Propositional Resolution

First part

Stéphane Devismes Pascal Lafourcade Michel Lévy Jean-François Monin (jean-francois.monin@imag.fr)

Université Joseph Fourier, Grenoble I

January 23, 2015

S. Devismes et al (Grenoble I)

Propositional Resolution

Last course

- Substitutions and replacement
- Normal Forms
- Boolean Algebra
- Boolean functions
- The BDDC tools

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

$$\neg (p \Rightarrow \neg j) \lor \neg (\neg p \Rightarrow j) \lor \neg (j \Rightarrow m) \lor m \lor p$$

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$
$$\neg (p \Rightarrow \neg j) \lor \neg (\neg p \Rightarrow j) \lor \neg (j \Rightarrow m) \lor m \lor p$$

 $\neg(\neg p \lor \neg j) \lor \neg(\neg \neg p \lor j) \lor \neg(\neg j \lor m) \lor m \lor p$

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$
$$\neg (p \Rightarrow \neg j) \lor \neg (\neg p \Rightarrow j) \lor \neg (j \Rightarrow m) \lor m \lor p$$
$$\neg (\neg p \lor \neg j) \lor \neg (\neg \neg p \lor j) \lor \neg (\neg j \lor m) \lor m \lor p$$
$$(p \land j) \lor (\neg p \land \neg j) \lor (j \land \neg m) \lor m \lor p$$

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$
$$\neg (p \Rightarrow \neg j) \lor \neg (\neg p \Rightarrow j) \lor \neg (j \Rightarrow m) \lor m \lor p$$
$$\neg (\neg p \lor \neg j) \lor \neg (\neg \neg p \lor j) \lor \neg (\neg j \lor m) \lor m \lor p$$
$$(p \land j) \lor (\neg p \land \neg j) \lor (j \land \neg m) \lor m \lor p$$

with $x \lor (x \land y) \equiv x$

$$(\neg p \land \neg j) \lor (j \land \neg m) \lor m \lor p$$

S. Devismes et al (Grenoble I)

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$
$$\neg (p \Rightarrow \neg j) \lor \neg (\neg p \Rightarrow j) \lor \neg (j \Rightarrow m) \lor m \lor p$$
$$\neg (\neg p \lor \neg j) \lor \neg (\neg \neg p \lor j) \lor \neg (\neg j \lor m) \lor m \lor p$$
$$(p \land j) \lor (\neg p \land \neg j) \lor (j \land \neg m) \lor m \lor p$$

with $x \lor (x \land y) \equiv x$

$$(\neg p \land \neg j) \lor (j \land \neg m) \lor m \lor p$$

 $x \vee (\neg x \wedge y) \equiv x \vee y$

S. Devismes et al (Grenoble I)

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$
$$\neg (p \Rightarrow \neg j) \lor \neg (\neg p \Rightarrow j) \lor \neg (j \Rightarrow m) \lor m \lor p$$
$$\neg (\neg p \lor \neg j) \lor \neg (\neg \neg p \lor j) \lor \neg (\neg j \lor m) \lor m \lor p$$
$$(p \land j) \lor (\neg p \land \neg j) \lor (j \land \neg m) \lor m \lor p$$

with $x \lor (x \land y) \equiv x$

$$(\neg p \land \neg j) \lor (j \land \neg m) \lor m \lor p$$

 $x \vee (\neg x \wedge y) \equiv x \vee y$

 $\neg j \lor j \lor m \lor p \equiv \top$

S. Devismes et al (Grenoble I)

Propositional Resolution

Overview

Introduction

Some definitions and notations

Correctness

Completeness

Conclusion

Plan

Introduction

Some definitions and notations

Correctness

Completeness

Conclusion

Deduction methods

- Is a formula valid?
- Is a reasoning correct?

Two methods :

Deduction methods

- Is a formula valid?
- Is a reasoning correct?

Two methods :

The truth tables and transformations

|--|

- ► Is a formula valid?
- Is a reasoning correct?

Two methods :

The truth tables and transformations

Problem

If the number of variables increases, these methods are very long

Example

By a truth table, to verify $a \Rightarrow b, b \Rightarrow c, c \Rightarrow d, d \Rightarrow e, e \Rightarrow f, f \Rightarrow g, g \Rightarrow h, h \Rightarrow i, i \Rightarrow j \models a \Rightarrow j$ we must test $2^{10} = 1024$ lines.

