Propositional Resolution

First part

Stéphane Devismes Pascal Lafourcade Michel Lévy Jean-François Monin (jean-francois.monin@imag.fr)

Université Joseph Fourier, Grenoble I

January 23, 2015

Last course

- Substitutions and replacement
- Normal Forms
- Boolean Algebra
- Boolean functions
- The BDDC tools

John, Peter and Mary by simplification

$$
\begin{gathered}
(p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m) \Rightarrow m \vee p \\
\neg(p \Rightarrow \neg j) \vee \neg(\neg p \Rightarrow j) \vee \neg(j \Rightarrow m) \vee m \vee p
\end{gathered}
$$

John, Peter and Mary by simplification

$$
\begin{gathered}
\quad(p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m) \Rightarrow m \vee p \\
\neg(p \Rightarrow \neg j) \vee \neg(\neg p \Rightarrow j) \vee \neg(j \Rightarrow m) \vee m \vee p \\
\neg(\neg p \vee \neg j) \vee \neg(\neg \neg p \vee j) \vee \neg(\neg j \vee m) \vee m \vee p
\end{gathered}
$$

John, Peter and Mary by simplification

$$
\begin{gathered}
\quad(p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m) \Rightarrow m \vee p \\
\neg(p \Rightarrow \neg j) \vee \neg(\neg p \Rightarrow j) \vee \neg(j \Rightarrow m) \vee m \vee p \\
\neg(\neg p \vee \neg j) \vee \neg(\neg \neg p \vee j) \vee \neg(\neg j \vee m) \vee m \vee p \\
\quad(p \wedge j) \vee(\neg p \wedge \neg j) \vee(j \wedge \neg m) \vee m \vee p
\end{gathered}
$$

John, Peter and Mary by simplification

$$
\begin{aligned}
& \quad(p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m) \Rightarrow m \vee p \\
& \neg(p \Rightarrow \neg j) \vee \neg(\neg p \Rightarrow j) \vee \neg(j \Rightarrow m) \vee m \vee p \\
& \neg(\neg p \vee \neg j) \vee \neg(\neg \neg p \vee j) \vee \neg(\neg j \vee m) \vee m \vee p \\
& \quad(p \wedge j) \vee(\neg p \wedge \neg j) \vee(j \wedge \neg m) \vee m \vee p
\end{aligned}
$$

with $x \vee(x \wedge y) \equiv x$

$$
(\neg p \wedge \neg j) \vee(j \wedge \neg m) \vee m \vee p
$$

John, Peter and Mary by simplification

$$
\begin{gathered}
\quad(p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m) \Rightarrow m \vee p \\
\neg(p \Rightarrow \neg j) \vee \neg(\neg p \Rightarrow j) \vee \neg(j \Rightarrow m) \vee m \vee p \\
\neg(\neg p \vee \neg j) \vee \neg(\neg \neg p \vee j) \vee \neg(\neg j \vee m) \vee m \vee p \\
\quad(p \wedge j) \vee(\neg p \wedge \neg j) \vee(j \wedge \neg m) \vee m \vee p
\end{gathered}
$$

with $x \vee(x \wedge y) \equiv x$

$$
(\neg p \wedge \neg j) \vee(j \wedge \neg m) \vee m \vee p
$$

$x \vee(\neg x \wedge y) \equiv x \vee y$

John, Peter and Mary by simplification

$$
\begin{aligned}
& \quad(p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m) \Rightarrow m \vee p \\
& \neg(p \Rightarrow \neg j) \vee \neg(\neg p \Rightarrow j) \vee \neg(j \Rightarrow m) \vee m \vee p \\
& \neg(\neg p \vee \neg j) \vee \neg(\neg \neg p \vee j) \vee \neg(\neg j \vee m) \vee m \vee p \\
& \quad(p \wedge j) \vee(\neg p \wedge \neg j) \vee(j \wedge \neg m) \vee m \vee p
\end{aligned}
$$

with $x \vee(x \wedge y) \equiv x$

$$
(\neg p \wedge \neg j) \vee(j \wedge \neg m) \vee m \vee p
$$

$$
x \vee(\neg x \wedge y) \equiv x \vee y
$$

$$
\neg j \vee j \vee m \vee p \equiv \top
$$

Overview

Introduction

Some definitions and notations

Correctness

Completeness

Conclusion

Propositional Resolution
Introduction

Plan

Introduction

Some definitions and notations

Correctness

Completeness

Conclusion

Deduction methods

- Is a formula valid?
- Is a reasoning correct?

Two methods :

Deduction methods

- Is a formula valid?
- Is a reasoning correct?

Two methods :
The truth tables and transformations

Deduction methods

- Is a formula valid?
- Is a reasoning correct?

Two methods :
The truth tables and transformations

Problem

If the number of variables increases, these methods are very long

Example

By a truth table, to verify
$a \Rightarrow b, b \Rightarrow c, c \Rightarrow d, d \Rightarrow e, e \Rightarrow f, f \Rightarrow g, g \Rightarrow h, h \Rightarrow i, i \Rightarrow j \models a \Rightarrow j$ we must test $2^{10}=1024$ lines.

Example

By a truth table, to verify
$a \Rightarrow b, b \Rightarrow c, c \Rightarrow d, d \Rightarrow e, e \Rightarrow f, f \Rightarrow g, g \Rightarrow h, h \Rightarrow i, i \Rightarrow j \models a \Rightarrow j$ we must test $2^{10}=1024$ lines.

Or, by deduction, this is a correct reasoning :

Example

By a truth table, to verify
$a \Rightarrow b, b \Rightarrow c, c \Rightarrow d, d \Rightarrow e, e \Rightarrow f, f \Rightarrow g, g \Rightarrow h, h \Rightarrow i, i \Rightarrow j \models a \Rightarrow j$ we must test $2^{10}=1024$ lines.

Or, by deduction, this is a correct reasoning :

1. By transitivity of the implication, $a \Rightarrow j \models a \Rightarrow j$.
2. By definition, the formula $a \Rightarrow j$ is a consequence of its own.

Propositional Resolution
Introduction

Today

Introduction

Today

- Formalisation of a deductive system (with 1 rule)

Today

- Formalisation of a deductive system (with 1 rule)
- How to prove a formula by resolution

Today

- Formalisation of a deductive system (with 1 rule)
- How to prove a formula by resolution
- Correctness of a deductive system

Today

- Formalisation of a deductive system (with 1 rule)
- How to prove a formula by resolution
- Correctness of a deductive system
- Completeness of a deductive system

Today

- Formalisation of a deductive system (with 1 rule)
- How to prove a formula by resolution
- Correctness of a deductive system
- Completeness of a deductive system
- Some properties of resolution

Intuition

Formulas are put into CNF (conjunction of clauses)

$$
a \vee \neg b, b \vee c \models a \vee c
$$

Can be seen as transitivity of implication

$$
b \Rightarrow a, \neg c \Rightarrow b \models \neg c \Rightarrow a
$$

Some definitions and notations

Plan

Introduction

Some definitions and notations

Correctness

Completeness

Conclusion

Definitions

Definition 2.1.1

- A literal is a member of a clause, if it is a member of the set of literals of the clause.

