Basis for automated proof: Skolemization

Stéphane Devismes Pascal Lafourcade Michel Lévy Jean-François Monin (jean-francois.monin@imag.fr)

Université Joseph Fourier, Grenoble I

March 13, 2015

Overview

Introduction

Examples and properties

Skolemization

Conclusion

Skolemization
Introduction

Plan

Introduction

Examples and properties

Skolemization

Conclusion

Skolemization	
Introduction	

Herbrand's theorem applies to the domain closure of a set of formulae with no quantifier.

Skolemization	
Introduction	

Herbrand's theorem applies to the domain closure of a set of formulae with no quantifier.

For formulae with existential quantification,

Skolemization	
Introduction	

Herbrand's theorem applies to the domain closure of a set of formulae with no quantifier.

For formulae with existential quantification, use skolemization.

Skolemization	
Introduction	

Herbrand's theorem applies to the domain closure of a set of formulae with no quantifier.

For formulae with existential quantification, use skolemization.

This transformation was introduced by Thoralf Albert Skolem (1887 - 1963), Norvegian mathematician and logician.

Skolemization	
Introduction	

General view

Skolemization

transforms a set of closed formulae to the domain closure of a set of formulae with no quantifier.

Skolemization
Introduction

General view

Skolemization

- transforms a set of closed formulae to the domain closure of a set of formulae with no quantifier.
- preserves the existence of a model.

Plan

Introduction

Examples and properties

Skolemization

Conclusion

Example 5.2.1

The formula $\exists x P(x)$ is skolemized as P(a).

We note the following relations between the two formulae :

Example 5.2.1

The formula $\exists x P(x)$ is skolemized as P(a).

We note the following relations between the two formulae :

1. $\exists x P(x)$ is a consequence of P(a)

Example 5.2.1

The formula $\exists x P(x)$ is skolemized as P(a).

We note the following relations between the two formulae :

- 1. $\exists x P(x)$ is a consequence of P(a)
- 2. P(a) is not a consequence of $\exists x P(x)$, but a model of $\exists x P(x) = 0$ where a = 0 a model of P(a).

Example 5.2.1

The formula $\exists x P(x)$ is skolemized as P(a).

We note the following relations between the two formulae :

- 1. $\exists x P(x)$ is a consequence of P(a)
- 2. P(a) is not a consequence of $\exists x P(x)$, but a model of $\exists x P(x) = 0$ where a = 0 a model of P(a).

Indeed, let *I* be a model of $\exists x P(x)$. Hence there exists $d \in P_I$.

Let *J* be the interpretation such that $P_J = P_I$ and $a_J = d$.

J is model of P(a).

Example 5.2.2

The formula $\forall x \exists y Q(x, y)$ is skolemized as $\forall x Q(x, f(x))$.

Again :

Example 5.2.2

The formula $\forall x \exists y Q(x, y)$ is skolemized as $\forall x Q(x, f(x))$.

Again :

1. $\forall x \exists y Q(x, y)$ is a consequence of $\forall x Q(x, f(x))$

Example 5.2.2

The formula $\forall x \exists y Q(x, y)$ is skolemized as $\forall x Q(x, f(x))$.

Again :

- 1. $\forall x \exists y Q(x, y)$ is a consequence of $\forall x Q(x, f(x))$
- 2. $\forall xQ(x, f(x))$ is not a consequence of $\forall x \exists yQ(x, y)$; but a model of $\forall x \exists yQ(x, y) \ll \text{provides} \gg \text{ a model of } \forall xQ(x, f(x)).$

Example 5.2.2

The formula $\forall x \exists y Q(x, y)$ is skolemized as $\forall x Q(x, f(x))$.

Again :

- 1. $\forall x \exists y Q(x, y)$ is a consequence of $\forall x Q(x, f(x))$
- 2. $\forall xQ(x, f(x))$ is not a consequence of $\forall x \exists yQ(x, y)$; but a model of $\forall x \exists yQ(x, y) \ll \text{provides} \gg \text{ a model of } \forall xQ(x, f(x)).$

Let *I* be a model of $\forall x \exists y Q(x, y)$ and let *D* be the domain of *I*.