Example

By a truth table, to verify $a \Rightarrow b, b \Rightarrow c, c \Rightarrow d, d \Rightarrow e, e \Rightarrow f, f \Rightarrow g, g \Rightarrow h, h \Rightarrow i, i \Rightarrow j \models a \Rightarrow j$ we must test $2^{10} = 1024$ lines.

Or, by deduction, this is a correct reasoning :

Example

By a truth table, to verify $a \Rightarrow b, b \Rightarrow c, c \Rightarrow d, d \Rightarrow e, e \Rightarrow f, f \Rightarrow g, g \Rightarrow h, h \Rightarrow i, i \Rightarrow j \models a \Rightarrow j$ we must test $2^{10} = 1024$ lines.

Or, by deduction, this is a correct reasoning :

- 1. By transitivity of the implication, $a \Rightarrow j \models a \Rightarrow j$.
- 2. By definition, the formula $a \Rightarrow j$ is a consequence of its own.

Propositional Resolution Introduction

Today

Formalisation of a deductive system (with 1 rule)

Today

- ► Formalisation of a deductive system (with 1 rule)
- How to prove a formula by resolution

Today

- ► Formalisation of a deductive system (with 1 rule)
- How to prove a formula by resolution
- Correctness of a deductive system

Today

- Formalisation of a deductive system (with 1 rule)
- How to prove a formula by resolution
- Correctness of a deductive system
- Completeness of a deductive system

Today

- Formalisation of a deductive system (with 1 rule)
- How to prove a formula by resolution
- Correctness of a deductive system
- Completeness of a deductive system
- Some properties of resolution

Intuition

Formulas are put into CNF (conjunction of clauses)

 $a \lor \neg b, b \lor c \models a \lor c$

Can be seen as transitivity of implication

$$b \Rightarrow a, \neg c \Rightarrow b \models \neg c \Rightarrow a$$

Plan

Introduction

Some definitions and notations

Correctness

Completeness

Conclusion

Definitions

Definition 2.1.1

A literal is a member of a clause, if it is a member of the set of literals of the clause.

Definitions

Definition 2.1.1

- A literal is a member of a clause, if it is a member of the set of literals of the clause.
- ► A clause *A* is included in a clause *B*, if all literals of clause *A* are members of clause *B*. In this case, *A* is a sub-clause of *B*.

Definitions

Definition 2.1.1

- A literal is a member of a clause, if it is a member of the set of literals of the clause.
- ► A clause *A* is included in a clause *B*, if all literals of clause *A* are members of clause *B*. In this case, *A* is a sub-clause of *B*.
- Two clauses are equal if they have the same set of literals.

Propositional Resolution Some definitions and notations

Propositional Resolution Some definitions and notations

$$\blacktriangleright p \in \neg q \lor p \lor r \lor p$$

$$\blacktriangleright p \lor \neg q ``\subseteq " \neg q \lor p \lor r \lor p$$

Propositional Resolution Some definitions and notations

- $\blacktriangleright p ``\in " \neg q \lor p \lor r \lor p$
- $\blacktriangleright p \lor \neg q ``\subseteq" \neg q \lor p \lor r \lor p$

$$\neg q \lor p \lor r \lor p " \ " = " \neg q \lor r$$

- $\blacktriangleright p ``\in " \neg q \lor p \lor r \lor p$
- $\blacktriangleright p \lor \neg q ``\subseteq" \neg q \lor p \lor r \lor p$

$$\neg q \lor p \lor r \lor p `` p ``=" \neg q \lor r$$

- $\blacktriangleright p ``\in " \neg q \lor p \lor r \lor p$
- $\blacktriangleright p \lor \neg q ``\subseteq" \neg q \lor p \lor r \lor p$
- $\neg q \lor p \lor r \lor p ``\" p ``=" \neg q \lor r$
- ▶ p∨p∨p "\" p "=" ⊥
- Adding the literal *r* to the clause *p* yields the clause $p \lor r$

