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Propositional Resolution

Reminder

(1) A ` B

B is deduced from A.
There is a proof by resolution of B starting from A

(2) A |= B

B is consequence of A.
Every model of A is also a model of B

Correctness

(1)⇒ (2)

Completeness

(2)⇒ (1)

Resolution

Correct and complete
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Propositional Resolution

Overview

Introduction

Complete strategy

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Conclusion
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Propositional Resolution

Introduction

Homework : solution

I (H1) : p⇒¬j , rewritten as ¬p∨¬j

I (H2) : ¬p⇒ j , rewritten as p∨ j

I (H3) : j⇒m, rewritten as ¬j ∨m

I (¬ C) : ¬m∧¬p

Clauses : {¬p∨¬j, p∨ j, ¬j ∨m, ¬m, ¬p}

p∨ j ¬j ∨m

p∨m
¬m

p
¬p

⊥
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Propositional Resolution

Introduction

Presentation of the two algorithms

How to � systematically � decide whether Γ is inconsistent or not ?

I Complete strategy
Construction of ALL the deductible clauses (resolvents) from Γ

I The Davis-Putnam-Logemann-Loveland Algorithm
� Intelligent � traversal of the possible assignments of Γ

Remark

Exponential solutions in time in the worst case.
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Overview

Introduction

Complete strategy

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Conclusion
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Propositional Resolution

Complete strategy

Exponential complexity

Consider that two clauses having the same set of literals are equal.

If the length of s(Γ) = n, then we have at most 2n clauses deduced
from Γ.
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Propositional Resolution

Complete strategy

Reduction of a set of clauses

In order to accelerate the algorithm, we reduce the set of clauses.

How to proceed with reduction ?

Remove the valid clauses and the clauses containing another clause
of the set.

A set of clauses is reduced if it is not reducible anymore.
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Propositional Resolution

Complete strategy

Reduced set of clauses

Definition 2.1.26

A set of clauses is reduced if it does not contain any valid clause and
none of the clauses is included in another clause.

Example 2.1.27

The reduction of the set of clauses
{p∨q∨¬p, p∨ r , p∨ r ∨¬s, r ∨q} gives the reduced set :

{p∨ r , r ∨q}.
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Propositional Resolution

Complete strategy

Justification

Property 2.1.28

A set of clauses E is equivalent to the reduced set of clauses obtained
from E .

Proof.

I Removing > : x ∧>≡ x

I Removing a clause including another clause : x ∧ (x ∨ y)≡ x
2
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Propositional Resolution

Complete strategy

Result of the algorithm : minimum deduction clauses

Definition 2.1.29

Let Γ a set of clauses. A minimum clause for the deduction from Γ is a
non-valid clause deduced from Γ and strictly not containing any clause
deduced from Γ.

Example 2.1.30

Let us consider the set of clauses Γ = {a∨¬b, b∨ c∨d} the clause
a∨ c∨d is a minimum deduction clause.

However, if we add the clause ¬a∨ c to Γ then a∨ c∨d is not a
minimum clause since we can deduce c∨d which is included in the
clause a∨ c∨d .
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Propositional Resolution

Complete strategy

Property

Property 2.1.31

Let Θ the set of minimum deduction clauses for the set of clauses Γ.
The set Γ is unsatisfiable if and only if ⊥ ∈Θ.

Proof.

I Suppose ⊥ ∈Θ, then Γ ` ⊥, hence by resolution correctness, Γ
is unsatisfiable.

I Suppose Γ unsatisfiable, by resolution completeness, Γ ` ⊥.
Consequently ⊥ is minimum clause for the deduction of Γ,
therefore ⊥ ∈Θ.

2
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Propositional Resolution

Complete strategy

Interpretation

When the following algorithm terminates :

⊥ ∈Θk : Γ is unsatisfiable

⊥ /∈Θk : Γ is satisfiable, but what does Θk represent ?
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Propositional Resolution

Complete strategy

Θk = minimum clauses for the consequence

Definition 2.1.32

Let Γ a set of clauses. A minimum clause for the consequence of Γ is a
non valid consequence clause of Γ strictly not containing any
consequence clause of Γ.