For every $d \in D$, the set $\{e \in D \mid (d, e) \in Q_I\}$ is not empty, hence there exists a function $g : D \to D$ such that for every $d \in D$, $g(d) \in \{e \in D \mid (d, e) \in Q_I\}.$

Let *J* be the interpretation *J* such that $Q_J = Q_I$ and $f_J = g : J$ is a model of $\forall xQ(x, f(x))$.

Properties

Skolemization eliminates existential quantifiers and transforms a closed formula *A* to a formula *B* such that :

- A is a consequence of B, $(B \models A)$
- every model of A « provides » a model of B

Properties

Skolemization eliminates existential quantifiers and transforms a closed formula *A* to a formula *B* such that :

- A is a consequence of B, $(B \models A)$
- every model of A « provides » a model of B

Hence, *A* has a model if and only if *B* has a model : skolemization preserves the existence of a model, in other words it preserves satisfiability.

Plan

Introduction

Examples and properties

Skolemization

Conclusion

Skolemization
Skolemization

Definition 5.2.3

A closed formula is said to be **proper**, if it does not contain any variable which is bound by two distinct quantifiers.

Definition 5.2.3

A closed formula is said to be **proper**, if it does not contain any variable which is bound by two distinct quantifiers.

Example 5.2.4

• The formula $\forall x P(x) \lor \forall x Q(x)$ is not **proper**.

Definition 5.2.3

A closed formula is said to be **proper**, if it does not contain any variable which is bound by two distinct quantifiers.

Example 5.2.4

- The formula $\forall x P(x) \lor \forall x Q(x)$ is not **proper**.
- The formula $\forall x P(x) \lor \forall y Q(y)$ is **proper**.

Definition 5.2.3

A closed formula is said to be **proper**, if it does not contain any variable which is bound by two distinct quantifiers.

Example 5.2.4

- The formula $\forall x P(x) \lor \forall x Q(x)$ is not **proper**.
- The formula $\forall x P(x) \lor \forall y Q(y)$ is **proper**.
- The formula $\forall x (P(x) \Rightarrow \exists x Q(x) \land \exists y R(x, y))$ is **not proper**.

Definition 5.2.3

A closed formula is said to be **proper**, if it does not contain any variable which is bound by two distinct quantifiers.

Example 5.2.4

- The formula $\forall x P(x) \lor \forall x Q(x)$ is not **proper**.
- The formula $\forall x P(x) \lor \forall y Q(y)$ is **proper**.
- The formula $\forall x (P(x) \Rightarrow \exists x Q(x) \land \exists y R(x, y))$ is **not proper**.
- The formula $\forall x (P(x) \Rightarrow \exists y R(x, y))$ is **proper**.

Skolemization
Skolemization

Definitions : generalized normal form

A first-order logic formula is in **normal** form if it does not contain equivalences, implications, and if negations only apply to atomic formulae.

Skolemization			
Skolemization			

Skolemization
Skolemization

Definition 5.2.5 (skolemization)

Skolemization
Skolemization

Definition 5.2.5 (skolemization)

Let A a closed formula and E the normal formula with no quantifier, obtained by the following transformation : E is the Skolem form of A.

1. B = normalization of A

Skolemization
Skolemization

Definition 5.2.5 (skolemization)

- 1. B = normalization of A
- 2. C = make B proper

Skolemization
Skolemization

Definition 5.2.5 (skolemization)

- 1. B = normalization of A
- 2. C = make B proper
- D= Elimination of existential quantifiers from C.
 This transformation only preserves the existence of a model.

Skolemization
Skolemization

Definition 5.2.5 (skolemization)

- 1. B = normalization of A
- 2. C = make B proper
- D= Elimination of existential quantifiers from C.
 This transformation only preserves the existence of a model.
- 4. *E* = Transformation of the closed, normal, proper formula with no existential quantifiers *D* into a normal formula without quantifiers.

