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Introduction

Structure of first-order logic

A non-empty domain (more than two elements)

Three categories :

» Terms representing the elements of the domain or functions on
these elements

» Relations

» Formulae describing the interactions between the relations
thanks to connectives and quantifiers

Remark :
Two particular symbols (quantifiers) : V (universal quantification) and 3
(existential quantification).
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Introduction

Structure of first-order logic

Examples :
» the term parent(x) intended to mean the parent of x,

» the formula Vx3y parent(y, x) indicates that every individual has
a parent.
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Introduction

Syllogism

A cheap horse is rare.
Everything that is rare is expensive.
Hence a cheap horse is expensive.
Nothing bothers you ?
Everything that is expensive is not cheap and vice versa.

Vx(cheap(x) < —expensive(x))

Now we have a contradiction.
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Introduction

Usage

First-order logic allows us to model :
» a single non-empty domain,
» functions over the domain, and

» relations over the domain.

S. Devismes et al (Grenoble I) First-order logic February 27, 2015

7/68



First-order logic
Introduction

Overview

Introduction

Language
(Strict) Formulae
Prioritized formulae

Free vs. bound

Truth value of formulae
Declaring a symbol
Signature

Interpretation
Truth value of formulae

Conclusion

S. Devismes et al (Grenoble I) First-order logic

February 27, 2015

8/68



First-order logic
Language

Overview

Language
(Strict) Formulae
Prioritized formulae

S. Devismes et al (Grenoble I) First-order logic

February 27, 2015

9/68



First-order logic
Language
(Strict) Formulae

Overview

Introduction

Language
(Strict) Formulae

Free vs. bound

Truth value of formulae

Interpretation
Truth value of formulae

Conclusion

S. Devismes et al (Grenoble I) First-order logic February 27, 2015 10/68



First-order logic
Language
(Strict) Formulae

Vocabulary

» Two propositional constants : 1 and T

» Variables : sequence of letters and digits starting with one of the
following lower case letters : u,v,w,x,y,z.

» Connectives : =, A\,V,=, &

» Quantifiers : V the universal quantification and 3 the existential
quantification

» Punctuation : the comma <, > and the open < (> and closing
<) »parenthesis.

» Ordinary and special symbols :

» an ordinary symbol is a sequence of letters and digits not
starting by one of the following lower case letters : u,v,w,x,y,z.
» aspecial symbol is +, —,x*, /,=,#, <, <, > > ...

S. Devismes et al (Grenoble I) First-order logic February 27, 2015

11/68



First-order logic
Language

Example 4.1.1

» x,x1,x2,y are variables,

» man, parent, succ, 12, 24, f1 are ordinary symbols, the ordinary
symbols will represent :

» functions (numerical constants or multiple argument functions) or
» relations (propositional variables or multiple argument relations).

» x =y, z> 3 are examples for special symbols

S. Devismes et al (Grenoble I) First-order logic February 27, 2015 12/68



First-order logic
Language

Term

Definition 4.1.2

» an ordinary symbol is a term,
» avariable is a term,

» if ty,...,t, are terms and if s is a (ordinary or special) symbol
then s(t,...,t,) is a term.

S. Devismes et al (Grenoble ) First-order logic February 27, 2015 13/68
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» an ordinary symbol is a term,
» avariable is a term,

» if ty,...,t, are terms and if s is a (ordinary or special) symbol
then s(t,...,t,) is a term.

Example 4.1.3
x,a,f(x1,x2,9(y)), +(x, #(y, 2)), +(5,42) are terms

On the contrary, f(L,2,y) is not a term.
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First-order logic
Language

Term

Definition 4.1.2

» an ordinary symbol is a term,
» avariable is a term,

» if ty,...,t, are terms and if s is a (ordinary or special) symbol
then s(t,...,t,) is a term.

Example 4.1.3
x,a,f(x1,x2,9(y)), +(x, #(y, 2)), +(5,42) are terms

On the contrary, f(L,2,y) is not a term.

Note that 42(1,y,3) is also a term, but by convention function and relation
names are ordinary symbols starting with letters.

S. Devismes et al (Grenoble I) First-order logic February 27, 2015
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Language

Atomic formula

Definition 4.1.4 atomic formulae

» T and L are atomic formulae
» an ordinary symbol is an atomic formula

» if ty,...,t, are terms and if s is a (ordinary or special) symbol
then s(ti,...,t,) is an atomic formula.
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First-order logic
Language

Atomic formula

Definition 4.1.4 atomic formulae

» T and L are atomic formulae
» an ordinary symbol is an atomic formula

» if ty,...,t, are terms and if s is a (ordinary or special) symbol
then s(ti,...,t,) is an atomic formula.

