First-order logic Part one: Language and Truth Value of Formulae

Stéphane Devismes Pascal Lafourcade Michel Lévy Jean-François Monin (jean-francois.monin@imag.fr)

Université Joseph Fourier, Grenoble I

February 27, 2015

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$ $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2
1, 5	5	suppose $(\neg p \lor p) \Rightarrow \bot$	

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2
1, 5	5	suppose $(\neg p \lor p) \Rightarrow \bot$	
1, 5, 6	6	suppose p	

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2
1, 5	5	suppose $(\neg p \lor p) \Rightarrow \bot$	
1, 5, 6	6	suppose p	
1, 5, 6	7	$\neg p \lor p$	∨I1 6

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2
1, 5	5	suppose $(\neg p \lor p) \Rightarrow \bot$	
1, 5, 6	6	suppose p	
1, 5, 6	7	$\neg p \lor p$	∨I1 6
1, 5, 6	8		⇒E 5, 7

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2
1, 5	5	suppose $(\neg p \lor p) \Rightarrow \bot$	
1, 5, 6	6	suppose p	
1, 5, 6	7	$\neg p \lor p$	∨I1 6
1, 5, 6	8		⇒E 5, 7
1, 5	9	hence ¬ p	⇒I 6, 8

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2
1, 5	5	suppose $(\neg p \lor p) \Rightarrow \bot$	
1, 5, 6	6	suppose p	
1, 5, 6	7	$\neg p \lor p$	∨I1 6
1, 5, 6	8	1	⇒E 5, 7
1, 5	9	hence ¬ p	⇒I 6, 8
1, 5	10	$\neg p \lor p$	∨I1 9

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2
1, 5	5	suppose $(\neg p \lor p) \Rightarrow \bot$	
1, 5, 6	6	suppose p	
1, 5, 6	7	$\neg p \lor p$	∨I1 6
1, 5, 6	8	1	⇒E 5, 7
1, 5	9	hence ¬ p	⇒I 6, 8
1, 5	10	$\neg p \lor p$	∨I1 9
1, 5	11		⇒E 5, 10

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2
1, 5	5	suppose $(\neg p \lor p) \Rightarrow \bot$	
1, 5, 6	6	suppose p	
1, 5, 6	7	$\neg p \lor p$	∨I1 6
1, 5, 6	8		⇒E 5, 7
1, 5	9	hence ¬ p	⇒I 6, 8
1, 5	10	$\neg p \lor p$	∨I1 9
1, 5	11	T	⇒E 5, 10
1	12	hence $\neg\neg(\neg p \lor p)$	⇒I 5, 11

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2
1, 5	5	suppose $(\neg p \lor p) \Rightarrow \bot$	
1, 5, 6	6	suppose p	
1, 5, 6	7	$\neg p \lor p$	∨I1 6
1, 5, 6	8		⇒E 5, 7
1, 5	9	hence ¬p	⇒I 6, 8
1, 5	10	$\neg p \lor p$	∨I1 9
1, 5	11		⇒E 5, 10
1	12	hence $\neg\neg(\neg p \lor p)$	⇒I 5, 11
1	13	$\neg p \lor p$	RAA, 12

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2
1, 5	5	suppose $(\neg p \lor p) \Rightarrow \bot$	
1, 5, 6	6	suppose p	
1, 5, 6	7	$\neg p \lor p$	∨I1 6
1, 5, 6	8		⇒E 5, 7
1, 5	9	hence ¬p	⇒I 6, 8
1, 5	10	$\neg p \lor p$	∨I1 9
1, 5	11		⇒E 5, 10
1	12	hence $\neg\neg(\neg p \lor p)$	⇒I 5, 11
1	13	$\neg p \lor p$	RAA, 12
1, 14	14	suppose ¬p	

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2
1, 5	5	suppose $(\neg p \lor p) \Rightarrow \bot$	
1, 5, 6	6	suppose p	
1, 5, 6	7	$\neg p \lor p$	∨I1 6
1, 5, 6	8		⇒E 5, 7
1, 5	9	hence ¬p	⇒I 6, 8
1, 5	10	$\neg p \lor p$	∨I1 9
1, 5	11		⇒E 5, 10
1	12	hence $\neg\neg(\neg p \lor p)$	⇒I 5, 11
1	13	$\neg p \lor p$	RAA, 12
1, 14	14	suppose ¬ p	
1, 14	15	j	⇒E 4, 14

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2
1, 5	5	suppose $(\neg p \lor p) \Rightarrow \bot$	
1, 5, 6	6	suppose p	
1, 5, 6	7	$\neg p \lor p$	∨I1 6
1, 5, 6	8		⇒E 5, 7
1, 5	9	hence ¬ p	⇒I 6, 8
1, 5	10	$\neg p \lor p$	∨I1 9
1, 5	11		⇒E 5, 10
1	12	hence $\neg\neg(\neg p \lor p)$	⇒I 5, 11
1	13	$\neg p \lor p$	RAA, 12
1, 14	14	suppose ¬ p	
1, 14	15	j	⇒E 4, 14
1, 14	16	m	⇒E 3, 15

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

			1
context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2
1, 5	5	suppose $(\neg p \lor p) \Rightarrow \bot$	
1, 5, 6	6	suppose p	
1, 5, 6	7	$\neg p \lor p$	∨I1 6
1, 5, 6	8		⇒E 5, 7
1, 5	9	hence ¬ p	⇒I 6, 8
1, 5	10	$\neg p \lor p$	∨I1 9
1, 5	11	1	⇒E 5, 10
1	12	hence $\neg\neg(\neg p \lor p)$	⇒I 5, 11
1	13	$\neg p \lor p$	RAA, 12
1, 14	14	suppose ¬ p	
1, 14	15	j	⇒E 4, 14
1, 14	16	m	⇒E 3, 15
1, 14	17	m∨p	∨I1 16

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	nyant	justification
Context		proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2
1, 5	5	suppose $(\neg p \lor p) \Rightarrow \bot$	
1, 5, 6	6	suppose p	
1, 5, 6	7	$\neg p \lor p$	∨I1 6
1, 5, 6	8		⇒E 5, 7
1, 5	9	hence ¬ p	⇒I 6, 8
1, 5	10	$\neg p \lor p$	∨I1 9
1, 5	11		⇒E 5, 10
1	12	hence $\neg\neg(\neg p \lor p)$	⇒I 5, 11
1	13	$\neg p \lor p$	RAA, 12
1, 14	14	suppose ¬ p	
1, 14	15	j	⇒E 4, 14
1, 14	16	m	⇒E 3, 15
1, 14	17	$m \lor p$	∨I1 16
1	18	hence $\neg p \Rightarrow p \lor m$	⇒I 17, 14