Theorem 2.1.35

Let Γ a set of clauses. A clause is minimum for the deduction of Γ if
and only if it is minimum for the consequence of Γ.

Proofs given in the course support.
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Propositional Resolution

Complete strategy

Example

Example 2.1.33

Consider the set of clauses Γ = {a∨d , ¬a∨b, ¬b∨ c}. The clause
d ∨ c is minimum for the consequence of Γ.

Consequence : d ∨ c is a consequence of Γ since in all model of Γ,
either d is true or c is true.

Minimality : There exist models of Γ which are not models of d
(respectively c) : a 7→ 1, d 7→ 0, c 7→ 1 and b 7→ 1
(respectively a 7→ 0, d 7→ 1, c 7→ 0 and b 7→ 0).
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Propositional Resolution

Complete strategy

Principle of the algorithm : Construct all the clauses
deduced from Γ

Following the height of the proof trees.

Algorithm

For any integer i
While it is possible to construct new clauses
Construct the reduced set of all the clauses having a proof tree of
height at most i .

In practice :
Maintain two sequences of the sets of clauses, ∆i(i≥0) and Θi(i≥0)
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Propositional Resolution

Complete strategy

Two sequences of sets of clauses

∆i(i≥0)

Clauses deduced from Γ by a proof of height i , after clauses removal :

I valid clauses

I clauses including another clause of the proof of height at most i .

∆0 is obtained by reducing Γ
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Propositional Resolution

Complete strategy

Two sequences of sets of clauses

Θi(i≥0)

Clauses deduced from Γ by a proof of height less than i after clauses
removal :

I valid clauses

I clauses including another clause of the proof of height at most i .

Θ0 is the empty set.
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Propositional Resolution

Complete strategy

Details of the method

If ∆k = /0, stop the construction :

I k−1 is then the maximum height of a proof

I Θk is the reduced set of the clauses deduced from Γ
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Propositional Resolution

Complete strategy

Construction of the sequences ∆i(i≥0) and Θi(i≥0)

∆i+1

I Construct all the resolvents of ∆i and ∆i ∪Θi

I Reduce this set

I Remove the new resolvents including a clause of ∆i ∪Θi

Θi+1

Remove from ∆i ∪Θi the clauses which include one of the clauses of
∆i+1.
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Propositional Resolution

Complete strategy

Example 2.2.1

Let Γ = {a∨b∨¬a, a∨b, a∨b∨ c, a∨¬b, ¬a∨b, ¬a∨¬b}
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Propositional Resolution

Complete strategy

Example 2.2.1

Let Γ = {a∨b∨¬a, a∨b, a∨b∨ c, a∨¬b, ¬a∨b, ¬a∨¬b}

i ∆i Θi ∆i ∪Θi Resolvents of ∆i and ∆i ∪Θi
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Propositional Resolution

Complete strategy
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Propositional Resolution

Complete strategy

Example 2.2.1
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Propositional Resolution

Complete strategy

Example 2.2.1
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1 a, b, ¬b, ¬a
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Propositional Resolution

Complete strategy

Example 2.2.2

{a, c, ¬a∨¬b, ¬c∨e}

i ∆i Θi ∆i ∪Θi ∆i](∆i ∪Θi )
0 a, c, ¬a∨¬b, ¬c∨e /0 a, c, ¬a∨¬b, ¬c∨e e, ¬b
1 e, ¬b a, c a, ¬b, c, e /0

2 /0 a, ¬b, c, e
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Propositional Resolution

Complete strategy

Termination of the algorithm : idea

There are at most 2n clauses deduced from Γ.