Normalization

- 1. Eliminate the equivalences
- 2. Eliminate the implications
- 3. Move the negations towards the atomic formulae

Rules

 $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$ $A \Rightarrow B \equiv \neg A \lor B$ $\neg \neg A \equiv A$ $\neg (A \land B) \equiv \neg A \lor \neg B$ $\neg (A \lor B) \equiv \neg A \land \neg B$ $\neg \forall xA \equiv \exists x \neg A$ $\neg \exists xA \equiv \forall x \neg A$

Hint : replace $\neg(A \Rightarrow B)$ by $A \land \neg B$

Skolemization Skolemization

Example 5.2.7

The normal form of $\forall y (\forall x P(x, y) \Leftrightarrow Q(y))$ is :

The normal form of $\forall y (\forall x P(x, y) \Leftrightarrow Q(y))$ is :

First, elimination of equivalences :

The normal form of $\forall y (\forall x P(x, y) \Leftrightarrow Q(y))$ is :

First, elimination of equivalences :

 $\forall y ((\neg \forall x P(x, y) \lor Q(y)) \land (\neg Q(y) \lor \forall x P(x, y)))$

The normal form of $\forall y (\forall x P(x, y) \Leftrightarrow Q(y))$ is :

First, elimination of equivalences :

 $\forall y((\neg \forall x P(x, y) \lor Q(y)) \land (\neg Q(y) \lor \forall x P(x, y)))$

Then, move negations :

 $\forall y ((\exists x \neg P(x,y) \lor Q(y)) \land (\neg Q(y) \lor \forall x P(x,y)))$

Change the name of correctly linked variables, e.g., by choosing new variables at every change of a name.

Change the name of correctly linked variables, e.g., by choosing new variables at every change of a name.

Example 5.2.8

• The formula $\forall x P(x) \lor \forall x Q(x)$ is changed to

Change the name of correctly linked variables, e.g., by choosing new variables at every change of a name.

Example 5.2.8

• The formula $\forall x P(x) \lor \forall x Q(x)$ is changed to

 $\forall x P(x) \lor \forall y Q(y)$

Change the name of correctly linked variables, e.g., by choosing new variables at every change of a name.

Example 5.2.8

• The formula $\forall x P(x) \lor \forall x Q(x)$ is changed to

 $\forall x P(x) \lor \forall y Q(y)$

• The formula $\forall x (P(x) \Rightarrow \exists x Q(x) \land \exists y R(x, y))$ is changed to

Change the name of correctly linked variables, e.g., by choosing new variables at every change of a name.

Example 5.2.8

• The formula $\forall x P(x) \lor \forall x Q(x)$ is changed to

 $\forall x P(x) \lor \forall y Q(y)$

► The formula $\forall x (P(x) \Rightarrow \exists x Q(x) \land \exists y R(x, y))$ is changed to $\forall x (P(x) \Rightarrow \exists z Q(z) \land \exists y R(x, y))$

Elimination of existential quantifiers

Theorem 5.2.9

Let *A* be a closed normal and proper formula having one occurrence of the sub-formula $\exists yB$. Let $x_1, \ldots x_n$ be the free variables of $\exists yB$, with $n \ge 0$. Let *f* be a symbol not appearing in *A*. Let *A'* be the formula obtained by replacing this occurrence of $\exists yB$ by $B < y := f(x_1, \ldots x_n) > (\text{If } n = 0, f \text{ is a constant}).$ The formula *A'* is a closed normal and proper formula satisfying :

- 1. A is a consequence of A'
- 2. If *A* has a model then *A*' has an identical model up to the truth value of *f*.

Skolemization Skolemization

Theorem proof 5.2.9

Let us show that A is a consequence of A'.

Skolemization Skolemization

```
Theorem proof 5.2.9
```

Let us show that A is a consequence of A'.

Since the formula *A* is closed and proper, the free variables of $\exists yB$, which are bound outside $\exists yB$, are not bound by any quantifier in *B* (otherwise the proper property would not be respected), hence the term $f(x_1, \ldots x_n)$ is free for *y* in *B*.

```
Theorem proof 5.2.9
```

Let us show that A is a consequence of A'.

Since the formula *A* is closed and proper, the free variables of $\exists yB$, which are bound outside $\exists yB$, are not bound by any quantifier in *B* (otherwise the proper property would not be respected), hence the term $f(x_1, ..., x_n)$ is free for *y* in *B*.

According to corollary 4.3.38 : $B < y := f(x_1, ..., x_n) >$ has as consequence $\exists yB$. Hence, we deduce that *A* is a consequence of *A*'.

Let us show that every model of A provides a model of A'.