- $\blacktriangleright p ``\in " \neg q \lor p \lor r \lor p$
- $\blacktriangleright p \lor \neg q ``\subseteq" \neg q \lor p \lor r \lor p$
- $\neg q \lor p \lor r \lor p ``\" p ``=" \neg q \lor r$
- ▶ p∨p∨p "\" p "=" ⊥
- Adding the literal *r* to the clause *p* yields the clause $p \lor r$
- ► Adding the literal p to the clause ⊥ yields the clause p

- $\blacktriangleright p ``\in " \neg q \lor p \lor r \lor p$
- $\blacktriangleright p \lor \neg q ``\subseteq" \neg q \lor p \lor r \lor p$

$$\neg q \lor p \lor r \lor p ``\" p ``=" \neg q \lor r$$

- ▶ p∨p∨p "\" p "=" ⊥
- Adding the literal *r* to the clause *p* yields the clause $p \lor r$
- ► Adding the literal p to the clause ⊥ yields the clause p
- The clauses $p \lor \neg q$, $\neg q \lor p$, and $p \lor \neg q \lor p$ are equal

Notation

s(A) the set of literals of the clause A. By convention \perp is the empty clause and $s(\perp) = \emptyset$.

Example 2.1.3

 $s(\neg q \lor p \lor r \lor p \lor \neg p) =$

Notation

s(A) the set of literals of the clause A. By convention \perp is the empty clause and $s(\perp) = \emptyset$.

Example 2.1.3

$$s(\neg q \lor p \lor r \lor p \lor \neg p) =$$

 $\{\neg q, p, r, \neg p\}$

```
Complementary literal
```

Definition 2.1.4

We note L^c the complementary literal of a literal L:

If *L* is a variable, L^c is the negation of *L*.

If *L* is the negation of a variable, L^c is obtained by removing the negation of *L*.

```
Complementary literal
```

Definition 2.1.4

We note L^c the complementary literal of a literal L:

If *L* is a variable, L^c is the negation of *L*.

If *L* is the negation of a variable, L^c is obtained by removing the negation of *L*.

Example 2.1.5

 $x^c = \neg x$ and $\neg x^c = x$.

Resolvent

Definition 2.1.6

Let A and B be two clauses.

The clause *C* is a resolvent of *A* and *B* iff there exists a literal *L* such that $L \in s(A), L^c \in s(B), s(C) = (s(A) - \{L\}) \cup (s(B) - \{L^c\})$.

Resolvent

Definition 2.1.6

Let A and B be two clauses.

The clause *C* is a resolvent of *A* and *B* iff there exists a literal *L* such that $L \in s(A), L^c \in s(B), s(C) = (s(A) - \{L\}) \cup (s(B) - \{L^c\})$.

"C is a resolvent of A and B" is represented by :

Resolvent

Definition 2.1.6

Let A and B be two clauses.

The clause *C* is a resolvent of *A* and *B* iff there exists a literal *L* such that $L \in s(A), L^c \in s(B), s(C) = (s(A) - \{L\}) \cup (s(B) - \{L^c\})$.

"C is a resolvent of A and B" is represented by :

C is generated by *A* and *B A* and *B* are the parents of the clause *C*.

Example 2.1.7

Give the resolvents of :

• $p \lor q \lor r$ and $p \lor \neg q \lor r$

```
• p \lor \neg q and \neg p \lor q \lor r
```

```
\blacktriangleright p and \neg p
```

Example 2.1.7

Give the resolvents of :

• $p \lor q \lor r$ and $p \lor \neg q \lor r$

 $\frac{p \lor q \lor r \qquad p \lor \neg q \lor r}{p \lor r}$

•
$$p \lor \neg q$$
 and $\neg p \lor q \lor r$

▶
$$p$$
 and $\neg p$

Example 2.1.7

Give the resolvents of :

• $p \lor q \lor r$ and $p \lor \neg q \lor r$

 $\frac{p \lor q \lor r \quad p \lor \neg q \lor r}{p \lor r}$

•
$$p \lor \neg q$$
 and $\neg p \lor q \lor r$

$p \lor \neg q$	$\neg p \lor q \lor r$	$p \lor \neg q$	$\neg p \lor q \lor r$
$\neg p$	∨p∨r	$\neg q$	$\vee q \vee r$

▶ p and $\neg p$

Example 2.1.7

Give the resolvents of :

• $p \lor q \lor r$ and $p \lor \neg q \lor r$

 $\frac{p \lor q \lor r \quad p \lor \neg q \lor r}{p \lor r}$

•
$$p \lor \neg q$$
 and $\neg p \lor q \lor r$

$p \lor \neg q$	$\neg p \lor q \lor r$	$p \lor \neg q$	$\neg p \lor q \lor r$
p	$\vee p \vee r$	$\neg q$	∨q∨r

 \blacktriangleright p and $\neg p$

Property

Property 2.1.8

If one of the parents of a resolvent is valid, the resolvent is valid or contains the other parent.

