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Natural Deduction 2

Correctness

Theorem

Theorem 3.3.1

If a formula A is deduced from an environment Γ (i.e., if Γ ` A) then A
is a consequence of Γ (Γ |= A).

Every proof written in an environment Γ is correct !

Proof by induction :

I Let Γ a set of formulae.

I Let P a proof of A in this environment.

I Let Ci the conclusion and Hi the context of iÃ¨me line of P.

I Let Γ,Hi the set of formulae of Γ and of the list Hi .

Show that for every k we have Γ,Hk |= Ck .
For the last line n of the proof : Hn is empty and Cn = A
Hence, Γ |= A.
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Natural Deduction 2

Correctness

Base case

Suppose that A is derived from Γ by an empty proof.

That is, A is a member of Γ.

Hence Γ |= A.
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Natural Deduction 2

Correctness

Induction hypothesis

Suppose that for every line i < k of the proof we have Γ, Hi |= Ci .

Let us show Γ, Hk |= Ck .

Three possible cases :
I Line k is � Suppose Ck �.

I Line k is � Hence Ck �.

I Line k is � Ck �.
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Natural Deduction 2

Correctness

Line k is � Suppose Ck �

The formula Ck is the last formula of Hk .

Then Hk |= Ck .

Then Γ,Hk |= Ck .
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Natural Deduction 2

Correctness

The line k is � Hence Ck �

Ck is the formula B⇒ D where :
I B is the last formula of Hk−1 and

I D :

(1) D is a formula of Γ. D is then a consequence of Γ, Hk . Since
B⇒ D is a consequence of D, we conclude Γ, Hk |= Ck

.

(2) D is usable on the previous line. Hence there exists i < k such
that D = Ci and Hi is a prefix of Hk−1.
By induction hypothesis, Γ, Hi |= D.
Since Hi is a prefix of Hk−1, we have Γ, Hk−1 |= D.
Since B is the last formula of Hk−1, Hk−1 = Hk , B and therefore
Γ, Hk , B |= D, which implies Γ, Hk |= B⇒ D, that is, Γ, Hk |= Ck .
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Natural Deduction 2

Correctness

Line k is � Ck �

This formula is the conclusion of a rule of table 3.1, applied to its usable
premises on the previous line or to the element of Γ.

We only consider the rule ∧I, the other cases being similar.

The formula Ck is (D∧E) and the premises of the rule are D and E .

Since D and E are elements of Γ or usable on the previous line, as in the
previous case, using the induction hypothesis, we have : Γ, Hk−1 |= D et
Γ, Hk−1 |= E .

Since the line k does not change the hypotheses, we have Hk−1 = Hk , hence
Γ,Hk |= D and Γ,Hk |= E .

Since Ck is (D∧E), we have : D, E |= Ck . Therefore Γ, Hk |= Ck .
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Natural Deduction 2

Completeness

Theorem

We prove the completeness of the rules only for formulas containing
the following logic symbols : ⊥, ∧, ∨, ⇒.

This is enough because additional symbols >, ¬ and⇔ can be
regarded as abbreviations.

Theorem 3.4.1

Let Γ be a finite set of formulae and A a formula, if Γ |= A then Γ ` A.
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Natural Deduction 2

Completeness

Notations

We define a literal as a variable or an implication between a variable
and ⊥.

Let x be a variable, x and x ⇒⊥ (which can be abbreviated as ¬x)
are complementary literals.

Given Γ, a list of formulae, s(Γ) denotes the set of formulae of Γ.

To simplify notations, we use the comma for adding an element at the
begining or at the end of the list and for concatenating two lists, which
can be either lists of formulae or lists of proofs.
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Natural Deduction 2

Completeness

Measure

Then measure m of formulae and of lists of formulae is defined as :
I m(⊥) = 0,
I m(x) = 1 where x is a variable,
I m(⇒) = 1,
I m(∧) = 1,
I m(∨) = 2,
I m(A◦B) = m(A) + m(◦) + m(B),
I the measure of a list of formulae is the sum of the measures of

the formulae of the list.

Since ¬A is an abbreviation of A⇒⊥, we have :
m(¬A) = m(A⇒⊥) = m(A) + 1.