Suppose that *A* has a model *I* where *I* is an interpretation with domain *D*. Let $c \in D$. For all $d_1, \ldots, d_n, \in D$, let E_{d_1, \ldots, d_n} be the set of elements $d \in D$ such that the formula *B* equals 1 in the interpretation *I* and the state $x_1 = d_1, \ldots, x_n = d_n, y = d$ of its free variables. Let $g : D^n \to D$ be a function such that if $E_{d_1, \ldots, d_n} \neq \emptyset$ then $g(d_1, \ldots, d_n) \in E_{d_1, \ldots, d_n}$ else $g(d_1, \ldots, d_n) = c$. Let *J* be the interpretation identical to *I* except that $f_J = g$. We have :

Let us show that every model of A provides a model of A'.

Suppose that *A* has a model *I* where *I* is an interpretation with domain *D*. Let $c \in D$. For all $d_1, \ldots, d_n, \in D$, let E_{d_1, \ldots, d_n} be the set of elements $d \in D$ such that the formula *B* equals 1 in the interpretation *I* and the state $x_1 = d_1, \ldots, x_n = d_n, y = d$ of its free variables. Let $g : D^n \to D$ be a function such that if $E_{d_1, \ldots, d_n} \neq \emptyset$ then $g(d_1, \ldots, d_n) \in E_{d_1, \ldots, d_n}$ else $g(d_1, \ldots, d_n) = c$. Let *J* be the interpretation identical to *I* except that $f_J = g$. We have :

[∃yB]_(1,e) = [B < y := f(x₁,...,x_n) >]_(J,e), according to the interpretation of *f* and of theorem 4.3.36, for every state *e* of the variables,

Let us show that every model of A provides a model of A'.

Suppose that *A* has a model *I* where *I* is an interpretation with domain *D*. Let $c \in D$. For all $d_1, \ldots, d_n, \in D$, let E_{d_1, \ldots, d_n} be the set of elements $d \in D$ such that the formula *B* equals 1 in the interpretation *I* and the state $x_1 = d_1, \ldots, x_n = d_n, y = d$ of its free variables. Let $g : D^n \to D$ be a function such that if $E_{d_1, \ldots, d_n} \neq \emptyset$ then $g(d_1, \ldots, d_n) \in E_{d_1, \ldots, d_n}$ else $g(d_1, \ldots, d_n) = c$. Let *J* be the interpretation identical to *I* except that $f_J = g$. We have :

- [∃yB]_(1,e) = [B < y := f(x₁,...,x_n) >]_(J,e), according to the interpretation of *f* and of theorem 4.3.36, for every state *e* of the variables,
- [∃yB]_(I,e) = [∃yB]_(J,e), since the symbol *f* is new, the value of ∃yB does not depend of the truth value of *f*.

Let us show that every model of A provides a model of A'.

Suppose that *A* has a model *I* where *I* is an interpretation with domain *D*. Let $c \in D$. For all $d_1, \ldots, d_n, \in D$, let E_{d_1, \ldots, d_n} be the set of elements $d \in D$ such that the formula *B* equals 1 in the interpretation *I* and the state $x_1 = d_1, \ldots, x_n = d_n, y = d$ of its free variables. Let $g : D^n \to D$ be a function such that if $E_{d_1, \ldots, d_n} \neq \emptyset$ then $g(d_1, \ldots, d_n) \in E_{d_1, \ldots, d_n}$ else $g(d_1, \ldots, d_n) = c$. Let *J* be the interpretation identical to *I* except that $f_J = g$. We have :

- [∃yB]_(1,e) = [B < y := f(x₁,...,x_n) >]_(J,e), according to the interpretation of *f* and of theorem 4.3.36, for every state *e* of the variables,
- [∃yB]_(I,e) = [∃yB]_(J,e), since the symbol *f* is new, the value of ∃yB does not depend of the truth value of *f*.
- ∃yB ⇔ B < y := f(x₁,...,x_n) > ⊨ A ⇔ A', according to the property of replacement 1.3.10, which holds in first-order logic as well.

Let us show that every model of A provides a model of A'.