Proof.

See exercise 40.

Problem with \lor

Given two clauses *A* and *B*, the formula $A \lor B$ is not a clause if one of the two operands of the disjunction is the empty clause.

Example : $\bot \lor p$ is not a clause.

Propositional Resolution Some definitions and notations

Definition 2.1.9

Let C and D be two clauses.

We denote $C \vee D$ the following clause :

- If $C = \bot$ then $C \tilde{\lor} D = D$,
- else if $D = \bot$ then $C \lor D = C$ else $C \lor D = C \lor D$.

Propositional Resolution Some definitions and notations

Definition 2.1.9

Let C and D be two clauses.

We denote $C \lor D$ the following clause :

- If $C = \bot$ then $C \tilde{\lor} D = D$,
- else if $D = \bot$ then $C \lor D = C$ else $C \lor D = C \lor D$.

Adding a literal *L* to the clause *C*, is building $C \vee L$.

Resolvent : another definition

Definition 2.1.10

Let A and B be two clauses.

The clause *C* is a resolvent of *A* and *B* if and only if there is a literal *L* such that :

- L is a member of the clause A, L^c is a member of the clause B
- C equals a clause A' ∨ B' where A' = A {L} is obtained by removing L from A and B' = B {L^c} is obtained by removing L^c from B.

Definition of a proof

Definition 2.1.11

Let Γ be a set of clauses and *C* a clause.

A proof of *C* starting from Γ is a list of clauses ending by *C*. Every clause of the proof is a member of Γ or is a resolvent of the two clauses already obtained.

Definition of a proof

Definition 2.1.11

Let Γ be a set of clauses and *C* a clause.

A proof of *C* starting from Γ is a list of clauses ending by *C*. Every clause of the proof is a member of Γ or is a resolvent of the two clauses already obtained.

The clause *C* is deduced from Γ (Γ yields *C*, or Γ proves *C*), denoted $\Gamma \vdash C$, if there is a proof of *C* starting from Γ .

Example 2.1.12

Example 2.1.12

Let Γ be the set of clauses $\neg p \lor q$, $p \lor \neg q$, $\neg p \lor \neg q$, $p \lor q$. We show that $\Gamma \vdash \bot$:

1 $p \lor q$ Hypothesis

Example 2.1.12

1	$p \lor q$	Hypothesis
2	$p \lor \neg q$	Hypothesis

Example 2.1.12

1	$p \lor q$	Hypothesis
2	$p \lor \neg q$	Hypothesis
3	p	Resolvent of 1, 2

Example 2.1.12

1	$p \lor q$	Hypothesis
2	$p \lor \neg q$	Hypothesis
3	p	Resolvent of 1, 2
4	$ eg p \lor q$	Hypothesis

Example 2.1.12

1	$p \lor q$	Hypothesis
2	$p \lor \neg q$	Hypothesis
3	p	Resolvent of 1, 2
4	$ eg p \lor q$	Hypothesis
5	q	Resolvent of 3, 4

Example 2.1.12

1	$p \lor q$	Hypothesis
2	$p \lor \neg q$	Hypothesis
3	p	Resolvent of 1, 2
4	$ eg p \lor q$	Hypothesis
5	q	Resolvent of 3, 4
6	$\neg p \lor \neg q$	Hypothesis

Example 2.1.12

1	$p \lor q$	Hypothesis
2	$p \lor \neg q$	Hypothesis
3	p	Resolvent of 1, 2
4	$ eg p \lor q$	Hypothesis
5	q	Resolvent of 3, 4
6	$\neg p \lor \neg q$	Hypothesis
7	$\neg p$	Resolvent of 5, 6

Example 2.1.12

1	$p \lor q$	Hypothesis
2	$p \lor \neg q$	Hypothesis
3	p	Resolvent of 1, 2
4	$ eg p \lor q$	Hypothesis
5	q	Resolvent of 3, 4
6	$\neg p \lor \neg q$	Hypothesis
7	$\neg p$	Resolvent of 5, 6
8	\perp	Resolvent of 3, 7

Proof tree

Example 2.1.12

Propositional Resolution Some definitions and notations

Definition 2.1.13

Proof length

A proof *P* of *C* starting from a set of clauses Γ is of length *n* if it contains *n* lines.