Definitions

Definition 2.1.1

- A literal is a member of a clause, if it is a member of the set of literals of the clause.
- A clause A is included in a clause B, if all literals of clause A are members of clause B. In this case, A is a sub-clause of B.

Definitions

Definition 2.1.1

- A literal is a member of a clause, if it is a member of the set of literals of the clause.
- A clause A is included in a clause B, if all literals of clause A are members of clause B. In this case, A is a sub-clause of B.
- Two clauses are equal if they have the same set of literals.

Propositional Resolution
Some definitions and notations

Example 2.1.2

- $p " \in " \neg q \vee p \vee r \vee p$

Example 2.1.2

- $p " \in " \neg q \vee p \vee r \vee p$
- $p \vee \neg q$ " $\subseteq " \neg q \vee p \vee r \vee p$

Example 2.1.2

- p " \in " $\neg q \vee p \vee r \vee p$
- $p \vee \neg q$ " \subseteq " $\neg q \vee p \vee r \vee p$
- $\neg q \vee p \vee r \vee p$ " $\backslash p$ " $=$ " $\neg q \vee r$

Example 2.1.2

- p " \in " $\neg q \vee p \vee r \vee p$
- $p \vee \neg q$ " \subseteq " $\neg q \vee p \vee r \vee p$
- $\neg q \vee p \vee r \vee p " \backslash p$ " $=$ " $\neg q \vee r$
- $p \vee p \vee p ">p "=" \perp$

Example 2.1.2

- p " \in " $\neg q \vee p \vee r \vee p$
- $p \vee \neg q$ " \subseteq " $\neg q \vee p \vee r \vee p$
- $\neg q \vee p \vee r \vee p$ " $\backslash p$ " $=" \neg q \vee r$
- $p \vee p \vee p " \ " p "=" \perp$
- Adding the literal r to the clause p yields the clause $p \vee r$

Example 2.1.2

- p " \in " $\neg q \vee p \vee r \vee p$
- $p \vee \neg q$ " \subseteq " $\neg q \vee p \vee r \vee p$
- $\neg q \vee p \vee r \vee p " \backslash p$ " $=$ " $\neg q \vee r$
- $p \vee p \vee p " \ " p "=" \perp$
- Adding the literal r to the clause p yields the clause $p \vee r$
- Adding the literal p to the clause \perp yields the clause p

Example 2.1.2

- $p " \in " \neg q \vee p \vee r \vee p$
- $p \vee \neg q$ " $\subseteq " \neg q \vee p \vee r \vee p$
- $\neg q \vee p \vee r \vee p " \backslash p$ " $=" \neg q \vee r$
- $p \vee p \vee p " \backslash " p "=" \perp$
- Adding the literal r to the clause p yields the clause $p \vee r$
- Adding the literal p to the clause \perp yields the clause p
- The clauses $p \vee \neg q$, $\neg q \vee p$, and $p \vee \neg q \vee p$ are equal

Notation

$s(A)$ the set of literals of the clause A.
By convention \perp is the empty clause and $s(\perp)=\emptyset$.

Example 2.1.3

$$
s(\neg q \vee p \vee r \vee p \vee \neg p)=
$$

Notation

$s(A)$ the set of literals of the clause A.
By convention \perp is the empty clause and $s(\perp)=\emptyset$.

Example 2.1.3

$$
s(\neg q \vee p \vee r \vee p \vee \neg p)=
$$

$$
\{\neg q, p, r, \neg p\}
$$

Complementary literal

Definition 2.1.4

We note L^{C} the complementary literal of a literal L :
If L is a variable, L^{c} is the negation of L.

If L is the negation of a variable, L^{c} is obtained by removing the negation of L.

Complementary literal

Definition 2.1.4

We note L^{C} the complementary literal of a literal L :
If L is a variable, L^{c} is the negation of L.

If L is the negation of a variable, L^{c} is obtained by removing the negation of L.

Example 2.1.5

$x^{c}=\neg x$ and $\neg x^{c}=x$.

Resolvent

Definition 2.1.6

Let A and B be two clauses.

The clause C is a resolvent of A and B iff there exists a literal L such that $L \in s(A), L^{c} \in s(B), s(C)=(s(A)-\{L\}) \cup\left(s(B)-\left\{L^{c}\right\}\right)$.

Resolvent

Definition 2.1.6

Let A and B be two clauses.

The clause C is a resolvent of A and B iff there exists a literal L such that $L \in s(A), L^{c} \in s(B), s(C)=(s(A)-\{L\}) \cup\left(s(B)-\left\{L^{c}\right\}\right)$.
" C is a resolvent of A and B " is represented by :
$A \quad B$
C

Resolvent

Definition 2.1.6

Let A and B be two clauses.

The clause C is a resolvent of A and B iff there exists a literal L such that $L \in s(A), L^{c} \in s(B), s(C)=(s(A)-\{L\}) \cup\left(s(B)-\left\{L^{c}\right\}\right)$.
" C is a resolvent of A and B " is represented by :

C is generated by A and B
A and B are the parents of the clause C.

Examples with resolution

Example 2.1.7

Give the resolvents of :

- $p \vee q \vee r$ and $p \vee \neg q \vee r$
- $p \vee \neg q$ and $\neg p \vee q \vee r$
- p and $\neg p$

Examples with resolution

Example 2.1.7

Give the resolvents of :

- $p \vee q \vee r$ and $p \vee \neg q \vee r$

$$
p \vee q \vee r \quad p \vee \neg q \vee r
$$

$p \vee r$

- $p \vee \neg q$ and $\neg p \vee q \vee r$
- p and $\neg p$

Examples with resolution

Example 2.1.7

Give the resolvents of :

- $p \vee q \vee r$ and $p \vee \neg q \vee r$

$$
p \vee q \vee r \quad p \vee \neg q \vee r
$$

$$
p \vee r
$$

- $p \vee \neg q$ and $\neg p \vee q \vee r$

$$
\frac{p \vee \neg q \quad \neg p \vee q \vee r}{\neg p \vee p \vee r} \quad \frac{p \vee \neg q \quad \neg p \vee q \vee r}{\neg q \vee q \vee r}
$$

- p and $\neg p$

Examples with resolution

Example 2.1.7

Give the resolvents of :

- $p \vee q \vee r$ and $p \vee \neg q \vee r$

$$
p \vee q \vee r \quad p \vee \neg q \vee r
$$

$$
p \vee r
$$

- $p \vee \neg q$ and $\neg p \vee q \vee r$

$$
\frac{p \vee \neg q \quad \neg p \vee q \vee r}{\neg p \vee p \vee r} \quad \frac{p \vee \neg q \quad \neg p \vee q \vee r}{\neg q \vee q \vee r}
$$

- p and $\neg p$

```
p \negp
```


Property

Property 2.1.8

If one of the parents of a resolvent is valid, the resolvent is valid or contains the other parent.

Proof.

See exercise 40.

Problem with \vee

Given two clauses A and B, the formula $A \vee B$ is not a clause if one of the two operands of the disjunction is the empty clause.