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2
1, 5	5	suppose $(\neg p \lor p) \Rightarrow \bot$	
1, 5, 6	6	suppose p	
1, 5, 6	7	$\neg p \lor p$	∨I1 6
1, 5, 6	8		⇒E 5, 7
1, 5	9	hence ¬ p	⇒I 6, 8
1, 5	10	$\neg p \lor p$	∨I1 9
1, 5	11		⇒E 5, 10
1	12	hence $\neg\neg(\neg p \lor p)$	⇒I 5, 11
1	13	$\neg p \lor p$	RAA, 12
1, 14	14	suppose ¬ p	
1, 14	15	j	⇒E 4, 14
1, 14	16	m	⇒E 3, 15
1, 14	17	m∨p	∨I1 16
1	18	hence $\neg p \Rightarrow p \lor m$	⇒I 17, 14
1, 19	19	suppose p	

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2
1, 5	5	suppose $(\neg p \lor p) \Rightarrow \bot$	
1, 5, 6	6	suppose p	
1, 5, 6	7	$\neg p \lor p$	∨I1 6
1, 5, 6	8		⇒E 5, 7
1, 5	9	hence ¬ p	⇒I 6, 8
1, 5	10	$\neg p \lor p$	∨I1 9
1, 5	11	1	⇒E 5, 10
1	12	hence $\neg\neg(\neg p \lor p)$	⇒I 5, 11
1	13	$\neg p \lor p$	RAA, 12
1, 14	14	suppose ¬p	
1, 14	15	j	⇒E 4, 14
1, 14	16	m	⇒E 3, 15
1, 14	17	$m \lor p$	∨I1 16
1	18	hence $\neg p \Rightarrow p \lor m$	⇒I 17, 14
1, 19	19	suppose p	
1, 19	20	p∨m	∨I1 19

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2
1, 5	5	suppose $(\neg p \lor p) \Rightarrow \bot$	
1, 5, 6	6	suppose p	
1, 5, 6	7	$\neg p \lor p$	∨I1 6
1, 5, 6	8		⇒E 5, 7
1, 5	9	hence ¬p	⇒I 6, 8
1, 5	10	$\neg p \lor p$	∨I1 9
1, 5	11		⇒E 5, 10
1	12	hence $\neg\neg(\neg p \lor p)$	⇒I 5, 11
1	13	$\neg p \lor p$	RAA, 12
1, 14	14	suppose ¬ p	
1, 14	15	j	⇒E 4, 14
1, 14	16	m	⇒E 3, 15
1, 14	17	$m \lor p$	∨I1 16
1	18	hence $\neg p \Rightarrow p \lor m$	⇒I 17, 14
1, 19	19	suppose p	
1, 19	20	p∨m	∨I1 19
1	21	hence $p \Rightarrow p \lor m$	⇒I 20, 19

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2
1, 5	5	suppose $(\neg p \lor p) \Rightarrow \bot$	
1, 5, 6	6	suppose p	
1, 5, 6	7	$\neg p \lor p$	∨I1 6
1, 5, 6	8		⇒E 5, 7
1, 5	9	hence ¬ p	⇒I 6, 8
1, 5	10	$\neg p \lor p$	∨I1 9
1, 5	11		⇒E 5, 10
1	12	hence $\neg\neg(\neg p \lor p)$	⇒I 5, 11
1	13	$\neg p \lor p$	RAA, 12
1, 14	14	suppose ¬ p	
1, 14	15	j	⇒E 4, 14
1, 14	16	m	⇒E 3, 15
1, 14	17	<i>m</i> ∨ <i>p</i>	∨I1 16
1	18	hence $\neg p \Rightarrow p \lor m$	⇒I 17, 14
1, 19	19	suppose p	
1, 19	20	<i>p</i> ∨ <i>m</i>	∨I1 19
1	21	hence $p \Rightarrow p \lor m$	⇒I 20, 19
1	22	$m \lor p$	∨E 21, 18, 13

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	proof	justification
1	1	suppose $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j)$	∧E1 1
1	3	$(j \Rightarrow m)$	∧E2 1
1	4	$(\neg p \Rightarrow j)$	∧E2 2
1, 5	5	suppose $(\neg p \lor p) \Rightarrow \bot$	
1, 5, 6	6	suppose p	
1, 5, 6	7	$\neg p \lor p$	∨I1 6
1, 5, 6	8	<u></u>	⇒E 5, 7
1, 5	9	hence ¬ p	⇒I 6, 8
1, 5	10	$\neg p \lor p$	∨l1 9
1, 5	11	<u> </u>	⇒E 5, 10
1	12	hence $\neg\neg(\neg p \lor p)$	⇒I 5, 11
1	13	$\neg p \lor p$	RAA, 12
1, 14	14	suppose ¬ p	
1, 14	15	j	⇒E 4, 14
1, 14	16	m	⇒E 3, 15
1, 14	17	$m \lor p$	∨I1 16
1	18	hence $\neg p \Rightarrow p \lor m$	⇒l 17, 14
1, 19	19	suppose p	
1, 19	20	p∨m	∨l1 19
1	21	hence $p \Rightarrow p \lor m$	⇒I 20, 19
1	22	<i>m</i> ∨ <i>p</i>	∨E 21, 18, 13
	23	hence $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$	⇒I 22, 1

A non-empty domain (more than two elements)

A non-empty domain (more than two elements)

Three categories:

- Terms representing the elements of the domain or functions on these elements
- Relations
- ► Formulae describing the interactions between the relations thanks to connectives and quantifiers

A non-empty domain (more than two elements)

Three categories:

- Terms representing the elements of the domain or functions on these elements
- Relations
- Formulae describing the interactions between the relations thanks to connectives and quantifiers

Remark:

Two particular symbols (quantifiers) : \forall (universal quantification) and \exists (existential quantification).

Examples:

- ▶ the term parent(x) intended to mean the parent of x,
- ▶ the formula $\forall x \exists y \ parent(y,x)$ indicates that every individual has a parent.

A cheap horse is rare. Everything that is rare is expensive. Hence a cheap horse is expensive.

A cheap horse is rare. Everything that is rare is expensive. Hence a cheap horse is expensive.

$$\forall x (horse(x) \land cheap(x) \Rightarrow rare(x))$$
$$\forall x (rare(x) \Rightarrow expensive(x))$$
$$\forall x (horse(x) \land cheap(x) \Rightarrow expensive(x))$$

A cheap horse is rare. Everything that is rare is expensive. Hence a cheap horse is expensive.

Nothing bothers you?

A cheap horse is rare. Everything that is rare is expensive. Hence a cheap horse is expensive.

Nothing bothers you?

Everything that is expensive is not cheap and vice versa.

A cheap horse is rare. Everything that is rare is expensive. Hence a cheap horse is expensive.