Monotony and Composition

Property 2.1.14

Let Γ , Δ be two sets of clauses and A, B be two clauses.

- 1. Monotony of deduction : If $\Gamma \vdash A$ and if Γ is included in Δ then $\Delta \vdash A$
- 2. Composition of deductions : If $\Gamma \vdash A$, $\Gamma \vdash B$ and if *C* is a resolvent of *A* and *B* then $\Gamma \vdash C$.

Proof.	
Exercise 39	

Plan

Introduction

Some definitions and notations

Correctness

Completeness

Conclusion

Definition

The correctness of a logic system states that all proofs obtained in this system are \ll correct \gg .

Theorem 2.1.15

If C is a resolvent of A and B then $A, B \models C$.

Proof.

Theorem 2.1.15

If C is a resolvent of A and B then $A, B \models C$.

Proof.

If C is a resolvent of A and B, then there is a literal L so that $L \in s(A), L^c \in s(B), s(C) = (s(A) - \{L\}) \cup (s(B) - \{L^c\}).$

Theorem 2.1.15

If C is a resolvent of A and B then $A, B \models C$.

Proof.

If *C* is a resolvent of *A* and *B*, then there is a literal *L* so that $L \in s(A), L^c \in s(B), s(C) = (s(A) - \{L\}) \cup (s(B) - \{L^c\}).$

Let v a model truth assignment of A and B. We have $[A]_v = 1$ and $[B]_v = 1$

Theorem 2.1.15

If C is a resolvent of A and B then $A, B \models C$.

Proof.

If *C* is a resolvent of *A* and *B*, then there is a literal *L* so that $L \in s(A), L^c \in s(B), s(C) = (s(A) - \{L\}) \cup (s(B) - \{L^c\})$. Let *v* a model truth assignment of A and B. We have $[A]_v = 1$ and $[B]_v = 1$. Let us show that $[C]_v = 1$.

- Suppose that $[L]_v = 1$.
- Suppose that $[L^c]_v = 1$.

Theorem 2.1.15

If C is a resolvent of A and B then $A, B \models C$.

Proof.

If *C* is a resolvent of *A* and *B*, then there is a literal *L* so that $L \in s(A), L^c \in s(B), s(C) = (s(A) - \{L\}) \cup (s(B) - \{L^c\})$. Let *v* a model truth assignment of A and B. We have $[A]_v = 1$ and $[B]_v = 1$. Let us show that $[C]_v = 1$.

- Suppose that [L]_v = 1. Therefore [L^c]_v = 0. v is therefore a model of a literal of (s(B) {L^c}) since [B]_v = 1. Hence [C]_v = 1.
- Suppose that $[L^c]_v = 1$.

Г

Theorem 2.1.15

If C is a resolvent of A and B then $A, B \models C$.

Proof.

If *C* is a resolvent of *A* and *B*, then there is a literal *L* so that $L \in s(A), L^c \in s(B), s(C) = (s(A) - \{L\}) \cup (s(B) - \{L^c\})$. Let *v* a model truth assignment of A and B. We have $[A]_v = 1$ and $[B]_v = 1$. Let us show that $[C]_v = 1$.

- Suppose that [L]_v = 1. Therefore [L^c]_v = 0. v is therefore a model of a literal of (s(B) {L^c}) since [B]_v = 1. Hence [C]_v = 1.
- Suppose that [L^c]_V = 1. Therefore [L]_V = 0. v is therefore a model of (s(A) − {L}) since [A]_V = 1. Hence [C]_V = 1.

Г

Correctness of the resolution rule

Theorem 2.1.15

If C is a resolvent of A and B then $A, B \models C$.

