantifier in B
(otherwise the proper property would not be respected), hence the
term f (x1, . . .xn) is free for y in B.

According to corollary 4.3.38 : B < y := f (x1, . . .xn) > has as
consequence ∃yB. Hence, we deduce that A is a consequence of A′.
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Skolemization

Skolemization

Proof of theorem 5.2.9

Let us show that every model of A provides a model of A′.

Suppose that A has a model I where I is an interpretation with domain D. Let c ∈ D.
For all d1, . . . ,dn,∈ D, let Ed1,...,dn be the set of elements d ∈ D such that the formula
B equals 1 in the interpretation I and the state x1 = d1, . . . ,xn = dn,y = d of its free
variables. Let g : Dn→ D be a function such that if Ed1,...,dn 6= /0 then
g(d1, . . . ,dn) ∈ Ed1,...,dn else g(d1, . . . ,dn) = c. Let J be the interpretation identical to
I except that fJ = g. We have :

1. [∃yB](I,e) = [B < y := f (x1, . . . ,xn)>](J,e), according to the interpretation of f
and of theorem 4.3.36, for every state e of the variables,

2. [∃yB](I,e) = [∃yB](J,e), since the symbol f is new, the value of ∃yB does not
depend of the truth value of f .

3. ∃yB⇔ B < y := f (x1, . . . ,xn)>|= A⇔ A′, according to the property of
replacement 1.3.10, which holds in first-order logic as well.

According to these three points, we obtain [A](J,e) = [A′](J,e) and since f is not in A

and since the formulae A and A′ do not contain free variables, we have [A]I = [A′]J .

Since I is model of A, J is model of A′.
S. Devismes et al (Grenoble I) Skolemization March 13, 2015 19 / 28



Skolemization

Skolemization

Remark 5.2.10

In theorem 5.2.9, note that the formula A′ obtained from formula A by
elimination of a quantifier remains closed, normal and proper.

Hence, by � applying � the theorem repeatedly, which implies
choosing a new symbol for each eliminated quantifier, one can
transform a closed, normal and proper formula A into a closed,
normal, proper and without existential quantifier formula B such that :

I A is a consequence of B

I If A has a model, then B has an identical model except for the
truth value of the new symbols
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Skolemization

Skolemization

Example 5.2.11

By eliminating existential quantifiers in the formula
∃x∀yP(x ,y)∧∃z∀u¬P(z,u) we obtain ∀yP(a,y)∧∀u¬P(b,u).

Therefore a new symbol must be used whenever an existential
quantifier is eliminated.
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Skolemization

Transformation in universal closure

Theorem 5.2.13

Let A be a closed, normal, proper formula without existential quantifier.
Let B be the formula obtained by removing from A all the universal quantifiers (B is
the Skolem form of A).

Formula A is equivalent to the domain closure of B.

Proof.
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Skolemization

Property of the skolemization

Property 5.2.14

Let A be a closed formula and B the Skolem form of A.

I The formula ∀(B) has as consequence the formula A

I if A has a model then ∀(B) has a model

Hence A has a model if and only if ∀(B) has a model.

Proof.

Let C be the closed proper formula in normal form, obtained at the end of the first two
steps of the skolemization of A. Let D be the result of the elimination of the existential
quantifiers applied to C. According to the remark 5.2.10 we have :

I The formula D has as consequence the formula C

I if C has a model then D has a model.

Since the first two steps change the formulae into equivalent formulae, A and C are
equivalent. According to theorem 5.2.13, D is equivalent to ∀(B). Hence we can
replace above D by ∀(B) and C by A, QED. 2
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Skolemization

Example 5.2.15

Let A = ∀x(P(x)⇒ Q(x))⇒ (∀xP(x)⇒∀xQ(x)). We skolemize ¬A.
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Skolemization

Skolemizing a set of formulae

Corollary 5.2.16

Let Γ be a set of closed formulae. The skolemization of Γ consists in applying
the skolemization to all formulae of Γ, by selecting a new symbol for each
existential quantifier eliminated in the third step of skolemization.

We obtain a set ∆ of formulae without quantifiers such that :

I Every model of ∀(∆) is model of Γ

I If Γ has a model then ∀(∆) has a model which is the same as for Γ up
to the truth value of new symbols.
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Conclusion

Today

I Skolemization
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Conclusion

Next course
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