Example : $\perp \vee p$ is not a clause.

Solution: \tilde{V}

Definition 2.1.9

Let C and D be two clauses.
We denote $C \tilde{\vee} D$ the following clause :

- If $C=\perp$ then $C \tilde{V} D=D$,
- else if $D=\perp$ then $C \tilde{\vee} D=C$ else $C \tilde{\vee} D=C \vee D$.

Solution: \tilde{V}

Definition 2.1.9

Let C and D be two clauses.

We denote $C \tilde{\vee} D$ the following clause :

- If $C=\perp$ then $C \tilde{V} D=D$,
- else if $D=\perp$ then $C \tilde{\vee} D=C$ else $C \tilde{\vee} D=C \vee D$.

Adding a literal L to the clause C, is building $C \tilde{\vee} L$.

Resolvent : another definition

Definition 2.1.10

Let A and B be two clauses.
The clause C is a resolvent of A and B if and only if there is a literal L such that :

- L is a member of the clause A, L^{c} is a member of the clause B
- C equals a clause $A^{\prime} \tilde{\vee} B^{\prime}$ where $A^{\prime}=A-\{L\}$ is obtained by removing L from A and $B^{\prime}=B-\left\{L^{c}\right\}$ is obtained by removing L^{c} from B.

Definition of a proof

Definition 2.1.11

Let Γ be a set of clauses and C a clause.

A proof of C starting from Γ is a list of clauses ending by C. Every clause of the proof is a member of Γ or is a resolvent of the two clauses already obtained.

Definition of a proof

Definition 2.1.11

Let Γ be a set of clauses and C a clause.
A proof of C starting from Γ is a list of clauses ending by C. Every clause of the proof is a member of Γ or is a resolvent of the two clauses already obtained.

The clause C is deduced from Γ (Γ yields C, or Γ proves C), denoted $\Gamma \vdash C$, if there is a proof of C starting from Γ.

Example

Example 2.1.12

Let Γ be the set of clauses $\neg p \vee q, p \vee \neg q, \neg p \vee \neg q, p \vee q$. We show that $\Gamma \vdash \perp$:

Example

Example 2.1.12

Let Γ be the set of clauses $\neg p \vee q, p \vee \neg q, \neg p \vee \neg q, p \vee q$. We show that $\Gamma \vdash \perp$:

$$
1 \quad p \vee q \quad \text { Hypothesis }
$$

Example

Example 2.1.12

Let Γ be the set of clauses $\neg p \vee q, p \vee \neg q, \neg p \vee \neg q, p \vee q$. We show that $\Gamma \vdash \perp$:

$1 p \vee q \quad$ Hypothesis
$2 p \vee \neg q \quad$ Hypothesis

Example

Example 2.1.12

Let Γ be the set of clauses $\neg p \vee q, p \vee \neg q, \neg p \vee \neg q, p \vee q$. We show that $\Gamma \vdash \perp$:

1	$p \vee q$	Hypothesis
2	$p \vee \neg q$	Hypothesis
3	p	Resolvent of 1,2

Example

Example 2.1.12

Let Γ be the set of clauses $\neg p \vee q, p \vee \neg q, \neg p \vee \neg q, p \vee q$. We show that $\Gamma \vdash \perp$:

1	$p \vee q$	Hypothesis
2	$p \vee \neg q$	Hypothesis
3	p	Resolvent of 1,2
4	$\neg p \vee q$	Hypothesis

Example

Example 2.1.12

Let Γ be the set of clauses $\neg p \vee q, p \vee \neg q, \neg p \vee \neg q, p \vee q$. We show that $\Gamma \vdash \perp$:

1	$p \vee q$	Hypothesis
2	$p \vee \neg q$	Hypothesis
3	p	Resolvent of 1, 2
4	$\neg p \vee q$	Hypothesis
5	q	Resolvent of 3, 4

Example

Example 2.1.12

Let Γ be the set of clauses $\neg p \vee q, p \vee \neg q, \neg p \vee \neg q, p \vee q$. We show that $\Gamma \vdash \perp$:

1	$p \vee q$	Hypothesis
2	$p \vee \neg q$	Hypothesis
3	p	Resolvent of 1,2
4	$\neg p \vee q$	Hypothesis
5	q	Resolvent of 3,4
6	$\neg p \vee \neg q$	Hypothesis

Example

Example 2.1.12

Let Γ be the set of clauses $\neg p \vee q, p \vee \neg q, \neg p \vee \neg q, p \vee q$. We show that $\Gamma \vdash \perp$:

1	$p \vee q$	Hypothesis
2	$p \vee \neg q$	Hypothesis
3	p	Resolvent of 1, 2
4	$\neg p \vee q$	Hypothesis
5	q	Resolvent of 3, 4
6	$\neg p \vee \neg q$	Hypothesis
7	$\neg p$	Resolvent of 5, 6

Example

Example 2.1.12

Let Γ be the set of clauses $\neg p \vee q, p \vee \neg q, \neg p \vee \neg q, p \vee q$. We show that $\Gamma \vdash \perp$:

1	$p \vee q$	Hypothesis
2	$p \vee \neg q$	Hypothesis
3	p	Resolvent of 1, 2
4	$\neg p \vee q$	Hypothesis
5	q	Resolvent of 3, 4
6	$\neg p \vee \neg q$	Hypothesis
7	$\neg p$	Resolvent of 5, 6
8	\perp	Resolvent of 3, 7

Proof tree

Example 2.1.12

Let Γ be the set of clauses $\neg p \vee q, p \vee \neg q, \neg p \vee \neg q, p \vee q$. We show that $\Gamma \vdash \perp$:

$$
\begin{array}{llll}
\frac{p \vee q \quad p \vee \neg q}{p} & \neg p \vee q \\
\hline & q & \neg p \vee \neg q \\
& \neg p & & \\
\hline
\end{array}
$$

$$
\perp
$$

Definition 2.1.13

Proof length

A proof P of C starting from a set of clauses Γ is of length n if it contains n lines.

Monotony and Composition

Property 2.1.14

Let Γ, Δ be two sets of clauses and A, B be two clauses.

1. Monotony of deduction : If $\Gamma \vdash A$ and if Γ is included in Δ then $\Delta \vdash A$
2. Composition of deductions : If $\Gamma \vdash A, \Gamma \vdash B$ and if C is a resolvent of A and B then $\Gamma \vdash C$.

Proof.

Exercise 39

Propositional Resolution
Correctness

Plan

Introduction

Some definitions and notations

Correctness

Completeness

Conclusion

Definition

The correctness of a logic system states that all proofs obtained in this system are <correct».

Correctness of the resolution rule

Theorem 2.1.15
If C is a resolvent of A and B then $A, B \models C$.

Proof.

Correctness of the resolution rule

Theorem 2.1.15
If C is a resolvent of A and B then $A, B \models C$.

Proof.
If C is a resolvent of A and B, then there is a literal L so that $L \in s(A), L^{c} \in s(B), s(C)=(s(A)-\{L\}) \cup\left(s(B)-\left\{L^{c}\right\}\right)$.