Nothing bothers you?

Everything that is expensive is not cheap and vice versa.

$$\forall x (cheap(x) \Leftrightarrow \neg expensive(x))$$

A cheap horse is rare. Everything that is rare is expensive. Hence a cheap horse is expensive.

Nothing bothers you?

Everything that is expensive is not cheap and vice versa.

$$\forall x (cheap(x) \Leftrightarrow \neg expensive(x))$$

Now we have a contradiction.

Usage

First-order logic allows us to model:

- ► a **single** non-empty domain,
- functions over the domain, and
- relations over the domain.

Introduction

Language

(Strict) Formulae
Prioritized formulae

Free vs. bound

Truth value of formulae
Declaring a symbol
Signature

Interpretation

Truth value of formulae

Introduction

Language
(Strict) Formulae
Prioritized formulae

Free vs. bound

Truth value of formulae Declaring a symbol Signature

Interpretation

Truth value of formulae

Introduction

Language

(Strict) Formulae

Prioritized formulae

Free vs. bound

Truth value of formulae

Declaring a symbol Signature

Interpretation

Truth value of formulae

Vocabulary

- ▶ Two propositional constants : \bot and \top
- Variables: sequence of letters and digits starting with one of the following lower case letters: u,v,w,x,y,z.
- ▶ Connectives : \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- ► Quantifiers: ∀ the universal quantification and ∃ the existential quantification
- Punctuation: the comma «, » and the open « (» and closing «) »parenthesis.
- Ordinary and special symbols :
 - an ordinary symbol is a sequence of letters and digits not starting by one of the following lower case letters: u,v,w,x,y,z.
 - \blacktriangleright a special symbol is $+,-,*,/,=,\neq,<,\leq,>,\geq,\ldots$

Example 4.1.1

- \triangleright x, x1, x2, y are variables,
- man, parent, succ, 12, 24, f1 are ordinary symbols, the ordinary symbols will represent :
 - ► functions (numerical constants or multiple argument functions) or
 - relations (propositional variables or multiple argument relations).
- ightharpoonup x = y, z > 3 are examples for special symbols

Term

Definition 4.1.2

- an ordinary symbol is a term,
- a variable is a term,
- ▶ if $t_1, ..., t_n$ are terms and if s is a (ordinary or special) symbol then $s(t_1, ..., t_n)$ is a term.

Term

Definition 4.1.2

- ► an ordinary symbol is a term,
- a variable is a term,
- ▶ if $t_1, ..., t_n$ are terms and if s is a (ordinary or special) symbol then $s(t_1, ..., t_n)$ is a term.

Example 4.1.3

$$x, a, f(x_1, x_2, g(y)), +(x, *(y, z)), +(5, 42)$$
 are terms

On the contrary, $f(\perp, 2, y)$ is not a term.

Term

Definition 4.1.2

- an ordinary symbol is a term,
- a variable is a term,
- ▶ if $t_1, ..., t_n$ are terms and if s is a (ordinary or special) symbol then $s(t_1, ..., t_n)$ is a term.

Example 4.1.3

$$x, a, f(x_1, x_2, g(y)), +(x, *(y, z)), +(5, 42)$$
 are terms

On the contrary, $f(\perp, 2, y)$ is not a term.

Note that 42(1, y, 3) is also a term, but by convention function and relation names are ordinary symbols starting with letters.

Atomic formula

Definition 4.1.4 atomic formulae

- ightharpoonup and \perp are atomic formulae
- an ordinary symbol is an atomic formula
- ▶ if $t_1, ..., t_n$ are terms and if s is a (ordinary or special) symbol then $s(t_1, ..., t_n)$ is an atomic formula.

Atomic formula

Definition 4.1.4 atomic formulae

- ightharpoonup and \perp are atomic formulae
- ▶ an ordinary symbol is an atomic formula
- ▶ if $t_1, ..., t_n$ are terms and if s is a (ordinary or special) symbol then $s(t_1, ..., t_n)$ is an atomic formula.

Example 4.1.5:

- \blacktriangleright f(1,+(5,42),g(z)), a, and +(x,*(y,z)) are atomic formulae
- \blacktriangleright x and $A \lor f(4,2,6)$ are not atomic formulae

Syntax v.s. Semantics

The set of **terms** and the set of **atomic formulae** are not disjoint.

For example p(x) is a term and an atomic formula.

When t is a term and an atomic formula simultaneously, we distinguish [[t]], the value of t seen as a term of [t], value of t seen as a formula.

(Strict) Formula

Definition 4.1.6

- an atomic formula is a formula,
- ▶ if A is a formula then $\neg A$ is a formula,
- ▶ if A and B are formulae and if \circ one of the following operations $\lor, \land, \Rightarrow, \Leftrightarrow$ then $(A \circ B)$ is a formula,
- ▶ if *A* is a formula and if *x* is any variable then $\forall x \ A$ and $\exists x \ A$ are formulae.

Example 4.1.7

- ▶ man(x), parents(son(y), mother(Alice)), = (x, +(f(x), g(y))) are atomic formulae, hence formulae.
- ▶ On the contrary

$$\forall x \ (man(x) \Rightarrow man(Socrate))$$

is a non-atomic formula.

Among these expressions, which ones are strict formulae :

Among these expressions, which ones are strict formulae :

➤ X

no

▶ a

Among these expressions, which ones are strict formulae:

➤ X

no

▶ a

yes

 \blacktriangleright $(a(x) \Rightarrow b) \land a(x) \Rightarrow b$

Among these expressions, which ones are strict formulae:

- ➤ X
 - no
- ▶ a
 - yes
- \blacktriangleright $(a(x) \Rightarrow b) \land a(x) \Rightarrow b$
 - no, missing ()
- $ightharpoonup \exists x((\bot \Rightarrow a(x)) \land b(x))$

Among these expressions, which ones are strict formulae :

➤ X

no

a

yes

▶ $(a(x) \Rightarrow b) \land a(x) \Rightarrow b$

no, missing ()

 $ightharpoonup \exists x((\bot \Rightarrow a(x)) \land b(x))$

yes

 $ightharpoonup \exists x \exists y < (-(x,y),+(a,y))$

Among these expressions, which ones are strict formulae :

- ➤ X
 - no
- a
- yes
- ► $(a(x) \Rightarrow b) \land a(x) \Rightarrow b$
 - no, missing ()
- $\blacktriangleright \exists x((\bot \Rightarrow a(x)) \land b(x))$
 - yes
- ► $\exists x \exists y < (-(x,y),+(a,y))$
 - yes
- ► $((a < b) \Rightarrow ((2*b) > (2*a)))$

Among these expressions, which ones are strict formulae:

- ➤ X
 - no
- a
 - yes
- ► $(a(x) \Rightarrow b) \land a(x) \Rightarrow b$
 - no, missing ()
- $\blacktriangleright \exists x((\bot \Rightarrow a(x)) \land b(x))$
 - yes
- $\exists x \exists y < (-(x,y),+(a,y))$
 - yes
- $((a < b) \Rightarrow ((2*b) > (2*a)))$
 - no

Introduction

Language

(Strict) Formulae

Prioritized formulae

Free vs. bound

Truth value of formulae

Declaring a symbo Signature

Interpretation

Truth value of formulae

Prioritized formulae: the symbols of the functions +,-,*,/ and the symbols of the relations $=,\neq,<,>,\leq,\geq$ are written in the usual manner.