For example, let A = (a∨¬a). We have m(¬a) = 2, m(A) = 5 and
m(A, (b∧b), A) = 13.
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Natural Deduction 2

Completeness

Induction

We define P(n) to be the following property :
given any list of formulae Γ and formula A such that the measure of
Γ, A is n, we have if s(Γ) |= A then s(Γ) ` A.

To show that P(n) holds for every integer n, we use � strong �
induction :

Suppose that for every i < k , P(i) holds ; then show that P(k) holds
as well.
To this effect suppose moreover m(Γ, A) = k and s(Γ) |= A, then
show : s(Γ) ` A.
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Natural Deduction 2

Completeness

Decomposition

Idea : we decompose Γ,A in order to apply the induction hypothesis.

A is undecomposable if A is ⊥ or a variable and Γ is undecomposable
if Γ is a list of literals or contain the formula ⊥.

We study three cases :

Case 1 : neither A, nor Γ is decomposable.

Case 2 : A is decomposable.
We decompose A in two sub-formulae B and C.
We obtain the following inequalities : m(Γ, B) < m(Γ, A) and
m(Γ, C) < m(Γ, A).

Case 3 : Γ is decomposable. We permute Γ in order to obtain a list and a
decomposable formula.
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Natural Deduction 2

Completeness

Decomposition

Idea : we decompose Γ,A in order to apply the induction hypothesis.

A is undecomposable if A is ⊥ or a variable and Γ is undecomposable
if Γ is a list of literals or contain the formula ⊥.

We study three cases :

Case 1 : neither A, nor Γ is decomposable.

Case 2 : A is decomposable.
We decompose A in two sub-formulae B and C.
We obtain the following inequalities : m(Γ, B) < m(Γ, A) and
m(Γ, C) < m(Γ, A).

Case 3 : Γ is decomposable. We permute Γ in order to obtain a list and a
decomposable formula.

S. Devismes et al (Grenoble I) Natural Deduction 2 February 13, 2015 14 / 44



Natural Deduction 2

Completeness

Decomposition

Idea : we decompose Γ,A in order to apply the induction hypothesis.

A is undecomposable if A is ⊥ or a variable and Γ is undecomposable
if Γ is a list of literals or contain the formula ⊥.

We study three cases :

Case 1 : neither A, nor Γ is decomposable.

Case 2 : A is decomposable.
We decompose A in two sub-formulae B and C.
We obtain the following inequalities : m(Γ, B) < m(Γ, A) and
m(Γ, C) < m(Γ, A).

Case 3 : Γ is decomposable. We permute Γ in order to obtain a list and a
decomposable formula.

S. Devismes et al (Grenoble I) Natural Deduction 2 February 13, 2015 14 / 44



Natural Deduction 2

Completeness

Case 1 : neither A, nor Γ are decomposable

Then A is ⊥ or a variable and Γ is a list of literals or contains the
formula ⊥

(a) Either ⊥ is a formula of Γ ; then A can be derived from ⊥ by the
rule Efq, hence s(Γ) ` A.

(b) Or ⊥ is not a formula of Γ. Hence, Γ is a list of literals and we
have two cases :

I A =⊥. Since s(Γ) |= A, the list Γ contains two complementary
literals, therefore A can be derived from Γ by the rule⇒E, and
consequently s(Γ) ` A (by the proof ⊥,A).

I A is a variable. Since s(Γ) |= A :

I let Γ contains two complementary literals and, as in the previous
case, we have s(Γ) ` A

I let A is element of Γ and in this case we also have s(Γ) ` A (by
empty proof).

S. Devismes et al (Grenoble I) Natural Deduction 2 February 13, 2015 15 / 44
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Completeness

Case 2 : A is decomposable into B and C

A is decomposed into (B∧C), (B∨C), or (B⇒ C).

We only study the case A = (B∧C), the other cases are similar.

Since s(Γ) |= A and A = (B∧C), we have s(Γ) |= B and s(Γ) |= C.

The measures of B and C are strictly less than the measure of A.

Hence m(Γ,B) < k and m(Γ,C) < k , and by induction hypothesis,
there exist two proofs P and Q such that s(Γ) ` P : B and
s(Γ) ` Q : C.