Correctness of the resolution rule

Theorem 2.1.15

If C is a resolvent of A and B then $A, B \models C$.

Proof.

If C is a resolvent of A and B, then there is a literal L so that $L \in s(A), L^{c} \in s(B), s(C)=(s(A)-\{L\}) \cup\left(s(B)-\left\{L^{c}\right\}\right)$.
Let v a model truth assignment of A and B . We have $[A]_{v}=1$ and $[B]_{v}=1$

Correctness of the resolution rule

Theorem 2.1.15
If C is a resolvent of A and B then $A, B \models C$.

Proof.

If C is a resolvent of A and B, then there is a literal L so that
$L \in s(A), L^{c} \in s(B), s(C)=(s(A)-\{L\}) \cup\left(s(B)-\left\{L^{c}\right\}\right)$.
Let v a model truth assignment of A and B . We have $[A]_{v}=1$ and $[B]_{v}=1$
Let us show that $[C]_{v}=1$.

- Suppose that $[L]_{v}=1$.
- Suppose that $\left[L^{C}\right]_{v}=1$.

Correctness of the resolution rule

Theorem 2.1.15

If C is a resolvent of A and B then $A, B \models C$.

Proof.

If C is a resolvent of A and B, then there is a literal L so that
$L \in s(A), L^{c} \in s(B), s(C)=(s(A)-\{L\}) \cup\left(s(B)-\left\{L^{c}\right\}\right)$.
Let v a model truth assignment of A and B. We have $[A]_{v}=1$ and $[B]_{v}=1$
Let us show that $[C]_{v}=1$.

- Suppose that $[L]_{v}=1$. Therefore $\left[L^{C}\right]_{v}=0 . v$ is therefore a model of a literal of $\left(s(B)-\left\{L^{c}\right\}\right)$ since $[B]_{v}=1$. Hence $[C]_{v}=1$.
- Suppose that $\left[L^{C}\right]_{v}=1$.

Correctness of the resolution rule

Theorem 2.1.15

If C is a resolvent of A and B then $A, B \models C$.

Proof.

If C is a resolvent of A and B, then there is a literal L so that
$L \in s(A), L^{c} \in s(B), s(C)=(s(A)-\{L\}) \cup\left(s(B)-\left\{L^{c}\right\}\right)$.
Let v a model truth assignment of A and B. We have $[A]_{v}=1$ and $[B]_{v}=1$
Let us show that $[C]_{v}=1$.

- Suppose that $[L]_{v}=1$. Therefore $\left[L^{C}\right]_{v}=0 . v$ is therefore a model of a literal of $\left(s(B)-\left\{L^{c}\right\}\right)$ since $[B]_{v}=1$. Hence $[C]_{v}=1$.
- Suppose that $\left[L^{C}\right]_{v}=1$. Therefore $[L]_{v}=0 . v$ is therefore a model of $(s(A)-\{L\})$ since $[A]_{v}=1$. Hence $[C]_{v}=1$.

Correctness of the resolution rule

Theorem 2.1.15

If C is a resolvent of A and B then $A, B \models C$.

Proof.

If C is a resolvent of A and B, then there is a literal L so that
$L \in s(A), L^{c} \in s(B), s(C)=(s(A)-\{L\}) \cup\left(s(B)-\left\{L^{c}\right\}\right)$.
Let v a model truth assignment of A and B. We have $[A]_{v}=1$ and $[B]_{v}=1$
Let us show that $[C]_{v}=1$.

- Suppose that $[L]_{v}=1$. Therefore $\left[L^{c}\right]_{v}=0 . v$ is therefore a model of a literal of $\left(s(B)-\left\{L^{c}\right\}\right)$ since $[B]_{v}=1$. Hence $[C]_{v}=1$.
- Suppose that $\left[L^{C}\right]_{v}=1$. Therefore $[L]_{v}=0 . v$ is therefore a model of $(s(A)-\{L\})$ since $[A]_{v}=1$. Hence $[C]_{v}=1$.
Since all truth assignment is model of L or L^{C}, v is a model of C.

Correctness of the deduction

Theorem 2.1.16
Let Γ a set of clauses and C a clause. If $\Gamma \vdash C$ then $\Gamma \models C$.

Proof.

Suppose that $\Gamma \vdash C$. There is a proof P of C starting from Γ. Suppose that for all proof of D starting from Γ, shorter than P, we have $\Gamma \models D$.
Let us show that $\Gamma \models C$. There are two possible cases :

Correctness of the deduction

Theorem 2.1.16
Let Γ a set of clauses and C a clause. If $\Gamma \vdash C$ then $\Gamma \vDash C$.

Proof.

Suppose that $\Gamma \vdash C$. There is a proof P of C starting from Γ. Suppose that for all proof of D starting from Γ, shorter than P, we have $\Gamma \models D$.
Let us show that $\Gamma \models C$. There are two possible cases :

1. C has the same set of literals as a member of Γ, in this case $\Gamma \models C$.

Correctness of the deduction

Theorem 2.1.16
Let Γ a set of clauses and C a clause. If $\Gamma \vdash C$ then $\Gamma \vDash C$.

Proof.

Suppose that $\Gamma \vdash C$. There is a proof P of C starting from Γ. Suppose that for all proof of D starting from Γ, shorter than P, we have $\Gamma \models D$.
Let us show that $\Gamma \models C$. There are two possible cases :

1. C has the same set of literals as a member of Γ, in this case $\Gamma \models C$.
2. $\Gamma \vdash A, \Gamma \vdash B$ and

By induction hypothesis : $\Gamma \models A$ and $\Gamma \models B$. According to theorem 2.1.15: $A, B \models C$. Hence $\Gamma \models C$.

Propositional Resolution
Completeness

Plan

Introduction

Some definitions and notations

Correctness

Completeness

Conclusion

Definition

Completeness for the refutation is the following property : If $\Gamma \models \perp$ then $\Gamma \vdash \perp$.

We prove this result for finite Γ.
$\Gamma[L:=\top]$

Definition 2.1.18
Let Γ be a set of clauses and L a literal.
$\Gamma[L:=\top]$ is the set of clauses obtained by deleting the clauses for which L is a member and by removing L^{c} from the other clauses.

We define $\Gamma[L:=\perp]$ as $\Gamma\left[L^{c}:=\top\right]$.