Example 4.1.5 :

» f(1,+(5,42),9(2)), a, and +(x, *(y, z)) are atomic formulae
» x and AV f(4,2,6) are not atomic formulae

S. Devismes et al (Grenoble I) First-order logic February 27, 2015
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First-order logic
Language

Syntax v.s. Semantics

The set of terms and the set of atomic formulae are not disjoint.
For example p(x) is a term and an atomic formula.

When t is a term and an atomic formula simultaneously, we distinguish
[[t]], the value of t seen as a term of [t], value of t seen as a formula.

S. Devismes et al (Grenoble I) First-order logic February 27, 2015 15/68



First-order logic
Language

(Strict) Formula

Definition 4.1.6

» an atomic formula is a formula,
» if Ais a formula then —Ais a formula,

» if Aand B are formulae and if o one of the following operations
V,\,=,< then (Ao B) is a formula ,

» if Ais a formula and if x is any variable then Vx A and dx A are
formulae.

S. Devismes et al (Grenoble I) First-order logic February 27, 2015 16/68



First-order logic
Language

Example 4.1.7

» man(x), parents(son(y), mother(Alice)), = (x,+(f(x),9(y)))

are atomic formulae, hence formulae.

» On the contrary

’Vx (man(x) = man(Socrate))

is a non-atomic formula.
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First-order logic
Language

(Strict) Formula : Examples

Among these expressions, which ones are strict formulae :
> X
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(Strict) Formula : Examples

Among these expressions, which ones are strict formulae :

> X

[no

> a

‘ yes

» (a(x)=b)ANa(x)=b
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Language

(Strict) Formula : Examples

Among these expressions, which ones are strict formulae :
> X

[no

> a

‘ yes

» (a(x)=b)ANa(x)=b

’ no, missing ()

» Ix((L = a(x))Ab(x))
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First-order logic
Language

(Strict) Formula : Examples

Among these expressions, which ones are strict formulae :
> X

[no

> a

‘ yes

» (a(x)=b)ANa(x)=b

’ no, missing ()

» Ix((L = a(x))Ab(x))

] yes

» dx3dy < (—(x,y),+(a,y))
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First-order logic
Language

(Strict) Formula : Examples

Among these expressions, which ones are strict formulae :

> X

[no

> a

‘ yes

» (a(x)=b)ANa(x)=b

’ no, missing ()

» Ix((L = a(x))Ab(x))

] yes

» dx3dy < (—(x,y),+(a,y))

‘ yes

» ((a<b)=((2xb) > (2xa)))

S. Devismes et al (Grenoble I) First-order logic

February 27, 2015
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First-order logic
Language

(Strict) Formula : Examples

Among these expressions, which ones are strict formulae :

> X

[no

> a

‘ yes

» (a(x)=b)ANa(x)=b

’ no, missing ()

» Ix((L = a(x))Ab(x))

]yes

» dx3dy < (—(x,y),+(a,y))
‘yes

> ((a< b)= ((2xb) > (2% a)))
[no

S. Devismes et al (Grenoble I) First-order logic

February 27, 2015

18/68



First-order logic
Language
Prioritized formulae

Overview

Introduction

Language

Prioritized formulae
Free vs. bound

Truth value of formulae

Interpretation
Truth value of formulae

Conclusion
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First-order logic
Language

Infix notations

Prioritized formulae : the symbols of the functions +, —, x, / and the
symbols of the relations =, #, <, >, <, > are written in the usual
manner.
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Infix notations

Prioritized formulae : the symbols of the functions +, —, x, / and the
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Example 4.1.8
» < (x(3,x),+(y,5)) is abbreviated as
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Infix notations

Prioritized formulae : the symbols of the functions +, —, x, / and the
symbols of the relations =, #, <, >, <, > are written in the usual
manner.

Example 4.1.8
» < (x(3,x),+(y,5)) is abbreviated as

’3*x§y+5

» +(x,*(y,z)) is abbreviated as
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First-order logic
Language

Infix notations

Prioritized formulae : the symbols of the functions +, —, x, / and the
symbols of the relations =, #, <, >, <, > are written in the usual
manner.

Example 4.1.8
» < (x(3,x),+(y,5)) is abbreviated as

’3*x§y+5

» +(x,*(y,z)) is abbreviated as

’x+y*z
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First-order logic
Language

Inverse transformation

Prioritize
» connectives have a lower priority than the relations
» quantifiers have the same priority as negation.
» = #,<,<,>,> have a lower priority than +, —, x, /
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First-order logic
Language

Table 4.1 summary of priorities

Priorities decreasing from top to bottom.