Since A can be derived from B and C by the rule ∧I : � P, Q, A � is a
proof of A in the environment s(Γ) hence s(Γ) ` A.
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Completeness

Case 3 : Γ is decomposable

Six cases may occur :
I Γ is a permutation of the list (B∧C),∆.

I Γ is a permutation of the list (B∨C),∆.

I Γ is a permutation of the list (B⇒ C),∆ or C 6=⊥.

I Γ is a permutation of the list ((B∧C)⇒⊥),∆.

I Γ is a permutation of the list ((B∨C)⇒⊥),∆.

I Γ is a permutation of the list ((B⇒ C)⇒⊥),∆.

We only study the first case.
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Completeness

Γ is a permutation of the list (B∧C),∆

Γ and (B∧C),∆ have the same measure.

Since s(Γ) |= A, s(B,C,∆) |= A.

The sum of the measures of B and C is strictly less than the measure
of B∧C.

Hence m(B,C,∆,A) < m((B∧C),∆,A) = m(Γ,A) = k , by induction
hypothesis, there exist a proof P such that s(B,C,∆) ` P : A.

Since B can be derived from (B∧C) by the rule ∧E1 and C can be
derived from (B∧C) by the rule ∧E2 : � B, C, P � is a proof of A in
the environment s(Γ), hence s(Γ) ` A.
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Tactics

Remark 3.4.2

The proof of completeness is constructive, that is it provides a
complete set of tactics to construct the proofs of a formula in an
environment.

However, these tactics can lead to long proofs.

It is better then to use � optimised � tactics presented in section 3.2.

For example, to prove B∨C :
I First try to prove B

I If failure, then try to prove C

I Otherwise, use tactic 10 (prove C under the hypothesis ¬B)
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Tactics

Proof tactics

We wish to prove A in the environment Γ

The 13 following tactics must be used in the following order !
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Tactics

Tactic 1

If A ∈ Γ then the empty proof is obtained.
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Tactics

Tactic 2

If A is the consequence of a rule whose premises are in Γ, then the
obtained proof is
� A �.
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Tactics

Tactic 3

If Γ contains a contradiction, that is a formula B and a formula ¬B,
then the obtained proof is �⊥, A �.
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Tactics

Tactic 4

If A is B∧C then :

I prove B : Let P the proof obtained for B,

I prove C : Let Q the proof obtained for C.

The proof obtained for A is � P, Q, A �.

The proofs can fail (if it is asked to prove a formula that is unprovable
in the given environment) : if the proof of B or C fails, it is the same for
the proof of A. To simplify the remaining, we do not highlight the failure
cases anymore, unless they must be followed by another proof.
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Tactics

Tactic 5

If A is B⇒ C, then prove C under hypothesis B
(B is added to the environment).

Let P, the proof obtained for C.

The proof obtained for A is � Suppose B, P, Hence A �.
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Tactics

Tactic 6

If A is B∨C, then prove B :
If P is the proof obtained for B, then � P, A � is the proof obtained for
A.

If the proof of B fails then prove C :
If P is the proof obtained for C then � P, A � is the proof obtained for A.

If the proof of C fails, try the following rules.
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Tactics

Tactic 7

If B∧C is in the environment, then prove A starting from formulae B,
C, replacing B∧C in the environment and let P the result of this proof.

Then � B, C, P � is a proof of A in the initial environment.
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Tactics

Tactic 8

If B∨C is in the environment, then :

I prove A in the environment where B replaces B∨C : Let P the
obtained proof,

I prove A in the environment where C replaces B∨C : Let Q the
obtained proof.

The proof of A is then � Suppose B, P, Hence B⇒ A, Suppose C, Q,
Hence C⇒ A, A �.
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Tactics

Tactic 9

If ¬(B∨C) is in the environment, then

I we derive ¬B by the proof P4 and

I ¬C by the proof P5 (proofs requested in exercise 58).

I Let P the proof of A in the environment where ¬B, ¬C replace
the formula ¬(B∨C).