Prioritized formulae: the symbols of the functions +,-,*,/ and the symbols of the relations $=,\neq,<,>,\leq,\geq$ are written in the usual manner.

Example 4.1.8

 $\blacktriangleright \le (*(3,x),+(y,5))$ is abbreviated as

Prioritized formulae: the symbols of the functions +,-,*,/ and the symbols of the relations $=,\neq,<,>,\leq,\geq$ are written in the usual manner.

Example 4.1.8

 $\blacktriangleright \le (*(3,x),+(y,5))$ is abbreviated as

$$3 * x \leq y + 5$$

 \blacktriangleright +(x,*(y,z)) is abbreviated as

Prioritized formulae: the symbols of the functions +,-,*,/ and the symbols of the relations $=,\neq,<,>,\leq,\geq$ are written in the usual manner.

Example 4.1.8

- $\blacktriangleright \le (*(3,x),+(y,5))$ is abbreviated as
 - $3 * x \le y + 5$
- \blacktriangleright +(x,*(y,z)) is abbreviated as

$$x + y * z$$

Inverse transformation

Prioritize

- connectives have a lower priority than the relations
- quantifiers have the same priority as negation.
- $\blacktriangleright =, \neq, <, \leq, >, \geq$ have a lower priority than +, -, *, /

Table 4.1 summary of priorities

Priorities decreasing from top to bottom.

OPERATIONS	
-+ unary	
*,/ binary	left associative
+,- binary	left associative
RELATIONS	
$=, \neq, <, \leq, >, \geq$	
NEGATION, QUANTIFIERS	
\neg, \forall, \exists	
BINARY CONNECTIVES	
^	left associative
V	left associative
\Rightarrow	right associative
\Leftrightarrow	left associative

Prioritized formulae

Definition 4.1.9 prioritized formulae

A prioritized formula is inductively defined as follows:

- An atomic formula is a prioritized formula.
- ▶ If *A* is a prioritized formula then $\neg A$ is a prioritized formula.
- If A and B are prioritized formulae then A ∘ B is a prioritized formula.
- ▶ If *A* is a prioritized formula and if *x* is *any* variable then $\forall x$ *A* and $\exists x$ *A* are prioritized formulae.
- ▶ If A is a prioritized formula (A) is a prioritized formula.

Examples

Example 4.1.10

▶ $\forall x P(x) \land \forall x Q(x) \Leftrightarrow \forall x (P(x) \land Q(x))$ is an abbreviation of

Examples

Example 4.1.10

▶ $\forall x P(x) \land \forall x Q(x) \Leftrightarrow \forall x (P(x) \land Q(x))$ is an abbreviation of

$$\big| \big((\forall x P(x) \land \forall x Q(x)) \Leftrightarrow \forall x (P(x) \land Q(x)) \big)$$

▶ $\forall x \forall y \forall z (x \le y \land y \le z \Rightarrow x \le z)$ is an abbreviation of?

Examples

Example 4.1.10

▶ $\forall x P(x) \land \forall x Q(x) \Leftrightarrow \forall x (P(x) \land Q(x))$ is an abbreviation of

$$\big| \big((\forall x P(x) \land \forall x Q(x)) \Leftrightarrow \forall x (P(x) \land Q(x)) \big) \big|$$

▶ $\forall x \forall y \forall z (x \leq y \land y \leq z \Rightarrow x \leq z)$ is an abbreviation of

$$\forall x \forall y \forall z ((\leq (x,y) \land \leq (y,z)) \Rightarrow \leq (x,z))$$

Tree representation

Example 4.1.11 $\forall x P(x) \Rightarrow Q(x)$

the left-hand side operand of the implication is $\forall x P(x)$.

Tree representation

Example 4.1.11 $\forall x P(x) \Rightarrow Q(x)$

the left-hand side operand of the implication is $\forall x P(x)$.

Introduction

Language
(Strict) Formulae
Prioritized formulae

Free vs. bound

Truth value of formulae Declaring a symbol Signature

Interpretation

Truth value of formulae

Idea

The meaning of the formula x+2=4 depends on x The meaning of the formula x = x depends on x as well x is free in the previous formulae

Idea

- ► The meaning of the formula x + 2 = 4 depends on x The meaning of the formula x = x depends on x as well x is free in the previous formulae
- ► The meaning of $\forall x(x+2=y)$ does not depend on xThe meaning of $\forall x(x+0=x)$ does not depend on xx is not free in these two formulae

Definition 4.2.1

▶ In $\forall x \ A$ or $\exists x \ A$, the scope of the binding of x is A.

Definition 4.2.1

- ▶ In $\forall x \ A$ or $\exists x \ A$, the scope of the binding of x is A.
- An occurrence of x in A is bound if it is in the scope of a binding of x, otherwise it is said to be free

Definition 4.2.1

- ▶ In $\forall x \ A$ or $\exists x \ A$, the scope of the binding of x is A.
- An occurrence of x in A is bound if it is in the scope of a binding of x, otherwise it is said to be free

If we represent a formula by a tree:

► A bound occurrence of x is

Definition 4.2.1

- ▶ In $\forall x \ A$ or $\exists x \ A$, the scope of the binding of x is A.
- ► An occurrence of x in A is bound if it is in the scope of a binding of x, otherwise it is said to be free

If we represent a formula by a tree:

► A bound occurrence of x is

below a node $\exists x$ or $\forall x$.

► An occurrence of x is free if

Definition 4.2.1

- ▶ In $\forall x \ A$ or $\exists x \ A$, the scope of the binding of x is A.
- ► An occurrence of x in A is bound if it is in the scope of a binding of x, otherwise it is said to be free

If we represent a formula by a tree:

► A bound occurrence of x is

below a node $\exists x$ or $\forall x$.

► An occurrence of x is free if

is not below such a node.

Example 4.2.2

$$\forall x P(\mathbf{x}, y) \land \exists z R(\underline{x}, z)$$

Example 4.2.2

$\forall x P(\mathbf{x}, y) \land \exists z R(\underline{x}, z)$

Example 4.2.2

$\forall x P(\mathbf{x}, y) \land \exists z R(\underline{x}, z)$

- ► The bold occurrence of *x* is bound.
- ► The underlined occurrence of *x* is free.
 - ► The occurrence of z is bound.