OPERATIONS
—-+ unary
*, / binary left associative
+,— binary | left associative
RELATIONS
=#<5>,2>
NEGATION, QUANTIFIERS
-,V, 3
BINARY CONNECTIVES
A left associative
\Y left associative
= right associative
& left associative

S. Devismes et al (Grenoble I) First-order logic February 27, 2015 22 /68




First-order logic

Language

Prioritized formulae

Definition 4.1.9 prioritized formulae

A prioritized formula is inductively defined as follows :

>

>

>

An atomic formula is a prioritized formula.
If Ais a prioritized formula then —A is a prioritized formula.

If Aand B are prioritized formulae then Ao B is a prioritized
formula.

If Ais a prioritized formula and if x is any variable then Vx A and
dx A are prioritized formulae.

If Ais a prioritized formula (A) is a prioritized formula.
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First-order logic
Language

Examples

Example 4.1.10

» VxP(x) AVxQ(x) < Vx(P(x) A Q(x)) is an abbreviation of
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First-order logic
Language

Examples

Example 4.1.10
» VxP(x) AVxQ(x) < Vx(P(x) A Q(x)) is an abbreviation of

| (VxP(x) AVXQ(x)) < Yx(P(x) A Q(x)))

» VxVyVz(x <y Ay < z= x < z)is an abbreviation of ?
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First-order logic
Language

Examples

Example 4.1.10
» VxP(x) AVxQ(x) < Vx(P(x) A Q(x)) is an abbreviation of

| (VxP(x) AVXQ(x)) < Yx(P(x) A Q(x)))

» VxVyVz(x <y Ay < z= x < z)is an abbreviation of

[xvpv2((< ()N = (7.2)) =< (%,2))
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First-order logic
Language

Tree representation

Example 4.1.11 VxP(x) = Q(x)

the left-hand side operand of the implication is VxP(x).
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First-order logic
Language

Tree representation

Example 4.1.11 VxP(x) = Q(x)

the left-hand side operand of the implication is VxP(x).

Vx/é\ Q

[
|
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Free vs. bound
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First-order logic
Free vs. bound

Idea

» The meaning of the formula x + 2 = 4 depends on x
The meaning of the formula x = x depends on x as well
x is free in the previous formulae
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First-order logic
Free vs. bound

Idea

» The meaning of the formula x +2 = 4 depends on x
The meaning of the formula x = x depends on x as well
x is free in the previous formulae

» The meaning of Vx(x +2 = y) does not depend on x
The meaning of Vx(x + 0 = x) does not depend on x
x is not free in these two formulae
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First-order logic
Free vs. bound

Free and bound occurrences

Definition 4.2.1

» InVx Aor dx A, the scope of the binding of x is A.
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First-order logic
Free vs. bound

Free and bound occurrences

Definition 4.2.1
» InVx Aor dx A, the scope of the binding of x is A.

» An occurrence of x in Ais bound if it is in the scope of a binding
of x, otherwise it is said to be free
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Free and bound occurrences

Definition 4.2.1
» InVx Aor dx A, the scope of the binding of x is A.

» An occurrence of x in Ais bound if it is in the scope of a binding
of x, otherwise it is said to be free

If we represent a formula by a tree :
» A bound occurrence of x is
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Free and bound occurrences

Definition 4.2.1
» InVx Aor dx A, the scope of the binding of x is A.

» An occurrence of x in Ais bound if it is in the scope of a binding
of x, otherwise it is said to be free

If we represent a formula by a tree :
» A bound occurrence of x is

below a node Jx or Vx.

» An occurrence of x is free if
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First-order logic
Free vs. bound

Free and bound occurrences

Definition 4.2.1
» InVx Aor dx A, the scope of the binding of x is A.

» An occurrence of x in Ais bound if it is in the scope of a binding
of x, otherwise it is said to be free

If we represent a formula by a tree :
» A bound occurrence of x is

] below a node Jx or Vx.

» An occurrence of x is free if

] is not below such a node.
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First-order logic
Free vs. bound

Example 4.2.2
VxP(x,y) A 3zR(x,z)
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First-order logic
Free vs. bound

Example 4.2.2
VxP(x,y) A 3zR(x,z)

| ,L
VRN VAR
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First-order logic
Free vs. bound

Example 4.2.2

VxP(x,y) A 3zR(x,z)

VX/A\Hz
| |

P NN

» The bold occurrence of x is bound.
» The underlined occurrence of x is free.

» The occurrence of z is bound.