∆i(i≥0) contains only clauses deduced from Γ

∆i(i≥0) are mutually disjoint (To demonstrate)

Hence there are at most 2n + 1 sets, therefore k ≤ 2n + 1
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Propositional Resolution

Complete strategy

∆i(i≥0) are mutually disjoint

Property 2.2.3

Let i ≤ k . Any clause of
⋃

j≤i ∆j contains a clause of ∆i ∪Θi .

Proof.

By induction.

I For i = 0 the property is trivial since Θ0 = /0.

I Suppose the property true for i , let us show that it is also true for i + 1. Let C ∈
⋃

j≤i+1 ∆j .

Let us show that C contains a clause of ∆i+1 ∪Θi+1. We examine all the possible cases

for C.

1. C ∈∆i+1.

Hence C contains a clause of ∆i+1 ∪Θi+1.

2. C ∈
⋃

j≤i ∆j .

By induction hypothesis, C contains a clause D ∈∆i ∪Θi . We
distinguish two situations for D.

2.1 D ∈Θi+1.

Hence C contains a clause of ∆i+1 ∪Θi+1.

2.2 D 6∈Θi+1.

By construction of Θi+1, since D ∈∆i ∪Θi and D 6∈Θi+1, it
means that D contains a clause of ∆i+1. Or C contains D, hence C also
contains a clause of ∆i+1 ∪Θi+1.

2
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Propositional Resolution

Complete strategy

∆i(i≥0) are mutually disjoint

Property 2.2.4

For all i ≤ k , the sets ∆i are mutually disjoint.

Proof.

We perform an induction on the sets ∆j with 0≤ j ≤ i and i ≤ k .

The base case (basis) : If i = 0, there is only one set, hence the property is verified.

Inductive step : Let i < k . Suppose that all the sets ∆j where j ≤ i are mutually
disjoint. Let us show that ∆i+1 is disjoint with respect to these sets.
Let C ∈∆i+1. Suppose, on the contrary, that C ∈

⋃
j≤i ∆j .

According to the previous property, C includes a clause of ∆i ∪Θi .
Hence by construction of ∆i+1, C 6∈∆i+1, contradiction.
Consequently, C 6∈

⋃
j≤i ∆j .

2

Hence, the algorithm terminates.
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Propositional Resolution

Complete strategy

Result of the algorithm

I Γ and Θk are equivalent

I Θk = set of minimum deduction clauses.
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Propositional Resolution

Complete strategy

Γ and Θk are equivalent

Property 2.2.5

For all i < k , the sets ∆i ∪Θi and ∆i+1∪Θi+1 are equivalent.

Proof.

1. Any clause of ∆i+1∪Θi+1 is a consequence of ∆i ∪Θi .

Any
clause of ∆i+1∪Θi+1 is an element of ∆i ∪Θi or a resolvent of
two elements of this set, therefore it is a consequence of this set.

2. Any clause of ∆i ∪Θi is a consequence of ∆i+1∪Θi+1.

Let
C ∈∆i ∪Θi . We distinguish two possible cases :
2.1 C ∈Θi+1

, thus C is a consequence of ∆i+1∪Θi+1.

2.2 C 6∈Θi+1

, thus C contains a clause of ∆i+1 hence is a
consequence of ∆i+1∪Θi+1.

2
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Propositional Resolution

Complete strategy

Γ and Θk are equivalent

Property 2.2.6

The sets Γ and Θk are equivalent.

Proof.

I ∆0 is the set obtained by reduction of Γ, according to property 2.1.28, these

two sets are equivalent.

I Since Θ0 is empty, Γ is equivalent to ∆0∪Θ0.

I According to property 2.2.5 and by induction, ∆0∪Θ0 is equivalent to the set of

clauses ∆k ∪Θk .

I Since the algorithm terminates when ∆k is the empty set, the sets Γ and Θk

are equivalent.

2
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Propositional Resolution

Complete strategy

Θk = set of minimum deduction clauses

Property 2.2.13

Θk is the set of minimum deduction clauses of Γ.

Proof.