Free, bound variables

Definition 4.2.3

- ► The variable *x* is a free variable of a formula if and only if there is a free occurrence of *x* in the formula.
- A variable x is a bound variable of a formula if and only if there is abound occurrence of x in the formula
- ► A formula without free variable is also called a closed formula.

Free, bound variables

Definition 4 2 3

- ► The variable *x* is a free variable of a formula if and only if there is a free occurrence of *x* in the formula.
- A variable x is a bound variable of a formula if and only if there is abound occurrence of x in the formula.
- A formula without free variable is also called a closed formula.

Remark 4 2 4

A variable can be simultaneously free and bound. For example, in the formula $\forall x P(x) \lor Q(x)$, x is both free and bound.

Remark 4.2.5

By definition, a variable which does not appear in a formula (0 occurrence) is **NOT** free in this formula.

Free, bound variables

Definition 4 2 3

- ► The variable *x* is a free variable of a formula if and only if there is a free occurrence of *x* in the formula.
- A variable *x* is a bound variable of a formula if and only if there is abound occurrence of *x* in the formula.
- A formula without free variable is also called a closed formula.

Remark 4.2.4

A variable can be simultaneously free and bound. For example, in the formula $\forall x P(x) \lor Q(x)$, x is both free and bound.

Remark 4.2.5

By definition, a variable which does not appear in a formula (0 occurrence) is **NOT** free in this formula.

Example 4.2.6

The free variables of the formula of example 4.2.2 are x and y.

Overview

Introduction

Language (Strict)

Prioritized formulae

Free vs. bound

Truth value of formulae

Declaring a symbol

Signature

Interpretation

Truth value of formulae

Conclusion

Overview

Introduction

Language

(Strict) Formulae
Prioritized formulae

Free vs. bound

Truth value of formulae
Declaring a symbol

Interpretation

Truth value of formulae

Conclusion

Declaring a symbol

Definition 4.3.1

A symbol declaration is a triple denoted by s^{gn} where :

- ► s is a symbol
- ▶ *g* one of the letters *f* (a function) or *r* (a relation)
- n is a natural number.

Declaring a symbol

Definition 4.3.1

A symbol declaration is a triple denoted by s^{gn} where :

- ▶ s is a symbol
- ▶ g one of the letters f (a function) or r (a relation)
- ▶ n is a natural number.

Remark 4.3.3

If the context gives an implicit declaration of a symbol, we omit the exponent.

Example : **equal** is always a 2 arguments relation, we abbreviate the declaration $=^{r^2}$ as =.

Symbol declaration : Example

Example 4.3.2

- ▶ parent^{r2} is a **relation** (r) with **2** arguments
- \blacktriangleright *^{f2} is **function** (**f**) with **2** arguments
- ► man^{r1} a unary relation

Overview

Introduction

Language

(Strict) Formulae Prioritized formulae

Free vs. bound

Truth value of formulae

Declaring a symbo

Signature

Interpretation

Truth value of formulae

Conclusion

Signature

Definition 4.3.4

A signature is a set of symbol declarations.

Let n > 0 and Σ a signature, the symbol s is :

- 1. a constant of the signature if and only if $s^{f0} \in \Sigma$
- 2. a symbol of the function of n arguments of the signature, if and only if $s^{\mathit{fn}} \in \Sigma$
- 3. a propositional variable of the signature if and only if $s^{r0} \in \Sigma$
- 4. a symbol of the relation of *n* arguments of the signature, if and only if $s^{rn} \in \Sigma$

Examples in mathematics (1/2)

$$0^{f0}, 1^{f0}, +^{f2}, -^{f2}, *^{f2}, =^{r2}$$
 is a signature for arithmetics.

Examples in mathematics (1/2)

$$0^{f0}, 1^{f0}, +^{f2}, -^{f2}, *^{f2}, =^{r2}$$
 is a signature for arithmetics.

Remark:

- ▶ We write : 0, 1, + and (with two arguments), * and =.
- Note that plus and minus have two arguments, (the symbol will not be used with only one argument).

Examples in mathematics (2/2)

Example 4.3.5 (Set theory)

A possible signature is \in ,=

Examples in mathematics (2/2)

Example 4.3.5 (Set theory)

A possible signature is \in , =

All other operations can be defined from these relations.

Overloading

Definition 4.3.6

A symbol is overloaded in a signature, when this signature has two distinct declarations of the same symbol.

Overloading

Definition 4.3.6

A symbol is overloaded in a signature, when this signature has two distinct declarations of the same symbol.

Example 4.3.7: the minus sign is often overloaded.

- ▶ the opposite of a number
- the subtraction of two numbers.

Overloading

Definition 4.3.6

A symbol is overloaded in a signature, when this signature has two distinct declarations of the same symbol.

Example 4.3.7: the minus sign is often overloaded.

- ► the opposite of a number
- the subtraction of two numbers

In what follows, in this course, we prohibit the use of overloaded symbols in signatures.

Term over a signature

Definition 4.3.8

Let Σ be a signature, a term over Σ is :

- either a variable,
- ▶ or a constant s where $s^{f0} \in \Sigma$,
- ▶ or a term of the form $s(t_1,...,t_n)$, where $n \ge 1$, $s^{fn} \in \Sigma$ and $t_1,...,t_n$ are terms over Σ .

Term over a signature

Definition 4.3.8

Let Σ be a signature, a term over Σ is :

- either a variable.
- ▶ or a constant s where $s^{f0} \in \Sigma$,
- ▶ or a term of the form $s(t_1,...,t_n)$, where $n \ge 1$, $s^{fn} \in \Sigma$ and $t_1,...,t_n$ are terms over Σ .

The set of terms over the signature Σ is denoted by T_{Σ} .

Atomic formula over a signature

Definition 4.3.9

Let Σ a signature, an atomic formula over Σ is :

- \blacktriangleright either one of the constants \top, \bot ,
- or a propositional variable *s* where $s^{r0} \in \Sigma$,
- ▶ or an expression $s(t_1,...,t_n)$ where $n \ge 1$, $s^{rn} \in \Sigma$ and $t_1,...,t_n$ are terms over Σ .

Formula over a signature

Definition 4.3.10

A formula over a signature Σ is a formula, whose atomic sub-formulae are atomic formulae over Σ (according to definition 4.3.9).

Formula over a signature

Definition 4.3.10

A formula over a signature Σ is a formula, whose atomic sub-formulae are atomic formulae over Σ (according to definition 4.3.9).

 F_{Σ} denotes the set of formulae over the signature Σ .