Suppose that *A* has a model *I* where *I* is an interpretation with domain *D*. Let $c \in D$. For all $d_1, \ldots, d_n, \in D$, let E_{d_1, \ldots, d_n} be the set of elements $d \in D$ such that the formula *B* equals 1 in the interpretation *I* and the state $x_1 = d_1, \ldots, x_n = d_n, y = d$ of its free variables. Let $g : D^n \to D$ be a function such that if $E_{d_1, \ldots, d_n} \neq \emptyset$ then $g(d_1, \ldots, d_n) \in E_{d_1, \ldots, d_n}$ else $g(d_1, \ldots, d_n) = c$. Let *J* be the interpretation identical to *I* except that $f_J = g$. We have :

- [∃yB]_(1,e) = [B < y := f(x₁,...,x_n) >]_(J,e), according to the interpretation of *f* and of theorem 4.3.36, for every state *e* of the variables,
- [∃yB]_(I,e) = [∃yB]_(J,e), since the symbol *f* is new, the value of ∃yB does not depend of the truth value of *f*.
- ∃yB ⇔ B < y := f(x₁,...,x_n) > ⊨ A ⇔ A', according to the property of replacement 1.3.10, which holds in first-order logic as well.

According to these three points, we obtain $[A]_{(J,e)} = [A']_{(J,e)}$ and since *f* is not in *A* and since the formulae *A* and *A'* do not contain free variables, we have $[A]_I = [A']_J$. Since *I* is model of *A*, *J* is model of *A'*.

S. Devismes et al (Grenoble I)

Skolemization

Remark 5.2.10

In theorem 5.2.9, note that the formula A' obtained from formula A by elimination of a quantifier remains closed, normal and proper.

Hence, by « applying » the theorem repeatedly, which implies choosing a new symbol for each eliminated quantifier, one can transform a closed, normal and proper formula A into a closed, normal, proper and without existential quantifier formula B such that :

- ► A is a consequence of B
- If A has a model, then B has an identical model except for the truth value of the new symbols

By eliminating existential quantifiers in the formula $\exists x \forall y P(x, y) \land \exists z \forall u \neg P(z, u)$ we obtain $\forall y P(a, y) \land \forall u \neg P(b, u)$.

It is easy to observe that this formula has a model.

By eliminating existential quantifiers in the formula $\exists x \forall y P(x, y) \land \exists z \forall u \neg P(z, u)$ we obtain $\forall y P(a, y) \land \forall u \neg P(b, u)$.

It is easy to observe that this formula has a model.

Remark : If we mistakently eliminate the two existential quantifiers using the same constant *a*, we obtain the formula $\forall y P(a, y) \land \forall u \neg P(a, u)$, which is unsatisfiable, since it has as consequence P(a, a) and $\neg P(a, a)$.

Therefore a new symbol must be used whenever an existential quantifier is eliminated.

Transformation in universal closure

Theorem 5.2.13

Let *A* be a closed, normal, proper formula without existential quantifier. Let *B* be the formula obtained by removing from *A* all the universal quantifiers (*B* is the Skolem form of *A*).

Formula A is equivalent to the domain closure of B.

Transformation in universal closure

Theorem 5.2.13

Let *A* be a closed, normal, proper formula without existential quantifier. Let *B* be the formula obtained by removing from *A* all the universal quantifiers (*B* is the Skolem form of *A*).

Formula A is equivalent to the domain closure of B.

Proof.

According to the requirements on *A* its transformation into \forall (*B*) is made of replacements of sub-formulae of the form

 $(\forall xC) \land D$ by $\forall x(C \land D)$ where x not free in D

 $(\forall xC) \lor D$ by $\forall x(C \lor D)$ where x not free in D

 $D \wedge (\forall xC)$ by $\forall x(D \wedge C)$ where x not free in D

 $D \lor (\forall xC)$ by $\forall x(D \lor C)$ where x not free in D

Since each of this replacements changes a formula into another equivalent formula, the formulae A and \forall (B) are equivalent.

Property of skolemization

Property 5.2.14

Let A be a closed formula and B the Skolem form of A.

- The formula \forall (*B*) has as consequence the formula *A*
- if A has a model then $\forall (B)$ has a model

Hence A has a model if and only if \forall (*B*) has a model.

Proof.

Let *C* be the closed proper formula in normal form, obtained at the end of the first two steps of skolemization of *A*. Let *D* be the result of the elimination of existential quantifiers applied to *C*. According to remark 5.2.10 we have :

- ► The formula *D* has as consequence the formula *C*
- ▶ if *C* has a model then *D* has a model.