Cf. Course support (Poly) 2

Example from 1.6.2 : maj(x , y , z) = (x ∨ y ∨ z)∧ (x ∨ y ∨¬z)∧ (x ∨¬y ∨ z)∧ (¬x ∨ y ∨ z).

∆0 Θ0
1 x ∨ y ∨ z
2 x ∨ y ∨¬z
3 x ∨¬y ∨ z
4 ¬x ∨ y ∨ z

∆1 Θ1
5 x ∨ y resolvent of 1, 2
6 x ∨ z resolvent of 1, 3
7 y ∨ z resolvent of 1, 4

∆2 is empty and Θ2 = ∆1.

Consequently maj(x , y , z) = (x ∨ y)(x ∨ z)(y ∨ z).
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Overview

Introduction

Complete strategy

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Conclusion
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

History

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

I Introduced by Martin Davis and Hilary Putnam in 1960, then
refined by Martin Davis, George Logemann and Donald Loveland
in 1962

I Indicates if a set of clauses is satisfiable.

I Basis for (most efficient) complete SAT-solvers such as chaff,
zchaff and satz.
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Principle I

Two types of formulae transformation :

1. preserving the truth value : transforming a formula into an
equivalent formula

I reduction

2. preserving the satisfiability only : transforming a satisfiable
formula into another satisfiable formula

I removal of clauses containing isolated literals
I unit resolution

DPLL is efficient since it uses these two transformations.
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Principle II

� Branching/Backtracking � (splitting rule)

I Branching : After simplification, assign to true a heuristically
chosen variable (branching literal).

I Continue the algorithm recursively.

I Backtracking : If we arrive to a contradiction, we return to the
last choice, and we � branch � by assigning false to the chosen
variable.

S. Devismes et al (Grenoble I) Propositional Resolution January 30, 2015 36 / 51



Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Principle II

� Branching/Backtracking � (splitting rule)

I Branching : After simplification, assign to true a heuristically
chosen variable (branching literal).

I Continue the algorithm recursively.

I Backtracking : If we arrive to a contradiction, we return to the
last choice, and we � branch � by assigning false to the chosen
variable.

S. Devismes et al (Grenoble I) Propositional Resolution January 30, 2015 36 / 51



Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Principle II

� Branching/Backtracking � (splitting rule)

I Branching : After simplification, assign to true a heuristically
chosen variable (branching literal).

I Continue the algorithm recursively.

I Backtracking : If we arrive to a contradiction, we return to the
last choice, and we � branch � by assigning false to the chosen
variable.

S. Devismes et al (Grenoble I) Propositional Resolution January 30, 2015 36 / 51



Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Principle II

� Branching/Backtracking � (splitting rule)

I Branching : After simplification, assign to true a heuristically
chosen variable (branching literal).

I Continue the algorithm recursively.

I Backtracking : If we arrive to a contradiction, we return to the
last choice, and we � branch � by assigning false to the chosen
variable.

S. Devismes et al (Grenoble I) Propositional Resolution January 30, 2015 36 / 51



Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Removal of clauses having isolated literals.

Definition 2.3.1 Isolated literal L

If none of the clauses of Γ contains Lc .

Lemme 2.3.2

Removing clauses with an isolated literal preserves the satisfiability.

Proof : see exercise 48.
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Example 2.3.3

Let Γ the set of clauses

(1) p∨q∨ r

(2) ¬q∨¬r

(3) q∨ s

(4) ¬s∨ t

Simplify Γ by removing clauses having isolated literals.

The literals p and t are isolated.
We therefore obtain

(2) ¬q∨¬r

(3) q∨ s

The literals ¬r and s are isolated.
We obtain the empty set.
According to lemma 2.3.2, Γ has a model.
But there is a counter-model, e.g. p 7→ 0, q 7→ 0, r 7→ 0 ! ! !
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Unit resolution

Definition 2.3.4

A unit clause is a clause which contains only one literal.