S. Devismes et al (Grenoble I)

First-order logic February 27, 2015
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First-order logic
Free vs. bound

Free, bound variables

Definition 4.2.3

» The variable x is a free variable of a formula if and only if there is a free occurrence of x in
the formula.

» A variable x is a bound variable of a formula if and only if there is abound occurence of x
in the formula.

» A formula without free variable is also called a closed formula.
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First-order logic
Free vs. bound

Free, bound variables

Definition 4.2.3

» The variable x is a free variable of a formula if and only if there is a free occurrence of x in
the formula.

» A variable x is a bound variable of a formula if and only if there is abound occurence of x
in the formula.

» A formula without free variable is also called a closed formula.

Remark 4.2.4

A variable can be simultaneously free and bound. For example, in the formula YxP(x) V Q(x), x
is both free and bound.

Remark 4.2.5

By definition, a variable which does not appear in a formula (0 occurrence) is NOT free in this
formula.
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First-order logic
Free vs. bound

Free, bound variables

Definition 4.2.3

» The variable x is a free variable of a formula if and only if there is a free occurrence of x in
the formula.

» A variable x is a bound variable of a formula if and only if there is abound occurence of x
in the formula.

» A formula without free variable is also called a closed formula.

Remark 4.2.4

A variable can be simultaneously free and bound. For example, in the formula YxP(x) V Q(x), x
is both free and bound.

Remark 4.2.5

By definition, a variable which does not appear in a formula (0 occurrence) is NOT free in this
formula.

Example 4.2.6

The free variables of the formula of example 4.2.2 are x and y.
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Truth value of formulae
Declaring a symbol
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First-order logic
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Declaring a symbol

Overview

Introduction

Language

Free vs. bound

Truth value of formulae
Declaring a symbol

Interpretation
Truth value of formulae

Conclusion
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First-order logic
Truth value of formulae

Declaring a symbol

Declaring a symbol

Definition 4.3.1

A symbol declaration is a triple denoted by s9" where :

> sis asymbol
» g one of the letters f (a function) or r (a relation)

» nis a natural number.

S. Devismes et al (Grenoble I) First-order logic

February 27, 2015

33/68



First-order logic
Truth value of formulae

Declaring a symbol

Declaring a symbol

Definition 4.3.1

A symbol declaration is a triple denoted by s9" where :
» sis asymbol
» g one of the letters f (a function) or r (a relation)
» nis a natural number.

Remark 4.3.3

If the context gives an implicit declaration of a symbol, we omit the
exponent.

Example : equal is always a 2 arguments relation, we abbreviate the
declaration =" as =.
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First-order logic
Truth value of formulae

Declaring a symbol

Symbol declaration : Example

Example 4.3.2

» parent’? is a relation (r) with 2 arguments
» /2 is function (f) with 2 arguments

» man'' a unary relation
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Signature
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First-order logic
Truth value of formulae
Signature

Signature

Definition 4.3.4

A signature is a set of symbol declarations.

Let n> 0 and X a signature, the symbol s'is :

1. a constant of the signature if and only if s® € ¥

2. a symbol of the function of n arguments of the signature, if and
onlyif s € ¥

3. a propositional variable of the signature if and only if s/® € ¥

4. a symbol of the relation of n arguments of the signature, if and
onlyif s € ¥

S. Devismes et al (Grenoble I) First-order logic February 27, 2015
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First-order logic
Truth value of formulae

Examples in mathematics (1/2)

0f071f07+f2 _f2 >kf2

Y Y

,="2 is a signature for arithmetics.
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First-order logic
Truth value of formulae

Examples in mathematics (1/2)

010,170 2 _12 42 _r2 s 3 signature for arithmetics.

Remark :
» We write : 0, 1, 4 and — (with two arguments), * and =.

» Note that plus and minus have two arguments, (the symbol will
not be used with only one argument).
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First-order logic
Truth value of formulae

Examples in mathematics (2/2)

Example 4.3.5 (Set theory)

A possible signature is €,=
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First-order logic
Truth value of formulae

Examples in mathematics (2/2)

Example 4.3.5 (Set theory)

A possible signature is €,=

All other operations can be defined from these relations.
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First-order logic
Truth value of formulae

Overloading

Definition 4.3.6

A symbol is overloaded in a signature, when this signature has two
distinct declarations of the same symbol.
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First-order logic
Truth value of formulae

Overloading

Definition 4.3.6
A symbol is overloaded in a signature, when this signature has two
distinct declarations of the same symbol.

Example 4.3.7 : the minus sign is often overloaded.