Example 4.3.11

$$\forall x (p(x) \Rightarrow \exists y \ q(x,y))$$
 is a formula over signature $\Sigma = \{p^{r1}, q^{r2}, h^{f1}, c^{f0}\}.$

Example 4.3.11

$$\forall x (p(x) \Rightarrow \exists y \ q(x,y))$$
 is a formula over signature $\Sigma = \{p^{r1}, q^{r2}, h^{f1}, c^{f0}\}.$

But it is also a formula over the signature $\Sigma' = \{p^{r1}, q^{r2}\}$, since the symbols h and c are not in the formula.

Definition 4.3.12

The signature associated to a formula is the smallest signature Σ such that the formula is a member of F_{Σ} , it is the smallest signature allowing to write the formula.

Definition 4.3.12

The signature associated to a formula is the smallest signature Σ such that the formula is a member of F_{Σ} , it is the smallest signature allowing to write the formula.

Example 4.3.13

The associated signature of formula $\forall x (p(x) \Rightarrow \exists y \ q(x,y))$ is

Definition 4.3.12

The signature associated to a formula is the smallest signature Σ such that the formula is a member of F_{Σ} , it is the smallest signature allowing to write the formula.

Example 4.3.13

The associated signature of formula $\forall x (p(x) \Rightarrow \exists y \ q(x,y))$ is

$$p^{r1}, q^{r2}$$

Definition 4.3.14

The associated signature to a set of formulae is the union of the associated signatures of all formulae of the set.

Associated signature

Definition 4.3.14

The associated signature to a set of formulae is the union of the associated signatures of all formulae of the set.

Example 4.3.15

The associated signature of a set of two formulae

$$\forall x(p(x) \Rightarrow \exists y \ q(x,y)), \forall u \ \forall v \ (u+s(v)=s(u)+v)$$
 is

$$\Sigma = \{p^{r1}, q^{r2}, +^{f2}, s^{f1}, =^{r2}\}.$$

Overview

Introduction

Language

(Strict) Formulae
Prioritized formulae

Free vs. bound

Truth value of formulae Declaring a symbol Signature

Interpretation

Truth value of formulae

Conclusion

Interpretation

Definition 4.3.16

An interpretation I over a signature Σ is defined by a non-empty domain D and an application which maps every symbol $s^{gn} \in \Sigma$ to its value s_I^{gn} as follows :

- 1. s_{i}^{f0} is an element of D.
- 2. s_l^{fn} where $n \ge 1$ is a function from D^n to D, in other words, a function of n arguments.
- 3. $s_i^{r_0}$ is 0 or 1.
- 4. s_l^{rn} where $n \ge 1$, is a subset of D^n , in other words, a relation having n arguments.

Let *I* be the interpretation of domain $D = \{1,2,3\}$ where the binary relation *friend* is true for pairs (1,2), (1,3) and (2,3), i.e., *friend*_I^{r2} = $\{(1,2),(1,3),(2,3)\}$.

friend(2,3) is true in interpretation I. On the other hand, friend(2,1) is false in interpretation I.

Let *I* be the interpretation of domain $D = \{1,2,3\}$ where the binary relation *friend* is true for pairs (1,2), (1,3) and (2,3), i.e., *friend*_I^{r2} = $\{(1,2),(1,3),(2,3)\}$.

friend(2,3) is true in interpretation I. On the other hand, friend(2,1) is false in interpretation I.

Remark 4.3.18

In all interpretations, the symbol = maps to the set $\{(d,d) \mid d \in D\}$.

Let us consider the following signature.

- ► Anne^{f0}, Bernard^{f0} and Claude^{f0}: the first names Anne, Bernard, and Claude denote constants,
- ► a^{r^2} : the letter a denotes a two-argument relation (we read a(x, y) as x likes y) and
- ▶ c^{f1} : the letter c denotes a single argument function (we read c(x) as the friend of x).

Let us consider the following signature.

- ► Anne^{f0}, Bernard^{f0} and Claude^{f0}: the first names Anne, Bernard, and Claude denote constants,
- ► a^{r^2} : the letter a denotes a two-argument relation (we read a(x, y) as x likes y) and
- ▶ c^{f1} : the letter c denotes a single argument function (we read c(x) as the friend of x).

A possible interpretation over this signature is the interpretation I of domain $D = \{0, 1, 2\}$ where :

- ► Anne $_{I}^{f0} = 0$, Bernard $_{I}^{f0} = 1$, and Claude $_{I}^{f0} = 2$.
- $a_l^{r2} = \{(0,1),(1,0),(2,0)\}.$
- ▶ $c_l^{f1}(0) = 1, c_l^{f1}(1) = 0, c_l^{f1}(2) = 2$. Note that the domain of any function is D. In particular, function c_l^{f1} is defined everywhere, which makes it necessary to artificially define $c_l^{f1}(2)$ even if Claude, denoted by 2, has no friend.

Interpretation of a set of formulae

Definition 4.3.20

The interpretation of a set of formulae is an interpretation for the signature associated to this set of formulae.

State, assignment

Definition 4.3.21

A state *e* of an interpretation is an application from the set of variables to the interpretation domain.

State, assignment

Definition 4.3.21

A state *e* of an interpretation is an application from the set of variables to the interpretation domain.

Definition 4.3.22

An assignment is a pair (I, e) composed of an interpretation I and a state e.

Let the domain $D = \{1,2,3\}$ and the interpretation I where the binary relation *friend* is true only for the pairs (1,2), (1,3) and (2,3), i.e., $friend_I^{r2} = \{(1,2),(1,3),(2,3)\}$.

Let e the state which maps x to 2 and y to 1.

The assignment (I, e) makes the relation friend(x, y) false.

Overview

Introduction

Language

Prioritized formulae

Free vs. bound

Truth value of formulae Declaring a symbol Signature

Interpretation

Truth value of formulae

Conclusion

Remark 4.3.24

The truth value of a formula depends only on its free variables and on its symbols. In order to evaluate a formula without free variables, the state is useless.

- ► For a formula with no free variables, simply give an interpretation I of the symbols of the formula. For any state e, we will identify (I, e) and I. Depending on the context, I will be considered either as an interpretation or as an assignment of an arbitrary state.
- For a formula with free variables, we therefore need an assignment.

Terms

Definition 4.3.25 Evaluation

The evaluation of a term t is inductively defined as :

- 1. if t is a variable, then $[t]_{(l,e)} = e(t)$,
- 2. if t is a constant, then $[t]_{(l,e)} = t_l^{f0}$,
- 3. if $t = s(t_1, \ldots, t_n)$ where s is a symbol and t_1, \ldots, t_n are terms, then $[\![t]\!]_{(l,e)} = s_l^{fn}([\![t_1]\!]_{(l,e)}, \ldots, [\![t_n]\!]_{(l,e)})$.