Lemma 2.3.5

Let L the set of literals of the unit clauses of Γ. Let Θ the set of clauses
obtained starting from Γ, as follows

I if L contains two complementary literals, then Θ = {⊥}.
I else Θ is obtained as follows

• removing the clauses containing an element of L
• in the remaining clauses, remove the complementary literals of the

elements of L

Γ has a model if and only if Θ has a model.

Proof : The proof is requested in exercise 49.
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• in the remaining clauses, remove the complementary literals of the

elements of L

Γ has a model if and only if Θ has a model.

Proof : The proof is requested in exercise 49.
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Example 2.3.6 Unit resolution

Simplify the following sets of clauses by unit resolution :

I Let Γ the set of clauses : p∨q, ¬p, ¬q

⊥ by unit resolution, hence Γ has no model.

I Let Γ the set of clauses : a∨b∨¬d , ¬a∨ c∨¬d , ¬b, d , ¬c.

1. a, ¬a.
2. Empty clause.

hence Γ has no model.
I Let Γ′ the set of clauses : p, q, p∨ r , ¬p∨ r , q∨¬r , ¬q∨ s.

By unit resolution, we obtain : r , s.
This set of clauses has a model, hence Γ′ has a model.
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The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Removal of valid clauses

Lemma 2.3.7

Let Θ the set of clauses obtained by removing the valid clauses of Γ.
Γ has a model iff Θ has a model.

Proof.

I Suppose that Γ has a model v , since Θ is a subset of clauses of Γ, v is also model of Θ.
Hence Θ has a model.

I Suppose that Θ has a model v . Let v ′ a truth assignment of Γ so that v ′(x) = v(x) for all

variable x belonging to both Γ and Θ. Let C a clause of Γ. If C is also a clause of Θ, then

v ′ is a model of C since v and v ′ give the same value to C. If C is not a clause of Θ, then

C is valid, consequently all truth assignment, v ′ in particular, is model of C. Hence Γ has

a model : v ′.

2

S. Devismes et al (Grenoble I) Propositional Resolution January 30, 2015 41 / 51



Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Removal of valid clauses

Lemma 2.3.7

Let Θ the set of clauses obtained by removing the valid clauses of Γ.

Γ has a model iff Θ has a model.

Proof.

I Suppose that Γ has a model v , since Θ is a subset of clauses of Γ, v is also model of Θ.
Hence Θ has a model.

I Suppose that Θ has a model v . Let v ′ a truth assignment of Γ so that v ′(x) = v(x) for all

variable x belonging to both Γ and Θ. Let C a clause of Γ. If C is also a clause of Θ, then

v ′ is a model of C since v and v ′ give the same value to C. If C is not a clause of Θ, then

C is valid, consequently all truth assignment, v ′ in particular, is model of C. Hence Γ has

a model : v ′.

2

S. Devismes et al (Grenoble I) Propositional Resolution January 30, 2015 41 / 51



Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Removal of valid clauses

Lemma 2.3.7

Let Θ the set of clauses obtained by removing the valid clauses of Γ.

Γ has a model iff Θ has a model.

Proof.

I Suppose that Γ has a model v , since Θ is a subset of clauses of Γ, v is also model of Θ.
Hence Θ has a model.

I Suppose that Θ has a model v . Let v ′ a truth assignment of Γ so that v ′(x) = v(x) for all

variable x belonging to both Γ and Θ. Let C a clause of Γ. If C is also a clause of Θ, then

v ′ is a model of C since v and v ′ give the same value to C. If C is not a clause of Θ, then

C is valid, consequently all truth assignment, v ′ in particular, is model of C. Hence Γ has

a model : v ′.

2

S. Devismes et al (Grenoble I) Propositional Resolution January 30, 2015 41 / 51



Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

The DPLL Algorithm(figure 2.1)

bool function Algo DPLL( Γ : set of clauses)
0 Remove the valid clauses of Γ.

If Γ = /0, return (true).
Else return (DPLL(Γ))

bool function DPLL( Γ : non-valid set of clauses)
The function returns true if and only if Γ is satisfiable
1 If ⊥ ∈ Γ, return(false).