Proof.

If *C* is a resolvent of *A* and *B*, then there is a literal *L* so that $L \in s(A), L^c \in s(B), s(C) = (s(A) - \{L\}) \cup (s(B) - \{L^c\})$. Let *v* a model truth assignment of A and B. We have $[A]_v = 1$ and $[B]_v = 1$. Let us show that $[C]_v = 1$.

- Suppose that [L]_v = 1. Therefore [L^c]_v = 0. v is therefore a model of a literal of (s(B) {L^c}) since [B]_v = 1. Hence [C]_v = 1.
- Suppose that [L^c]_V = 1. Therefore [L]_V = 0. v is therefore a model of (s(A) − {L}) since [A]_V = 1. Hence [C]_V = 1.

Since all truth assignment is model of L or L^c , v is a model of C.

Correctness of the deduction

Theorem 2.1.16

Let Γ a set of clauses and *C* a clause. If $\Gamma \vdash C$ then $\Gamma \models C$.

Proof.

Suppose that $\Gamma \vdash C$. There is a proof *P* of *C* starting from Γ . Suppose that for all proof of *D* starting from Γ , shorter than *P*, we have $\Gamma \models D$. Let us show that $\Gamma \models C$. There are two possible cases :

Correctness of the deduction

Theorem 2.1.16

Let Γ a set of clauses and *C* a clause. If $\Gamma \vdash C$ then $\Gamma \models C$.

Proof.

Suppose that $\Gamma \vdash C$. There is a proof *P* of *C* starting from Γ . Suppose that for all proof of *D* starting from Γ , shorter than *P*, we have $\Gamma \models D$. Let us show that $\Gamma \models C$. There are two possible cases :

1. *C* has the same set of literals as a member of Γ , in this case $\Gamma \models C$.

Correctness of the deduction

Theorem 2.1.16

Let Γ a set of clauses and *C* a clause. If $\Gamma \vdash C$ then $\Gamma \models C$.

Proof.

Suppose that $\Gamma \vdash C$. There is a proof *P* of *C* starting from Γ . Suppose that for all proof of *D* starting from Γ , shorter than *P*, we have $\Gamma \models D$. Let us show that $\Gamma \models C$. There are two possible cases :

2. $\Gamma \vdash A$, $\Gamma \vdash B$ and

By induction hypothesis : $\Gamma \models A$ and $\Gamma \models B$. According to theorem 2.1.15 : $A, B \models C$. Hence $\Gamma \models C$.

Plan

Introduction

Some definitions and notations

Correctness

Completeness

Conclusion

Definition

Completeness for the refutation is the following property : If $\Gamma \models \bot$ then $\Gamma \vdash \bot$.

We prove this result for finite $\Gamma.$

 $\Gamma[L:=\top]$

Definition 2.1.18

Let Γ be a set of clauses and *L* a literal.

 $\Gamma[L := \top]$ is the set of clauses obtained by deleting the clauses for which *L* is a member and by removing *L^c* from the other clauses.

We define $\Gamma[L := \bot]$ as $\Gamma[L^c := \top]$.

Example 2.1.19

Let Γ be the set of clauses $\neg p \lor q$, $\neg q \lor r$, $p \lor q$, $p \lor r$. We have : $\blacktriangleright \Gamma[p := \top] =$

Example 2.1.19

Let Γ be the set of clauses $\neg p \lor q$, $\neg q \lor r$, $p \lor q$, $p \lor r$. We have :

- ► Γ[p := ⊤] =
 - $\{q, \neg q \lor r\}.$
- $\Gamma[p := \bot] =$

Example 2.1.19

Let Γ be the set of clauses $\neg p \lor q$, $\neg q \lor r$, $p \lor q$, $p \lor r$. We have :

$$\Gamma[p := \top] =$$

$$\{q, \neg q \lor r\}.$$

$$\Gamma[p := \bot] =$$

$$\{\neg q \lor r, q, r\}.$$

Example 2.1.19

Let Γ be the set of clauses $\neg p \lor q$, $\neg q \lor r$, $p \lor q$, $p \lor r$. We have :