» the opposite of a number
» the subtraction of two numbers
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First-order logic
Truth value of formulae

Overloading

Definition 4.3.6
A symbol is overloaded in a signature, when this signature has two
distinct declarations of the same symbol.
Example 4.3.7 : the minus sign is often overloaded.
» the opposite of a number
» the subtraction of two numbers

In what follows, in this course, we prohibit the use of overloaded
symbols in signatures.
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First-order logic
Truth value of formulae

Term over a signature

Definition 4.3.8

Let X be a signature, a term over X is :
» either a variable,
» or a constant s where s € ¥,

» or a term of the form s(t,...,t,), where n > 1, s € ¥ and
ti,...,t, are terms over %.
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First-order logic
Truth value of formulae

Term over a signature

Definition 4.3.8

Let X be a signature, a term over X is :
» either a variable,
» or a constant s where s € ¥,

» or a term of the form s(t,...,t,), where n > 1, s € ¥ and
ti,...,t, are terms over %.

The set of terms over the signature ¥ is denoted by Ty.
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First-order logic
Truth value of formulae

Atomic formula over a signature

Definition 4.3.9

Let > a signature, an atomic formula over ¥ is :
» either one of the constants T, |,
» or a propositional variable s where s/ € ¥,

» or an expression s(ty,...,t;) wheren>1,s" € X and t;,...,1t,
are terms over .
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First-order logic
Truth value of formulae

Formula over a signature

Definition 4.3.10

A formula over a signature X is a formula, whose atomic sub-formulae
are atomic formulae over X (according to definition 4.3.9).
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First-order logic
Truth value of formulae

Formula over a signature

Definition 4.3.10
A formula over a signature X is a formula, whose atomic sub-formulae
are atomic formulae over X (according to definition 4.3.9).

Fs denotes the set of formulae over the signature ¥.
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First-order logic
Truth value of formulae

Example 4.3.11

Vx (p(x) = 3y q(x,y)) is a formula over signature
Yy = {pr1 qr2 hf1 CfO}‘
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First-order logic
Truth value of formulae

Example 4.3.11

Vx (p(x) = 3y q(x,y)) is a formula over signature
Yy = {pr1 qr2 hf1 CfO}‘

But it is also a formula over the signature ¥’ = {p’1 , q’z}, since the
symbols h and ¢ are not in the formula.
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First-order logic
Truth value of formulae

Associated signature

Definition 4.3.12

The signature associated to a formula is the smallest signature ¥ such
that the formula is a member of Fy, it is the smallest signature allowing
to write the formula.
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First-order logic
Truth value of formulae

Associated signature

Definition 4.3.12

The signature associated to a formula is the smallest signature ¥ such
that the formula is a member of Fy, it is the smallest signature allowing
to write the formula.

Example 4.3.13

The associated signature of formula Vx (p(x) = 3y q(x,y)) is
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First-order logic
Truth value of formulae

Associated signature

Definition 4.3.12

The signature associated to a formula is the smallest signature ¥ such
that the formula is a member of Fy, it is the smallest signature allowing
to write the formula.

Example 4.3.13

The associated signature of formula Vx (p(x) = 3y q(x,y)) is

pr1 , qr2_ ‘
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First-order logic
Truth value of formulae

Associated signature

Definition 4.3.14

The associated signature to a set of formulae is the union of the
associated signatures of all formulae of the set.
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First-order logic
Truth value of formulae

Associated signature

Definition 4.3.14

The associated signature to a set of formulae is the union of the
associated signatures of all formulae of the set.

Example 4.3.15

The associated signature of a set of two formulae
Vx(p(x) = 3y q(x,y)),Vu Vv (u+s(v) = s(u)+v)is

y — {pr1,qr27+f2’sf17:r2}_
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First-order logic
Interpretation

Overview

Interpretation
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First-order logic
Interpretation

Interpretation

Definition 4.3.16
An interpretation / over a signature X is defined by a non-empty
domain D and an application which maps every symbol s9” € X to its
value s{" as follows :

1. s/%is an element of D.

2. s"where n > 1 is a function from D" to D, in other words, a
function of n arguments.

3. si%is0or1.

4. s/” where n > 1, is a subset of D", in other words, a relation
having n arguments.
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First-order logic
Interpretation

Example 4.3.17

Let / be the interpretation of domain D = {1,2,3} where the binary
relation friend is true for pairs (1,2), (1,3) and (2,3), i.e.,
friend/® = {(1,2),(1,3),(2,3)}.

friend(2,3) is true in interpretation /. On the other hand, friend(2,1) is
false in interpretation /.
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First-order logic
Interpretation

Example 4.3.17

Let / be the interpretation of domain D = {1,2,3} where the binary
relation friend is true for pairs (1,2), (1,3) and (2,3), i.e.,
friend/® = {(1,2),(1,3),(2,3)}.

friend(2,3) is true in interpretation /. On the other hand, friend(2,1) is
false in interpretation /.