Examples

Example 2.1.19

Let Γ be the set of clauses $\neg p \vee q, \neg q \vee r, p \vee q, p \vee r$. We have :

- $\Gamma[p:=\top]=$

Examples

Example 2.1.19

Let Γ be the set of clauses $\neg p \vee q, \neg q \vee r, p \vee q, p \vee r$. We have :

- $\Gamma[p:=\top]=$
$\{q, \neg q \vee r\}$.
- $\Gamma[p:=\perp]=$

Examples

Example 2.1.19

Let Γ be the set of clauses $\neg p \vee q, \neg q \vee r, p \vee q, p \vee r$. We have :

- $\Gamma[p:=\top]=$
$\{q, \neg q \vee r\}$.
- $\Gamma[p:=\perp]=$

$$
\{\neg q \vee r, q, r\}
$$

Examples

Example 2.1.19

Let Γ be the set of clauses $\neg p \vee q, \neg q \vee r, p \vee q, p \vee r$. We have :

- $\Gamma[p:=\top]=$

$$
\{q, \neg q \vee r\} .
$$

- $\Gamma[p:=\perp]=$

$$
\{\neg q \vee r, q, r\} .
$$

Let us observe that :

- $(\neg T \vee q) \wedge(\neg q \vee r) \wedge(T \vee q) \wedge(T \vee r) \equiv$ $q(\neg q \vee r)=\Gamma[p:=\top]$.
- $(\neg \perp \vee q) \wedge(\neg q \vee r) \wedge(\perp \vee q) \wedge(\perp \vee r) \equiv$

$$
(\neg q \vee r) q r=\Gamma[p:=\perp] .
$$

Notation and definition

Intuitively, $v[L \mapsto 1]$ is the truth assignment giving to L the value 1 , to L^{c} the value 0 and which does not change the value of the other literals.

Definition 2.1.20

Let a truth assignment v, the truth assignment $v[L \mapsto 1]$ is an assignment identical to v except possibly for x, the variable of L. If $L=x$ then $v[L \mapsto 1](x)=1$, if $L=\neg x$ then $v[L \mapsto 1](x)=0$.

We define $v[L \mapsto 0]$ as $v\left[L^{c} \mapsto 1\right]$.

Property of $\Gamma[L:=x]$

Property 2.1.21

Let Γ a set of clauses and L a literal. Γ has a model if and only if $\Gamma[L:=\top]$ or $\Gamma[L:=\perp]$ has a model.

Proof.

Let v be a truth assignment.

Property of $\Gamma[L:=x]$

Property 2.1.21

Let Γ a set of clauses and L a literal. Γ has a model if and only if $\Gamma[L:=\top]$ or $\Gamma[L:=\perp]$ has a model.

Proof.

Let v be a truth assignment.
\Rightarrow The truth assignment v is a model of Γ.
$\Leftarrow \Gamma[L:=\top]$ or $\Gamma[L:=\perp]$ has a model.

First case : v is model of Γ

1. Suppose that v gives to L the value 1 and let us show that v is a model of $\Gamma[L:=\top]$.
2. Suppose that v gives to L the value 0 .

First case : v is model of Γ

1. Suppose that v gives to L the value 1 and let us show that v is a model of $\Gamma[L:=\top]$. Let C a clause of $\Gamma[L:=\top]$. There is in Γ a clause C^{\prime} such that C is obtained by removing L^{c} from C^{\prime}. Since v is model of Γ, v is model of C^{\prime} hence of a literal which is not L^{c} (since L^{c} equals 0 in this truth assignment). Consequently, v is model of C. Since C is any clause of $\Gamma[L:=\top], v$ is model of $\Gamma[L:=\top]$.
2. Suppose that v gives to L the value 0 .

First case : v is model of Γ

1. Suppose that v gives to L the value 1 and let us show that v is a model of $\Gamma[L:=\top]$. Let C a clause of $\Gamma[L:=\top]$. There is in Γ a clause C^{\prime} such that C is obtained by removing L^{c} from C^{\prime}. Since v is model of Γ, v is model of C^{\prime} hence of a literal which is not L^{c} (since L^{c} equals 0 in this truth assignment). Consequently, v is model of C. Since C is any clause of $\Gamma[L:=\top], v$ is model of $\Gamma[L:=\top]$.
2. Suppose that v gives to L the value 0 . We get back to the previous case by exchanging L and L^{c} and we show that v is model of $\Gamma[L:=\perp]$.

Second case : $\Gamma[L:=\top]$ or $\Gamma[L:=\perp]$ has a model

Let C be a clause of Γ.

1. Suppose that the truth assignment v is model of $\Gamma[L:=\top]$. Let us show that $v[L:=T]$ is model of Γ. Let C be a clause of Γ.

Second case : $\Gamma[L:=\top]$ or $\Gamma[L:=\perp]$ has a model

Let C be a clause of Γ.

1. Suppose that the truth assignment v is model of $\Gamma[L:=\top]$. Let us show that $v[L:=T]$ is model of Γ. Let C be a clause of Γ.
1.1 Suppose that L is a literal of C, then $v[L:=\top]$ is model of C since this truth assignment gives to L the value 1 .

Second case : $\Gamma[L:=\top]$ or $\Gamma[L:=\perp]$ has a model

Let C be a clause of Γ.

1. Suppose that the truth assignment v is model of $\Gamma[L:=\top]$. Let us show that $v[L:=T]$ is model of Γ. Let C be a clause of Γ.
1.1 Suppose that L is a literal of C, then $v[L:=\top]$ is model of C since this truth assignment gives to L the value 1 .
1.2 Suppose that L is not a literal of C. Then there is a clause C^{\prime} member of $\Gamma[L:=\top]$ such that C^{\prime} is obtained by removing L^{C} from C. The variable of L is not a variable of C^{\prime}. Consequently v and $v[L:=\top]$ give the same value to C^{\prime}. Since v is model of $\Gamma[L:=\top], v$ is model of C^{\prime} therefore $v[L:=T]$ is model of C^{\prime}. Since C^{\prime} is included in $C, v[L:=T]$ is model of C.

Second case : $\Gamma[L:=\top]$ or $\Gamma[L:=\perp]$ has a model

Let C be a clause of Γ.

1. Suppose that the truth assignment v is model of $\Gamma[L:=\top]$. Let us show that $v[L:=T]$ is model of Γ. Let C be a clause of Γ.
1.1 Suppose that L is a literal of C, then $v[L:=\top]$ is model of C since this truth assignment gives to L the value 1 .
1.2 Suppose that L is not a literal of C. Then there is a clause C^{\prime} member of $\Gamma[L:=\top]$ such that C^{\prime} is obtained by removing L^{C} from C. The variable of L is not a variable of C^{\prime}. Consequently v and $v[L:=\top]$ give the same value to C^{\prime}. Since v is model of $\Gamma[L:=\top], v$ is model of C^{\prime} therefore $v[L:=T]$ is model of C^{\prime}. Since C^{\prime} is included in $C, v[L:=T]$ is model of C.
Since C is any clause of $\Gamma, v[L:=\top]$ is model of Γ.

Second case : $\Gamma[L:=\top]$ or $\Gamma[L:=\perp]$ has a model

Let C be a clause of Γ.

1. Suppose that the truth assignment v is model of $\Gamma[L:=\top]$. Let us show that $v[L:=T]$ is model of Γ. Let C be a clause of Γ.
1.1 Suppose that L is a literal of C, then $v[L:=\top]$ is model of C since this truth assignment gives to L the value 1 .
1.2 Suppose that L is not a literal of C. Then there is a clause C^{\prime} member of $\Gamma[L:=T]$ such that C^{\prime} is obtained by removing L^{C} from C. The variable of L is not a variable of C^{\prime}. Consequently v and $v[L:=\top]$ give the same value to C^{\prime}. Since v is model of $\Gamma[L:=\top], v$ is model of C^{\prime} therefore $v[L:=T]$ is model of C^{\prime}. Since C^{\prime} is included in $C, v[L:=T]$ is model of C.
Since C is any clause of $\Gamma, v[L:=\top]$ is model of Γ.
2. Suppose the truth assignment v is model of $\Gamma[L:=\perp]$. By an analogous proof, we show that $v[L:=\perp]$ is model of Γ.