Since the first two steps change the formulae into equivalent formulae, *A* and *C* are equivalent. According to theorem 5.2.13, *D* is equivalent to \forall (*B*). Hence we can replace above *D* by \forall (*B*) and *C* by *A*, QED.

Let $A = \forall x (P(x) \Rightarrow Q(x)) \Rightarrow (\forall x P(x) \Rightarrow \forall x Q(x))$. We skolemize $\neg A$.

1. $\neg A$ is transformed into the normal formula : $\forall x(\neg P(x) \lor Q(x)) \land \forall xP(x) \land \exists x \neg Q(x)$

- 1. $\neg A$ is transformed into the normal formula : $\forall x (\neg P(x) \lor Q(x)) \land \forall x P(x) \land \exists x \neg Q(x)$
- 2. The normal formula is transformed into the proper formula : $\forall x(\neg P(x) \lor Q(x)) \land \forall y P(y) \land \exists z \neg Q(z)$

- 1. $\neg A$ is transformed into the normal formula : $\forall x (\neg P(x) \lor Q(x)) \land \forall x P(x) \land \exists x \neg Q(x)$
- 2. The normal formula is transformed into the proper formula : $\forall x(\neg P(x) \lor Q(x)) \land \forall y P(y) \land \exists z \neg Q(z)$
- 3. The existential quantifier is « replaced » by a constant : $\forall x(\neg P(x) \lor Q(x)) \land \forall y P(y) \land \neg Q(a)$

- 1. $\neg A$ is transformed into the normal formula : $\forall x (\neg P(x) \lor Q(x)) \land \forall x P(x) \land \exists x \neg Q(x)$
- 2. The normal formula is transformed into the proper formula : $\forall x(\neg P(x) \lor Q(x)) \land \forall y P(y) \land \exists z \neg Q(z)$
- 3. The existential quantifier is « replaced » by a constant : $\forall x(\neg P(x) \lor Q(x)) \land \forall y P(y) \land \neg Q(a)$
- 4. The universal quantifiers are eliminated : $(\neg P(x) \lor Q(x)) \land P(y) \land \neg Q(a).$

Let $A = \forall x (P(x) \Rightarrow Q(x)) \Rightarrow (\forall x P(x) \Rightarrow \forall x Q(x))$. We skolemize $\neg A$.

- 1. $\neg A$ is transformed into the normal formula : $\forall x (\neg P(x) \lor Q(x)) \land \forall x P(x) \land \exists x \neg Q(x)$
- 2. The normal formula is transformed into the proper formula : $\forall x(\neg P(x) \lor Q(x)) \land \forall y P(y) \land \exists z \neg Q(z)$
- 3. The existential quantifier is « replaced » by a constant : $\forall x(\neg P(x) \lor Q(x)) \land \forall y P(y) \land \neg Q(a)$
- 4. The universal quantifiers are eliminated : $(\neg P(x) \lor Q(x)) \land P(y) \land \neg Q(a).$

Let us instantiate the Skolem form of $\neg A$ by replacing x and y by a. We obtain the formula $(\neg P(a) \lor Q(a)) \land P(a) \land \neg Q(a)$ which is unsatisfiable. Hence $\forall ((\neg P(x) \lor Q(x)) \land P(y) \land \neg Q(a)$ is unsatisfiable. Since skolemization preserves the existence of a model, $\neg A$ is unsatisfiable, hence A is valid.

Skolemization
Skolemization

Skolemizing a set of formulae

Corollary 5.2.16

Let Γ be a set of closed formulae. Skolemization of Γ consists in applying skolemization to all formulae of Γ , by selecting a new symbol for each existential quantifier eliminated in the third step of skolemization.

We obtain a set Δ of formulae without quantifiers such that :

- Every model of ∀(Δ) is model of Γ
- If Γ has a model then ∀(Δ) has a model which is the same as for Γ up to the truth value of new symbols.

Plan

Introduction

Examples and properties

Skolemization

Conclusion

Skolemization Conclusion

Today

Skolemization

Skolemization	
Conclusion	

Next course

- Clausal form
- Unification
- First-order resolution
- Consistency
- Completeness