The proof of A is � P4, P5, P �.
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Tactics

Tactic 10

If A is B∨C, then prove C under hypothesis ¬B : let P the obtained
proof.
� Suppose ¬B, P, Hence ¬B⇒ C � is a proof of the formula ¬B⇒ C
which is equivalent to A.

To obtain the proof of A, simply add the proof P1, requested in
exercise 58 of A in the environment ¬B⇒ C.
The proof obtained from A is therefore � Suppose ¬B, P, Hence
¬B⇒ C, P1 �.
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Tactics

Tactic 11

If ¬(B∧C) is in the environment, then we deduce from it ¬B∨¬C by
the proof P3 requested in exercise 58 then we reason case by case as
follows :

I prove A in the environment where ¬B replaces ¬(B∧C) : Let P
the obtained proof,

I prove A in the environment where ¬C replaces ¬(B∧C) : Let Q
the obtained proof.

The proof of A is � P3, Suppose ¬B, P, Hence ¬B⇒ A, Suppose ¬C,
Q, Hence ¬C⇒ A, A �.
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Tactics

Tactique 12

If ¬(B⇒ C) is in the environment, then

I we derive B by the proof P6,

I ¬C by the proof P7 (proofs requested in exercise 58).

I Let P the proof of A in the environment where B, ¬C replace the
formula ¬(B⇒ C).

The proof of A is � P6, P7, P �.
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Tactics

Tactic 13

If B⇒ C is in the environment and if C 6=⊥, i.e. if B⇒ C is not ¬B,
then,
we derive ¬B∨C in the environment B⇒ C by proof P2 from
exercise 58, then we reason by cases :

I prove A in the environment where ¬B replaces B⇒ C : Let P the
obtained proof,

I prove A in the environment where C replaces B⇒ C : Let Q the
obtained proof.

The proof of A is � P2, Suppose ¬B, P, Hence ¬B⇒ A, Suppose C,
Q, Hence C⇒ A, A �.
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Example

Proof of Peirce’s formula :

((p⇒ q)⇒ p)⇒ p
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Tactics

Proof plan

Tactic 5 is compulsory !

Proof Q :
Suppose (p⇒ q)⇒ p

Q1 proof or p in the environment (p⇒ q)⇒ p
Hence ((p⇒ q)⇒ p)⇒ p

Proof Q1 necessarily uses tactic 13. Hence this proof is written : In the
environment B⇒ C where B = p⇒ q, C = p.
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Plan of the proof of Q1

Proof Q1 :
Q11 = P2 whereP2 is the proof of ¬B∨C in the environment B⇒ C, see exercise 58

Suppose ¬B
Q12 proof of A = p in the environment ¬B

Hence ¬B⇒ A
Suppose C

Q13 proof of A = p in the environment C
Hence C⇒ A
A
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Tactics

Proof of Q1

Q13 is the empty proof, since A = C = p.

Q12 is the proof of C = p in the environment ¬(p⇒ q).
Since ¬A is an abbreviation of A⇒⊥, this proof is the proof P6

requested in exercise 58, where B = p and C = q.

By gluing pieces Q1, Q11, Q12, Q13, we obtain the proof Q.

Below we show how to find the proof Q12 without using the tactics.
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Proof of Q12

The only rule, which does not lead to a deadlock, is the reduction ad
absurdum. Hence this proof is of the form :

Proof Q12 of p in the environment ¬(p⇒ q)
Suppose ¬p

Q121 proof of ⊥ in the environment ¬(p⇒ q), ¬p
Hence ¬¬p
p

To obtain a contradiction, hence a proof of ⊥, p⇒ q must be derived.
Hence the proof Q121 is :

Suppose p
⊥
q
Hence p⇒ q
⊥
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Automated proofs

To automatically obtain the proofs in the system, one recommends to
use the following software (implementing the 13 previous tactics) :

http://teachinglogic.liglab.fr/DN/

People who prefer proofs in the form of trees can use the following
software :

http://www-sop.inria.fr/marelle/Laurent.Thery/
peanoware/Nd.html
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Conclusion : Next course

I First-order logic
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Homework : solution using ND

(p⇒¬j)∧ (¬p⇒ j)∧ (j⇒m)⇒m∨p
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Conclusion

Thank you for your attention.

Questions ?
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