If Γ = /0, return (true).
2 Reduce Γ : simply remove any clause containing another clause.
3 Remove from Γ the clauses containing isolated literals (cf. paragraph 2.3.1).

If the set Γ has been modified, goto 1.
4 Apply to Γ the unit resolution (cf paragraph 2.3.2).

If the set Γ has been modified, goto 1.
5 Select x , an arbitrary variable of Γ

return (DPLL(Γ[x := 0]) or then DPLL(Γ[x := 1]))
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Example 2.3.8

Let Γ the set of clauses :
¬a∨¬b, a∨b, ¬a∨¬c, a∨ c, ¬b∨¬c, b∨ c.

Γ
a 7→ 0
ww

a 7→ 1
((

b, c, ¬b∨¬c, b∨ c

RE
��

¬b, ¬c, ¬b∨¬c, b∨ c

RE
��

b, c, ¬b∨¬c

UR
��

¬b, ¬c, b∨ c

UR
��

⊥ ⊥
Since all leaves contain the empty clause, the set Γ is unsatisfiable.
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Example 2.3.8

Let Γ the set of clauses : ¬p∨¬q, ¬p∨ s, p∨q, ¬p∨¬s.

¬p∨¬q, ¬p∨ s, p∨q, ¬p∨¬s

s 7→ 0tt s 7→ 1 **
¬p∨¬q, ¬p, p∨q

RE
��

¬p∨¬q, p∨q, ¬p

¬p, p∨q

ELLI : q=1
��
¬p

ELLI : p = 0
��
/0

Since one leaf contains the empty clause, the set Γ is satisfiable. It is useless to

continue the construction of the right branch.
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Theorems 2.3.9 et 2.3.10

The algorithm Algo DPLL is correct and terminates.

Termination proof

I Step 0 is only executed once.

I Iteration in 1 : the number of clauses strictly decreases, hence
termination.

I Recursivity in 5 : the number of variables strictly decreases,
hence termination.

Reminder of property 2.1.21 : Γ has a model iff Γ[x := 0] is satisfiable
or Γ[x := 1] is satisfiable.
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Correctness proof

Invariant : the current value of Γ has a model iff Γ has a model.
Verified at step 0, 1 and 5, hence correct answers. Suppose the recursive
calls are correct :

I if DPLL(Γ[x := 0]) is true

, then by induction Γ[x := 0] is satisfiable,
hence Γ is satisfiable, according to property 2.1.21. which corresponds
to the true value of DPLL(Γ).

I if DPLL(Γ[x := 0]) is false

, then by induction Γ[x := 0] is unsatisfiable.
In this case, DPLL(Γ) equals DPLL(Γ[x := 1]) :

I Suppose that DPLL(Γ[x := 1]) is true

, then by induction Γ[x := 1]
is satisfiable, hence Γ is satisfiable, which corresponds to the true
value of DPLL(Γ).

I Suppose that DPLL(Γ[x := 1]) is false

, then by induction Γ[x := 1]
is unsatisfiable. Hence Γ is unsatisfiable, which corresponds to the
false value of DPLL(Γ)

.
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Propositional Resolution

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Remarks 2.3.11 and 2.3.12

I Forgetting simplifications : DPLL stays correct if we forget the
reduction (2), the removal of the isolated literals (3) and/or the
unit reduction (4).

I Choice of the variable (branching literal) :
I A good choice for the variable x from step (5), is to choose the

variable that appears most often.
I A better choice is to choose the variable which will lead to the

most of simplifications

Cf. Sub-section 2.3.5, for the principal branching heuristics
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Planning of the Semester

TODAY

I Propositional logic

I Propositional resolution *

I Propositional natural deduction

I First order logic

MIDTERM EXAM

I Basis for the automated proof
(� first order resolution �)

I First order natural deduction

EXAM
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Thank you for your attention.

Questions ?
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