Remark 4.3.18
In all interpretations, the symbol = maps to the set {(d,d) | d € D}.
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First-order logic

Interpretation

Example 4.3.19

Let us consider the following signature.
» Anne’®, Bernard™ and Claude™ : the first names Anne, Bernard,
and Claude denote constants,
» a2 : the letter a denotes a two-argument relation (we read a(x,y)
as x likes y) and
» ¢! : the letter ¢ denotes a single argument function (we read
¢(x) as the friend of x).
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First-order logic
Interpretation

Example 4.3.19

Let us consider the following signature.

» Anne’®, Bernard™ and Claude™ : the first names Anne, Bernard,
and Claude denote constants,

» a2 : the letter a denotes a two-argument relation (we read a(x,y)
as x likes y) and

» ¢! : the letter ¢ denotes a single argument function (we read
¢(x) as the friend of x).

A possible interpretation over this signature is the interpretation / of
domain D = {0,1,2} where :

» Annel® =0, Bernard[® = 1, and Claude[® = 2.

> a* ={(0,1),(1,0),(2,0)}.

» c/'(0) =1,c/"(1) = 0,c!"(2) = 2. Note that the domain of any
function is D. In particular, function ¢!' is defined everywhere,
which makes it necessary to artificially define c!'(2) even if
Claude, denoted by 2, has no friend.
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First-order logic
Interpretation

Interpretation of a set of formulae

Definition 4.3.20

The interpretation of a set of formulae is an interpretation for the
signature associated to this set of formulae.
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First-order logic
Interpretation

State, assignment

Definition 4.3.21

A state e of an interpretation is an application from the set of variables
to the interpretation domain.
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First-order logic
Interpretation

State, assignment

Definition 4.3.21

A state e of an interpretation is an application from the set of variables
to the interpretation domain.

Definition 4.3.22

An assignment is a pair (/, ) composed of an interpretation / and a
state e.
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Interpretation

Example 4.3.23

Let the domain D = {1,2,3} and the interpretation / where the binary
relation friend is true only for the pairs (1,2), (1,3) and (2,3), i.e.,
friend/® = {(1,2),(1,3),(2,3)}.

Let e the state which maps x to 2 and y to 1.

The assignment (/, e) makes the relation friend(x, y) false.
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Overview

Truth value of formulae
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Truth value of formulae

Remark 4.3.24

The truth value of a formula depends only on its free variables and on
its symbols. In order to evaluate a formula without free variables, the
state is useless.
» For a formula with no free variables, simply give an interpretation
I of the symbols of the formula. For any state e, we will identify
(1,e) and I. Depending on the context, / will be considered either
as an interpretation or as an assignment of an arbitrary state.
» For a formula with free variables, we therefore need an
assignment.
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Terms

Definition 4.3.25 Evaluation

The evaluation of a term ¢ is inductively defined as :

1. if tis a variable, then [t] ;) = e(t),
2. if tis a constant, then [t] ¢y = t/°,

3. ift=s(t,...,t;) where s is a symbol and t;,
then [t]¢.ey = sI"([t1](1.e)s - - > [tal 1,6))-
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Example 4.3.26

Let / the interpretation of domain N which maps the symbols
170 %2 12 {0 their usual values.

Let e the state such that x =2,y = 3.

Compute [x (¥ +1)](¢)-
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First-order logic
Truth value of formulae

Example 4.3.26

Let / the interpretation of domain N which maps the symbols
170 %2 12 {0 their usual values.

Let e the state such that x =2,y = 3.

Compute [x (¥ +1)](¢)-

[x* (v +Dle)y = Xl ey * [y + 1) =
IxI(r.e)* (1) + [1](re)) = (x) x(e(y) +1) =2%(3+1) =8,
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Formulae

Definition 4.3.27 Truth value of an atomic formula

The truth value of an atomic formula is given by the following inductive
rules :
1. [Tlre) = 1,[L](1,6) = 0. In the example, we allow the
replacement of T by its value 1 and _L by its value 0.
2. Let s a propositional variable, [s](; ¢) = s°.
3. Let A=s(t,...,t,) where sis a symbol and t,.. ., t, are terms.
If ([[t1]](/7e), e [[tn]](l,e)) € s;" then [A](I,e) =1 else [A](l,e) =0.
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Truth value of formulae

Example 4.3.31

Let / be the interpretation of domain D = {1,2,3} where the binary
relation friend is true for the pairs (1,2), (1,3) and (2,3), i.e.,
friend/® = {(1,2),(1,3),(2,3)}.
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Truth value of formulae

Example 4.3.31

Let / be the interpretation of domain D = {1,2,3} where the binary
relation friend is true for the pairs (1,2), (1,3) and (2,3), i.e.,
friend/® = {(1,2),(1,3),(2,3)}.