Let *I* the interpretation of domain \mathbb{N} which maps the symbols $1^{f0}, *^{f2}, +^{f2}$ to their usual values.

Let *e* the state such that x = 2, y = 3.

Compute $[x*(y+1)]_{(I,e)}$.

Let *I* the interpretation of domain \mathbb{N} which maps the symbols $1^{f0}, *^{f2}, +^{f2}$ to their usual values.

Let *e* the state such that x = 2, y = 3.

Compute $[x * (y+1)]_{(l,e)}$.

$$[x*(y+1)]_{(l,e)} = [x]_{(l,e)} * [(y+1)]_{(l,e)} = [x]_{(l,e)} * ([y]_{(l,e)} + [1]_{(l,e)}) = e(x) * (e(y)+1) = 2*(3+1) = 8.$$

Formulae

Definition 4.3.27 Truth value of an atomic formula

The truth value of an atomic formula is given by the following inductive rules:

- 1. $[\top]_{(l,e)} = 1, [\bot]_{(l,e)} = 0$. In the example, we allow the replacement of \top by its value 1 and \bot by its value 0.
- 2. Let *s* a propositional variable, $[s]_{(l,e)} = s_l^{r0}$.
- 3. Let $A = s(t_1, ..., t_n)$ where s is a symbol and $t_1, ..., t_n$ are terms. If $([t_1]_{(l,e)}, ..., [t_n]_{(l,e)}) \in s_l^m$ then $[A]_{(l,e)} = 1$ else $[A]_{(l,e)} = 0$.

Let *I* be the interpretation of domain $D = \{1,2,3\}$ where the binary relation *friend* is true for the pairs (1,2), (1,3) and (2,3), i.e., *friend*_{*I*}^{r2} = $\{(1,2),(1,3),(2,3)\}$.

Let *I* be the interpretation of domain $D = \{1,2,3\}$ where the binary relation *friend* is true for the pairs (1,2), (1,3) and (2,3), i.e., *friend*_I^{r2} = $\{(1,2),(1,3),(2,3)\}$.

The formula $friend(1,2) \land friend(2,3) \Rightarrow friend(1,3)$ is true in the interpretation I, i.e., $[friend(1,2) \land friend(2,3) \Rightarrow friend(1,3)]_I = 1$.

Let us consider the following signature.

- ► Anne^{f0}, Bernard^{f0} and Claude^{f0}: the first names Anne, Bernard, and Claude denote constants,
- ► a^{r^2} : letter a denotes a two-argument relation (we read a(x, y) as x likes y) and
- ▶ c^{f1} : the letter c denotes a one-argument function (we read c(x) as the friend of x).

Let I the interpretation of domain $D = \{0, 1, 2\}$ over this signature where :

- ► Anne $_{I}^{f0} = 0$, Bernard $_{I}^{f0} = 1$, and Claude $_{I}^{f0} = 2$.
- $a_l^{r2} = \{(0,1),(1,0),(2,0)\}.$
- ▶ $c_l^{f1}(0) = 1, c_l^{f1}(1) = 0, c_l^{f1}(2) = 2$. Note that the domain of any function is D. In particular, function c_l^{f1} is defined everywhere, which makes it necessary to artificially define $c_l^{f1}(2)$ even if Claude, denoted by 2, has no friend.

We obtain:

 $ightharpoonup [a(Anne, Bernard)]_l =$

We obtain:

► [a(Anne, Bernard)]_I =

```
1 since (\llbracket Anne \rrbracket_I, \llbracket Bernard \rrbracket_I) = (0,1) \in a_I^{r2}.
```

ightharpoonup [a(Anne, Claude)]_I =

We obtain:

► [a(Anne, Bernard)]_I =

```
1 since ([Anne]_I, [Bernard]_I) = (0,1) \in a_I^{r2}.
```

 $ightharpoonup [a(Anne, Claude)]_l =$

```
0 since ([Anne]_I, [Claude]_I) = (0,2) \notin a_I^{r2}.
```

Let e the state x = 0, y = 2. We have :

► $[a(x,c(x))]_{(l,e)} =$

Let e the state x = 0, y = 2. We have :

► $[a(x,c(x))]_{(l,e)} =$

1 since
$$([x]_{(l,e)}, [c(x)]_{(l,e)}) = (0, c_l^{f1}([x]_{(l,e)})) = (0, c_l^{f1}(0)) = (0, 1) \in a_l^{f2}.$$

► $[a(y, c(y))]_{(l,e)} =$

Let *e* the state x = 0, y = 2. We have :

► $[a(x,c(x))]_{(l,e)} =$

1 since
$$([x]_{(l,e)}, [c(x)]_{(l,e)}) = (0, c_l^{f1}([x]_{(l,e)})) = (0, c_l^{f1}(0)) = (0, 1) \in a_l^{f2}.$$

► $[a(y,c(y))]_{(l,e)} =$

0 since
$$(\llbracket y \rrbracket_{(l,e)}, \llbracket c(y) \rrbracket_{(l,e)}) = (2, c_l^{f1}(\llbracket y \rrbracket_{(l,e)})) = (2, c_l^{f1}(2)) = (2, 2) \not \in a_l^{f2}.$$

Make sure to distinguish (depending on the context), the elements of the domain 0,1 and the truth values 0,1.

We have:

ightharpoonup [(Anne = Bernard)]_I =

We have:

ightharpoonup [(Anne = Bernard)]_I =

0, since
$$([Anne]_I, [Bernard]_I) = (0,1) \not\in =_I^{r2}$$
.

 $ightharpoonup [(c(Anne) = Anne)]_l =$

We have:

- ► [(Anne = Bernard)]_I =
 - 0, since $([Anne]_I, [Bernard]_I) = (0,1) \not\in =_I^{r2}$.
- $ightharpoonup [(c(Anne) = Anne)]_l =$
 - 0, since $([c(Anne)]_I, [Anne]_I) = (c_I^{f1}([Anne]_I), 0) = (c_I^{f1}(0), 0) = (1, 0) \notin =_I^{r2}.$
- $ightharpoonup [(c(c(Anne)) = Anne)]_l =$

We have:

- ightharpoonup [(Anne = Bernard)]_I =
 - 0, since $(\llbracket Anne \rrbracket_I, \llbracket Bernard \rrbracket_I) = (0,1) \not\in =_I^{r2}$.
- $ightharpoonup [(c(Anne) = Anne)]_l =$
 - 0, since $([c(Anne)]_I, [Anne]_I) = (c_I^{f1}([Anne]_I), 0) = (c_I^{f1}(0), 0) = (1, 0) \notin =_I^{r2}.$
- $ightharpoonup [(c(c(Anne)) = Anne)]_l =$
 - 1, since $([c(c(Anne))]_I, [Anne]_I) = (c_I^{f1}([c(Anne)]_I), 0) = (c_I^{f1}(c_I^{f1}(0)), 0) = (c_I^{f1}(1), 0) = (0, 0) \in =_I^{f2}.$

Truth value of a formula 4.3.30

- 1. Propositional connectives have the same meaning as in propositional logic.
- 2. Let x a variable and B a formula. $[\forall xB]_{(I,e)}=1$ if and only if $[B]_{(I,f)}=1$ for all state f identical to e, except for x. Let $d \in D$. Let us denote e[x=d] the state identical to the e, except for the variable x, whose state e[x=d] associates the value d. The above definition can be written as :

$$[\forall xB]_{(I,e)} = min_{d \in D}[B]_{(I,e[x=d])} = \prod_{d \in D}[B]_{(I,e[x=d])},$$

where the product is the boolean product.