Lemma 2.1.22

Lemma 2.1.22

Let Γ a set of clauses, C a clause and L a literal. If $\Gamma[L:=\top] \vdash C$ then $\Gamma \vdash C$ or $\Gamma \vdash C \tilde{\vee} L^{c}$.

Proof.

Starting from a proof of C starting from $\Gamma[L:=\top]$, we obtain a proof of C or of $C \tilde{\vee} L^{C}$ starting from Γ by adding a literal L^{C} to the clauses where it has been removed from.

Lemma 2.1.22

Lemma 2.1.22

Let Γ a set of clauses, C a clause and L a literal. If $\Gamma[L:=\top] \vdash C$ then $\Gamma \vdash C$ or $\Gamma \vdash C \tilde{V} L^{c}$.

Proof.

Starting from a proof of C starting from $\Gamma[L:=\top]$, we obtain a proof of C or of $C \tilde{\vee} L^{C}$ starting from Γ by adding a literal L^{C} to the clauses where it has been removed from.

Let us formalise this tentative proof. Suppose that $\Gamma[L:=\top] \vdash C$. There is a proof P of C starting from $\Gamma[L:=\top]$. Suppose that for all proof of D starting from $\Gamma[L:=\top]$, shorter than P, we have $\Gamma \vdash D$ or $\Gamma \vdash D \tilde{\vee} L^{c}$.

Lemma 2.1.22

Lemma 2.1.22

Let Γ a set of clauses, C a clause and L a literal. If $\Gamma[L:=\top] \vdash C$ then $\Gamma \vdash C$ or $\Gamma \vdash C \tilde{V} L^{c}$.

Proof.

Starting from a proof of C starting from $\Gamma[L:=\top]$, we obtain a proof of C or of $C \tilde{\vee} L^{C}$ starting from Γ by adding a literal L^{C} to the clauses where it has been removed from.

Let us formalise this tentative proof. Suppose that $\Gamma[L:=\top] \vdash C$. There is a proof P of C starting from $\Gamma[L:=\top]$. Suppose that for all proof of D starting from $\Gamma[L:=\top]$, shorter than P, we have $\Gamma \vdash D$ or $\Gamma \vdash D \tilde{\vee} L^{c}$. There are two possible cases :

1. C is a member of $\Gamma[L:=\top]$.
2. C is resolvent of 2 clauses A and B preceding C in the proof P.

First case : C is a member of $\Gamma[L:=\top]$

> Hence there is a clause C^{\prime} member of Γ such that $s\left(C^{\prime}\right)=s(C)$ or $s\left(C^{\prime}\right)=s(C) \cup\left\{L^{c}\right\}$.

Let us examine those two cases.

First case : C is a member of $\Gamma[L:=\top]$

> Hence there is a clause C^{\prime} member of Γ such that $s\left(C^{\prime}\right)=s(C)$ or $s\left(C^{\prime}\right)=s(C) \cup\left\{L^{c}\right\}$.

Let us examine those two cases.

1. Suppose $s\left(C^{\prime}\right)=s(C)$.

$$
\text { By definition of proof } \Gamma \vdash C \text {. }
$$

First case : C is a member of $\Gamma[L:=\top]$

Hence there is a clause C^{\prime} member of Γ such that $s\left(C^{\prime}\right)=s(C)$ or $s\left(C^{\prime}\right)=s(C) \cup\left\{L^{c}\right\}$.

Let us examine those two cases.

1. Suppose $s\left(C^{\prime}\right)=s(C)$.

By definition of proof $\Gamma \vdash C$.
2. Suppose $s\left(C^{\prime}\right)=s(C) \cup\left\{L^{c}\right\}$.

We have $s\left(C^{\prime}\right)=s\left(C \tilde{\vee} L^{c}\right)$ hence by definition of proof, $\Gamma \vdash C \tilde{\vee} L^{c}$

Second case : C is resolvent of 2 clauses A and B preceding C in the proof P

Second case : C is resolvent of 2 clauses A and B preceding C in the proof P

Hence by induction hypothesis :

- $\Gamma \vdash A$ or $\Gamma \vdash A \tilde{V} L^{c}$
- $\Gamma \vdash B$ or $\Gamma \vdash B \tilde{V} L^{c}$

Second case : C is resolvent of 2 clauses A and B preceding C in the proof P

Hence by induction hypothesis :

- $\Gamma \vdash A$ or $\Gamma \vdash A \tilde{V} L^{c}$
- $\Gamma \vdash B$ or $\Gamma \vdash B \tilde{V} L^{c}$

Which results in 4 cases to examine.

1. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B$.
2. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B \tilde{\vee} L^{c}$.
3. Suppose $\Gamma \vdash A \tilde{V} L^{c}$ and $\Gamma \vdash B$
4. Suppose $\Gamma \vdash A \tilde{V} L^{c}$ and $\Gamma \vdash B \tilde{V} L^{c}$

Second case : C is resolvent of 2 clauses A and B preceding C in the proof P

Hence by induction hypothesis :

- $\Gamma \vdash A$ or $\Gamma \vdash A \tilde{V} L^{c}$
- $\Gamma \vdash B$ or $\Gamma \vdash B \tilde{V} L^{c}$

Which results in 4 cases to examine.

1. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B$.

Since C is resolvent of A and B, according to property 2.1.14, we have $\Gamma \vdash C$.
2. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B \tilde{\vee} L^{c}$.
3. Suppose $\Gamma \vdash A \tilde{\vee} L^{c}$ and $\Gamma \vdash B$
4. Suppose $\Gamma \vdash A \tilde{V} L^{c}$ and $\Gamma \vdash B \tilde{V} L^{c}$

Second case : C is resolvent of 2 clauses A and B preceding C in the proof P

Hence by induction hypothesis :

- 「トA or $\Gamma \vdash A \tilde{V} L^{c}$
- $\Gamma \vdash B$ or $\Gamma \vdash B \tilde{V} L^{c}$

Which results in 4 cases to examine.

1. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B$.