The formula friend(1,2) A friend(2,3) = friend(1,3) is true in the
interpretation 1, i.e., [friend(1,2) A friend(2,3) = friend(1,3)]; = 1.
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Example 4.3.29

Let us consider the following signature.

» Anne’®, Bernard™ and Claude™ : the first names Anne, Bernard,
and Claude denote constants,

» a2 : letter a denotes a two-argument relation (we read a(x,y) as
x likes y) and

» ¢! : the letter ¢ denotes a one-argument function (we read c(x)
as the friend of x).

Let / the interpretation of domain D = {0, 1,2} over this signature
where :

» Annel® =0, Bernard[® = 1, and Claude[® = 2.

> a® ={(0,1),(1,0),(2,0)}.

» c/1(0) =1,c/"(1) = 0,c!"(2) = 2. Note that the domain of any
function is D. In particular, function ¢!' is defined everywhere,
which makes it necessary to artificially define c!'(2) even if
Claude, denoted by 2, has no friend.
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Example 4.3.29

We obtain :
» [a(Anne, Bernard)|, =
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First-order logic
Truth value of formulae

Example 4.3.29

We obtain :
» [a(Anne, Bernard)|, =

1 since ([Anne],, [Bernard],) = (0,1) € aj?.

» [a(Anne, Claude)], =
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First-order logic
Truth value of formulae

Example 4.3.29

We obtain :
» [a(Anne, Bernard)|, =

1 since ([Anne],, [Bernard],) = (0,1) € aj?.

» [a(Anne, Claude)], =

0 since ([Anne],, [Claude],) = (0,2) & a}?.
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Example 4.3.29

Let e the state x =0,y = 2. We have :
> [a(x,c(x)](e) =

S. Devismes et al (Grenoble I) First-order logic

February 27, 2015

61/68
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Truth value of formulae

Example 4.3.29

Let e the state x =0,y = 2. We have :
> [a(x,c(x)](e) =

1 since
(Ixrey: [e()] 1.e)) = (0, ¢ ([¥]1.e))) = (0,¢/"(0)) = (0,1) € &,

> [a(y, c(¥)](1e) =
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Truth value of formulae

Example 4.3.29

Let e the state x =0,y = 2. We have :

> [a(x,c(x))](e) =

1 since

(X1 1) [e()]1.e9) = (0.¢] ([x]1,6)) = (0,6]'(0)) = (0,1) € &?.

> [a(y, c(¥)](1e) =

0 since

(Mre): [eWl ) = (2,61 (V] 1)) = (2,6]'(2)) = (2,2) £ &%

Make sure to dlstlngwsh (depending on the context), the elements of
the domain 0,1 and the truth values 0,1.
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Example 4.3.29

We have :
» [(Anne = Bernard)|; =
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First-order logic
Truth value of formulae

Example 4.3.29

We have :
» [(Anne = Bernard)|; =

0, since ([Anne],, [Bernard],) = (0,1) ¢=/?.

» [(c(Anne) = Anne)], =
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First-order logic
Truth value of formulae

Example 4.3.29

We have :
» [(Anne = Bernard)|; =

0, since ([Anne],, [Bernard],) = (0,1) ¢=/?.

» [(c(Anne) = Anne)], =

0, since

([c(Anne)];, [Anne];) = (c]' ([Anne];),0) = (¢['(0),0) = (1,0) ¢=/*.

» [(c(c(Anne)) = Anne)]; =
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Truth value of formulae

Example 4.3.29

We have :
» [(Anne = Bernard)|; =

0, since ([Anne],, [Bernard],) = (0,1) ¢=/?.

» [(c(Anne) = Anne)|, =

0, since
([c(Anne)];, [Anne];) = (c]' ([Anne];),0) = (c]'(0),0) = (1,0) =]

nel;) = (¢]' ([c(Anne)];),0) =

)
» [(c(c(Anne)) = Anne)|, =

) n

(1),0) = (0,0) e=2.