3. $[\exists xB]_{(l,e)} = 1$ if and only if there is a state f identical to e, except for x, such that $[B]_{(l,f)} = 1$. The above definition can be written as :

$$[\exists xB]_{(l,e)} = \max_{d \in D} [B]_{(l,e[x=d])} = \sum_{d \in D} [B]_{(l,e[x=d])},$$

where the sum is the boolean sum.

Let us use the interpretation *I* given in example 4.3.19.

(Reminder
$$D = \{0, 1, 2\}$$
)

$$\blacktriangleright [\exists x \ a(x,x)]_I =$$

Let us use the interpretation *I* given in example 4.3.19.

(Reminder
$$D = \{0, 1, 2\}$$
)

 $\blacktriangleright [\exists x \ a(x,x)]_I =$

$$\max\{[a(0,0)]_I,[a(1,1)]_I,[a(2,2)]_I\}=0 \text{ since } (0,0),(1,1),(2,2) \notin a_I^{r2}.$$
 According to the definition, we have : $[\exists x \ a(x,x)]_I=[a(0,0)]_I+[a(1,1)]_I+[a(2,2)]_I=0+0+0=0.$

 $\blacktriangleright [\forall x \exists y \ a(x,y)]_I =$

Let us use the interpretation *I* given in example 4.3.19.

(Reminder $D = \{0, 1, 2\}$)

 $\blacktriangleright [\exists x \ a(x,x)]_I =$

```
\max\{[a(0,0)]_I,[a(1,1)]_I,[a(2,2)]_I\}=0 \text{ since } (0,0),(1,1),(2,2) \notin a_I^{r2}. According to the definition, we have : [\exists x \ a(x,x)]_I=[a(0,0)]_I+[a(1,1)]_I+[a(2,2)]_I=0+0+0=0.
```

 $\blacktriangleright [\forall x \exists y \ a(x,y)]_I =$

```
 \min\{\max\{[a(0,0)]_I, [a(0,1)]_I, [a(0,2)]_I\}, \max\{[a(1,0)]_I, [a(1,1)]_I, [a(1,2)]_I\}, \max\{[a(2,0)]_I, [a(2,1)]_I, [a(2,2)]_I\}\} = \min\{\max\{0,1,0\}, \max\{1,0,0\}, \max\{1,0,0\}\} = \min\{1,1,1\} = 1.
```

According to the definition, we have : $[\forall x \exists y \ a(x,y)]_I = ([a(0,0)]_I + [a(0,1)]_I + [a(0,2)]_I)$. $([a(1,0)]_I + [a(1,1)]_I + [a(1,2)]_I)$. $([a(2,0)]_I + [a(2,1)]_I + [a(2,2)]_I) = (0+1+0) \cdot (1+0+0) \cdot (1+0+0) = 1 \cdot 1 \cdot 1 = 1$.

 $\blacktriangleright [\exists y \forall x \ a(x,y)]_I =$

 $ightharpoonup [\exists y \forall x \ a(x,y)]_I =$

```
\begin{split} \max\{\min\{[a(0,0)]_{I}, [a(1,0)]_{I}, [a(2,0)]_{I}\}, \min\{[a(0,1)]_{I}, [a(1,1)]_{I}, \\ [a(2,1)]_{I}\}, \min\{[a(0,2)]_{I}, [a(1,2)]_{I}, [a(2,2)]_{I}\}\} &= \max\{\min\{0,1,1\}, \\ \min\{1,0,0\}, \min\{0,0,0\}\} &= \max\{0,0,0\} &= 0. \end{split}
```

```
According to the definition, we have : [\exists y \forall x \ a(x,y)]_I = [a(0,0)]_I \cdot [a(1,0)]_I \cdot [a(2,0)]_I + [a(0,1)]_I \cdot [a(1,1)]_I \cdot [a(2,1)]_I + [a(0,2)]_I \cdot [a(1,2)]_I \cdot [a(2,2)]_I = 0.1.1 + 1.0.0 + 0.0.0 = 0 + 0 + 0 = 0.
```

 $\blacktriangleright [\exists y \forall x \ a(x,y)]_I =$

```
\begin{split} \max\{\min\{[a(0,0)]_{\mathit{I}}, [a(1,0)]_{\mathit{I}}, [a(2,0)]_{\mathit{I}}\}, \min\{[a(0,1)]_{\mathit{I}}, [a(1,1)]_{\mathit{I}}, \\ [a(2,1)]_{\mathit{I}}\}, \min\{[a(0,2)]_{\mathit{I}}, [a(1,2)]_{\mathit{I}}, [a(2,2)]_{\mathit{I}}\}\} &= \max\{\min\{0,1,1\}, \\ \min\{1,0,0\}, \min\{0,0,0\}\} &= \max\{0,0,0\} &= 0. \end{split}
```

```
According to the definition, we have : [\exists y \forall x \ a(x,y)]_I = [a(0,0)]_I \cdot [a(1,0)]_I \cdot [a(2,0)]_I + [a(0,1)]_I \cdot [a(1,1)]_I \cdot [a(2,1)]_I + [a(0,2)]_I \cdot [a(1,2)]_I \cdot [a(2,2)]_I = 0.1.1 + 1.0.0 + 0.0.0 = 0 + 0 + 0 = 0.
```

Remark 4.3.33

The formulae $\forall x \exists y \ a(x,y)$ and $\exists y \forall x \ a(x,y)$ do not have the same value. Exchanging an existential quantification and an universal quantification does not preserve the truth value of a formula.

Overview

Introduction

Language

Prioritized formulae

Free vs. bound

Truth value of formulae Declaring a symbol Signature

Interpretation

Truth value of formulae

Conclusion

Conclusion: Next course

- ► Interpret a first order formula (contd.)
- ► Important equivalences

Conclusion

Thank you for your attention.

Questions?