Since C is resolvent of A and B, according to property 2.1.14, we have $\Gamma \vdash C$.
2. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B \tilde{\vee} L^{C}$. Since C is resolvent of A and B, there is M such that $M \in A$ and $M^{C} \in B$ and $s(C)=(s(A)-\{M\}) \cup\left(s(B)-\left\{M^{C}\right\}\right)$. No clause of $\Gamma[L:=\top]$ involves the literal L^{c}. Hence B which deducts from it, does not contain the literal L^{c} (see exercise 41) and consequently $L^{C} \neq M^{c}$. Consequently
$\left(s(B)-\left\{M^{c}\right\}\right) \cup\left\{L^{c}\right\}=\left(s(B) \cup\left\{L^{c}\right\}\right)-\left\{M^{c}\right\}=\left(s\left(B \tilde{\vee} L^{c}\right)-\left\{M^{c}\right\}\right)$. We therefore have
$s\left(C \tilde{\vee} L^{c}\right)=(s(A)-\{M\}) \cup\left(s(B)-\left\{M^{c}\right\}\right) \cup\left\{L^{c}\right\}=(s(A)-\{M\}) \cup\left(s\left(B \tilde{\vee} L^{c}\right)-\left\{M^{c}\right\}\right)$
And consequently $C \tilde{\vee} L^{C}$ is a resolvent of A and $B \tilde{\vee} L^{C}$. Hence according to property 2.1.14, $\Gamma \vdash C \tilde{V} L^{C}$.
3. Suppose $\Gamma \vdash A \tilde{\vee} L^{c}$ and $\Gamma \vdash B$
4. Suppose $\Gamma \vdash A \tilde{V} L^{c}$ and $\Gamma \vdash B \tilde{V} L^{c}$

Second case : C is resolvent of 2 clauses A and B preceding C in the proof P

Hence by induction hypothesis :

- 「 $\vdash A$ or $\Gamma \vdash A \tilde{V} L^{c}$
- $\Gamma \vdash B$ or $\Gamma \vdash B \tilde{V} L^{c}$

Which results in 4 cases to examine.

1. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B$.

Since C is resolvent of A and B, according to property 2.1.14, we have $\Gamma \vdash C$.
2. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B \tilde{\vee} L^{C}$. Since C is resolvent of A and B, there is M such that $M \in A$ and $M^{c} \in B$ and $s(C)=(s(A)-\{M\}) \cup\left(s(B)-\left\{M^{c}\right\}\right)$. No clause of $\Gamma[L:=\top]$ involves the literal L^{c}. Hence B which deducts from it, does not contain the literal L^{c} (see exercise 41) and consequently $L^{C} \neq M^{c}$. Consequently
$\left(s(B)-\left\{M^{c}\right\}\right) \cup\left\{L^{c}\right\}=\left(s(B) \cup\left\{L^{c}\right\}\right)-\left\{M^{c}\right\}=\left(s\left(B \tilde{\vee} L^{c}\right)-\left\{M^{c}\right\}\right)$. We therefore have
$s\left(C \tilde{\vee} L^{c}\right)=(s(A)-\{M\}) \cup\left(s(B)-\left\{M^{c}\right\}\right) \cup\left\{L^{c}\right\}=(s(A)-\{M\}) \cup\left(s\left(B \tilde{\vee} L^{c}\right)-\left\{M^{c}\right\}\right)$
And consequently $C \tilde{\vee} L^{C}$ is a resolvent of A and $B \tilde{\vee} L^{C}$. Hence according to property 2.1.14, $\Gamma \vdash C \tilde{V} L^{C}$.
3. Suppose $\Gamma \vdash A \tilde{V} L^{C}$ and $\Gamma \vdash B$, by exchanging in the above case the roles of A and B, we obtain $\Gamma \vdash C \tilde{\vee} L^{c}$.
4. Suppose $\Gamma \vdash A \tilde{V} L^{c}$ and $\Gamma \vdash B \tilde{V} L^{c}$

Second case : C is resolvent of 2 clauses A and B preceding C in the proof P

Hence by induction hypothesis :

- 「 $\vdash A$ or $\Gamma \vdash A \tilde{V} L^{c}$
- $\Gamma \vdash B$ or $\Gamma \vdash B \tilde{V} L^{c}$

Which results in 4 cases to examine.

1. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B$.

Since C is resolvent of A and B, according to property 2.1.14, we have $\Gamma \vdash C$.
2. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B \tilde{\vee} L^{C}$. Since C is resolvent of A and B, there is M such that $M \in A$ and $M^{c} \in B$ and $s(C)=(s(A)-\{M\}) \cup\left(s(B)-\left\{M^{c}\right\}\right)$. No clause of $\Gamma[L:=\top]$ involves the literal L^{c}. Hence B which deducts from it, does not contain the literal L^{c} (see exercise 41) and consequently $L^{C} \neq M^{c}$. Consequently
$\left(s(B)-\left\{M^{c}\right\}\right) \cup\left\{L^{c}\right\}=\left(s(B) \cup\left\{L^{c}\right\}\right)-\left\{M^{c}\right\}=\left(s\left(B \tilde{\vee} L^{c}\right)-\left\{M^{c}\right\}\right)$. We therefore have
$s\left(C \tilde{\vee} L^{c}\right)=(s(A)-\{M\}) \cup\left(s(B)-\left\{M^{c}\right\}\right) \cup\left\{L^{c}\right\}=(s(A)-\{M\}) \cup\left(s\left(B \tilde{\vee} L^{c}\right)-\left\{M^{c}\right\}\right)$
And consequently $C \tilde{\vee} L^{C}$ is a resolvent of A and $B \tilde{\vee} L^{C}$. Hence according to property 2.1.14, $\Gamma \vdash C \tilde{V} L^{C}$.
3. Suppose $\Gamma \vdash A \tilde{V} L^{C}$ and $\Gamma \vdash B$, by exchanging in the above case the roles of A and B, we obtain $\Gamma \vdash C \tilde{V} L^{c}$.
4. Suppose $\Gamma \vdash A \tilde{V} L^{c}$ and $\Gamma \vdash B \tilde{\vee} L^{c}$, as above we obtain $\Gamma \vdash C \tilde{\vee} L^{c}$.

Second case : C is resolvent of 2 clauses A and B preceding C in the proof P

Hence by induction hypothesis :

- 「 $\vdash A$ or $\Gamma \vdash A \tilde{V} L^{c}$
- $\Gamma \vdash B$ or $\Gamma \vdash B \tilde{V} L^{c}$

Which results in 4 cases to examine.

1. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B$.

Since C is resolvent of A and B, according to property 2.1.14, we have $\Gamma \vdash C$.
2. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B \tilde{\vee} L^{C}$. Since C is resolvent of A and B, there is M such that $M \in A$ and $M^{c} \in B$ and $s(C)=(s(A)-\{M\}) \cup\left(s(B)-\left\{M^{c}\right\}\right)$. No clause of $\Gamma[L:=\top]$ involves the literal L^{c}. Hence B which deducts from it, does not contain the literal L^{c} (see exercise 41) and consequently $L^{C} \neq M^{c}$. Consequently
$\left(s(B)-\left\{M^{c}\right\}\right) \cup\left\{L^{c}\right\}=\left(s(B) \cup\left\{L^{c}\right\}\right)-\left\{M^{c}\right\}=\left(s\left(B \tilde{\vee} L^{c}\right)-\left\{M^{c}\right\}\right)$. We therefore have
$s\left(C \tilde{\vee} L^{c}\right)=(s(A)-\{M\}) \cup\left(s(B)-\left\{M^{c}\right\}\right) \cup\left\{L^{c}\right\}=(s(A)-\{M\}) \cup\left(s\left(B \tilde{\vee} L^{c}\right)-\left\{M^{c}\right\}\right)$
And consequently $C \tilde{\vee} L^{C}$ is a resolvent of A and $B \tilde{\vee} L^{C}$. Hence according to property 2.1.14, $\Gamma \vdash C \tilde{V} L^{C}$.
3. Suppose $\Gamma \vdash A \tilde{V} L^{C}$ and $\Gamma \vdash B$, by exchanging in the above case the roles of A and B, we obtain $\Gamma \vdash C \tilde{V} L^{c}$.
4. Suppose $\Gamma \vdash A \tilde{V} L^{c}$ and $\Gamma \vdash B \tilde{V} L^{c}$, as above we obtain $\Gamma \vdash C \tilde{V} L^{c}$.