1, since ([c(c(Anne))];, [A
(c['(¢'(0)),0) = (] (1),
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Truth value of a formula 4.3.30

1. Propositional connectives have the same meaning as in propositional logic.

2. Let x a variable and B a formula. [VxB](; ¢) = 1 if and only if [B](; ;) = 1 for all
state f identical to e, except for x. Let d € D. Let us denote e[x = d] the state
identical to the e, except for the variable x, whose state e[x = d] associates the
value d. The above definition can be written as :

[VxBl 1,6y = Minge[Bl (1 ex=a)) = [ ] [Bl(1,ex=d]):
deD

where the product is the boolean product.

3. [3xB](1e) = 1ifand only if there is a state f identical to e, except for x, such
that [B](,"f) = 1. The above definition can be written as :

[3xBl 1,6y = Maxaen Bl (1 efx=a)) = Y, [Bl(1.e[x=d]):
deD

where the sum is the boolean sum.
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Example 4.3.32

Let us use the interpretation / given in example 4.3.19.
(Reminder D = {0,1,2})
> [Ix a(x,x)]; =
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First-order logic
Truth value of formulae

Example 4.3.32

Let us use the interpretation / given in example 4.3.19.
(Reminder D = {0,1,2})
> [Ix a(x,x)]; =

max{[a(0,0)],[a(1,1)];,[a(2,2)],} = 0 since (0,0),(1,1),(2,2) & a}°.
According to the definition, we have : [3x a(x, x)]; =
[a(0,0)];+[a(1,1)];+[a(2,2)];=0+0+0=0.

> [Vx3y a(x,y)]i =
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Example 4.3.32

Let us use the interpretation / given in example 4.3.19.
(Reminder D = {0,1,2})
> [Ix a(x,x)]; =

max{[a(0,0)],[a(1,1)];,[a(2,2)],} = 0 since (0,0),(1,1),(2,2) & a}°.
According to the definition, we have : [3x a(x, x)]; =
[a(0,0)];+[a(1,1)];+[a(2,2)];=0+0+0=0.

> [Vx3y a(x,y)]i =

min{max{[a(0,0)],, [3(071)]/a [3(072)]/}’ max{[a(1a0)]/7 [a(1 a1)]/7
[a(1,2)];}, max{[a(2,0)],, [a(2,1)], [a(2,2)];}} = min{max{0, 1,0},
max{1,0,0}, max{1,0,0}} = min{1,1,1} =1.

According to the definition, we have : [Vx3y a(x,y)]; =
([a(0,0)];+[a(0, 1)];+[a(0,2)]1)- ([a(1,0)];+ [a(1,1)]: + [a(1,2)])).
([3(270)]I+ [3(27 1 )]H‘ [3(272)]1) =
(0+140).(14040).(1+0+0) =1.1.1=1.
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Example 4.3.32

> [TyVx a(x,y)] =
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Example 4.3.32

> [TyVx a(x,y)] =

max{min{[a(0,0)];, [a(1,0)]/, [a(2,0)],}, min{[a(0,1)];, [a(1,1)];,
[a(2,1)]1}, min{[a(0,2)];; [a(1,2)]); [a(2,2)],} } = max{min{0,1,1},
min{1,0,0},min{0,0,0}} = max{0,0,0} = 0.

According to the definition, we have : [3yVx a(x,y)]; =
[a(O, O)]/-[a(1 70)]/-[3(270)11 + [3(07 1 )]/.[&(1 ’ 1 )]/.[3(2, 1 )]H‘ [3(072)]I~
[a(1,2)];. [a(2,2)]; = 0.1.141.0.04+-0.0.0 =0+0+0 = 0.
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Example 4.3.32

> [TyVx a(x,y)] =

max{min{[a(0,0)];, [a(1,0)]/, [a(2,0)],}, min{[a(0,1)];, [a(1,1)];,
[a(2,1)]1}, min{[a(0,2)];; [a(1,2)]); [a(2,2)],} } = max{min{0,1,1},
min{1,0,0},min{0,0,0}} = max{0,0,0} = 0.

According to the definition, we have : [3yVx a(x,y)]; =
[a(O, O)]/-[a(1 70)]/-[3(270)11 + [3(07 1 )]/.[8(1 ’ 1 )]/.[3(2, 1 )]H‘ [3(072)]I~
[a(1,2)];. [a(2,2)]; = 0.1.141.0.04+-0.0.0 =0+0+0 = 0.

Remark 4.3.33

The formulae Vx3y a(x,y) and JyVx a(x, y) do not have the same value.
Exchanging an existential quantification and an universal quantification does
not preserve the truth value of a formula.
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Conclusion : Next course

» Interpret a first order formula (contd.)

» Important equivalences
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Conclusion

Thank you for your attention.

Questions ?
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