Conseauentlv in the four cases we have $\Gamma \vdash C$ or $\Gamma \vdash C \tilde{\vee} I^{c}$

Lemma 2.1.23

Lemma 2.1.23
Let Γ a set of clauses, C a clause and L a literal.
If $\Gamma[L:=\perp] \vdash C$ then $\Gamma \vdash C$ or $\Gamma \vdash C \tilde{\vee} L$.

Proof.

Lemma 2.1.23

Lemma 2.1.23
Let Γ a set of clauses, C a clause and L a literal.
If $\Gamma[L:=\perp] \vdash C$ then $\Gamma \vdash C$ or $\Gamma \vdash C \tilde{\vee} L$.
Proof.
Suppose $\Gamma[L:=\perp] \vdash C$.

Lemma 2.1.23

Lemma 2.1.23

Let Γ a set of clauses, C a clause and L a literal.
If $\Gamma[L:=\perp] \vdash C$ then $\Gamma \vdash C$ or $\Gamma \vdash C \tilde{\vee} L$.

Proof.

Suppose $\Gamma[L:=\perp] \vdash C$. Since $\Gamma[L:=\perp]=\Gamma\left[L^{c}:=\top\right]$ and since $L^{C C}=L$, according to lemma 2.1.22 we have $\Gamma \vdash C$ or $\Gamma \vdash C \tilde{\vee} L$.

Completeness of propositional resolution

Theorem 2.1.24

Let Γ a finite set of clauses. If Γ is unsatisfiable then $\Gamma \vdash \perp$.

Proof.

Suppose that Γ is unsatisfiable.
We show that $\Gamma \vdash \perp$ by induction on the number of variables of Γ.

Completeness of propositional resolution

Theorem 2.1.24

Let Γ a finite set of clauses. If Γ is unsatisfiable then $\Gamma \vdash \perp$.

Proof.

Suppose that Γ is unsatisfiable.
We show that $\Gamma \vdash \perp$ by induction on the number of variables of Γ.
Hypothesis : Suppose that for all set Δ of unsatisfiable clauses with less than n variables, we have $\Delta \vdash \perp$.

Completeness of propositional resolution

Theorem 2.1.24

Let Γ a finite set of clauses. If Γ is unsatisfiable then $\Gamma \vdash \perp$.

Proof.

Suppose that Γ is unsatisfiable.
We show that $\Gamma \vdash \perp$ by induction on the number of variables of Γ.
Hypothesis : Suppose that for all set Δ of unsatisfiable clauses with less than n variables, we have $\Delta \vdash \perp$.

Let Γ unsatisfiable with n variables. Let us show that $\Gamma \vdash \perp$. We distinguish two cases depending on whether n is null or not.

The base case (basis)

Suppose that n is null.
Hence $\Gamma=\emptyset$ or $\Gamma=\{\perp\}$. The first case is impossible, since the empty set is valid (any truth assignment is a model of it). Hence $\Gamma=\{\perp\}$ and consequently $\Gamma \vdash \perp$.

Inductive step

Suppose that n is not null.
Let x a variable appearing in Γ.

Inductive step

Suppose that n is not null.
Let x a variable appearing in Γ. According to the property 2.1.21, $\Gamma[x:=\perp]$ and $\Gamma[x:=\top]$ are unsatisfiable.

Inductive step

Suppose that n is not null.
Let x a variable appearing in Γ. According to the property 2.1.21, $\Gamma[x:=\perp]$ and $\Gamma[x:=\top]$ are unsatisfiable.
Since the variable x does not appear in these two sets of clauses, the induction hypothesis applies, hence : $\Gamma[x:=\perp] \vdash \perp$ and $\Gamma[x:=\top] \vdash \perp$.

Inductive step

Suppose that n is not null.
Let x a variable appearing in Γ. According to the property 2.1.21,
$\Gamma[x:=\perp]$ and $\Gamma[x:=\top]$ are unsatisfiable.
Since the variable x does not appear in these two sets of clauses, the induction hypothesis applies, hence : $\Gamma[x:=\perp] \vdash \perp$ and
$\Gamma[x:=\top] \vdash \perp$. From lemmas 2.1.22 and 2.1.23, we deduce either
$\Gamma \vdash \perp$, or $\Gamma \vdash \neg x$ and $\Gamma \vdash x$.

Inductive step

Suppose that n is not null.
Let x a variable appearing in Γ. According to the property 2.1.21,
$\Gamma[x:=\perp]$ and $\Gamma[x:=\top]$ are unsatisfiable.
Since the variable x does not appear in these two sets of clauses, the induction hypothesis applies, hence : $\Gamma[x:=\perp] \vdash \perp$ and
$\Gamma[x:=\top] \vdash \perp$. From lemmas 2.1.22 and 2.1.23, we deduce either $\Gamma \vdash \perp$, or $\Gamma \vdash \neg x$ and $\Gamma \vdash x$. In the first case, the proof is finished.

Inductive step

Suppose that n is not null.
Let x a variable appearing in Γ. According to the property 2.1.21,
$\Gamma[x:=\perp]$ and $\Gamma[x:=\top]$ are unsatisfiable.
Since the variable x does not appear in these two sets of clauses, the induction hypothesis applies, hence : $\Gamma[x:=\perp] \vdash \perp$ and
$\Gamma[x:=\top] \vdash \perp$. From lemmas 2.1.22 and 2.1.23, we deduce either $\Gamma \vdash \perp$, or $\Gamma \vdash \neg x$ and $\Gamma \vdash x$. In the first case, the proof is finished. In the second case, since \perp is a resolvent of $\neg x$ and x, we also have $\Gamma \vdash \perp$.

Conclusion

Corollary 2.1.25
Let Γ a finite set of clauses. Γ is unsatisfiable if and only if $\Gamma \vdash \perp$.

Plan

Introduction

Some definitions and notations

Correctness

Completeness

Conclusion

Conclusion : Today

- Formalisation of a deductive system
- Correctness of the system
- Completeness of the system

Conclusion : Next course

- Comprehensive strategy
- Davis-Putnam

Homework

Hypotheses:

- (H1) : If Peter is old, then John is not the son of Peter
- (H2) : If Peter is not old, then John is the son of Peter
- (H3) : If John is Peter's son then Mary is the sister of John

Conclusion (C) : Either Mary is the sister of John or Peter is old.
Prove, using resolution, that we can derive the conclusion C from the premises H1, H2, H3.

Hint : Transform into clauses the premises and the negation of the conclusion.

Conclusion

Thank you for your attention.

Questions?