► Γ[p := ⊤] =

 $\{q, \neg q \lor r\}.$

$$\{\neg q \lor r, q, r\}.$$

Let us observe that :

$$\blacktriangleright \ (\neg \top \lor q) \land (\neg q \lor r) \land (\top \lor q) \land (\top \lor r) \equiv$$

$$q(\neg q \lor r) = \Gamma[p := \top].$$

$$\blacktriangleright (\neg \bot \lor q) \land (\neg q \lor r) \land (\bot \lor q) \land (\bot \lor r) \equiv$$

$$(\neg q \lor r)qr = \Gamma[p := \bot].$$

Notation and definition

Intuitively, $v[L \mapsto 1]$ is the truth assignment giving to *L* the value 1, to L^c the value 0 and which does not change the value of the other literals.

Definition 2.1.20

Let a truth assignment *v*, the truth assignment $v[L \mapsto 1]$ is an assignment identical to *v* except possibly for *x*, the variable of *L*. If L = x then $v[L \mapsto 1](x) = 1$, if $L = \neg x$ then $v[L \mapsto 1](x) = 0$.

We define $v[L \mapsto 0]$ as $v[L^c \mapsto 1]$.

Property of
$$\Gamma[L := x]$$

Property 2.1.21

Let Γ a set of clauses and *L* a literal. Γ has a model if and only if $\Gamma[L := T]$ or $\Gamma[L := \bot]$ has a model.

Proof.

Let v be a truth assignment.

Property of
$$\Gamma[L := x]$$

Property 2.1.21

Let Γ a set of clauses and *L* a literal. Γ has a model if and only if $\Gamma[L := \top]$ or $\Gamma[L := \bot]$ has a model.

Proof.

Let v be a truth assignment.

⇒ The truth assignment *v* is a model of Γ . ⇐ $\Gamma[L := \top]$ or $\Gamma[L := \bot]$ has a model.

First case : v is model of Γ

Suppose that *v* gives to *L* the value 1 and let us show that *v* is a model of Γ[*L* := ⊤].

2. Suppose that v gives to L the value 0.

First case : v is model of Γ

- Suppose that *v* gives to *L* the value 1 and let us show that *v* is a model of Γ[*L* := *T*]. Let *C* a clause of Γ[*L* := *T*]. There is in Γ a clause *C'* such that *C* is obtained by removing *L^c* from *C'*. Since *v* is model of Γ, *v* is model of *C'* hence of a literal which is not *L^c* (since *L^c* equals 0 in this truth assignment). Consequently, *v* is model of *C*. Since *C* is any clause of Γ[*L* := *T*], *v* is model of Γ[*L* := *T*].
- 2. Suppose that v gives to L the value 0.

First case : v is model of Γ

Suppose that *v* gives to *L* the value 1 and let us show that *v* is a model of Γ[*L* := ⊤].

Let *C* a clause of $\Gamma[L := \top]$. There is in Γ a clause *C'* such that *C* is obtained by removing *L^c* from *C'*. Since *v* is model of Γ , *v* is model of *C'* hence of a literal which is not *L^c* (since *L^c* equals 0 in this truth assignment). Consequently, *v* is model of *C*. Since *C* is any clause of $\Gamma[L := \top]$, *v* is model of $\Gamma[L := \top]$.

Suppose that *v* gives to *L* the value 0. We get back to the previous case by exchanging *L* and *L^c* and we show that *v* is model of Γ[*L* := ⊥].

Let C be a clause of Γ .

1. Suppose that the truth assignment v is model of $\Gamma[L := \top]$. Let us show that $v[L := \top]$ is model of Γ . Let *C* be a clause of Γ .

Let C be a clause of Γ .

- 1. Suppose that the truth assignment v is model of $\Gamma[L := \top]$. Let us show that $v[L := \top]$ is model of Γ . Let C be a clause of Γ .
 - 1.1 Suppose that *L* is a literal of *C*, then $v[L := \top]$ is model of *C* since this truth assignment gives to *L* the value 1.

Let C be a clause of Γ .

- 1. Suppose that the truth assignment v is model of $\Gamma[L := \top]$. Let us show that $v[L := \top]$ is model of Γ . Let C be a clause of Γ .
 - 1.1 Suppose that *L* is a literal of *C*, then $v[L := \top]$ is model of *C* since this truth assignment gives to *L* the value 1.
 - 1.2 Suppose that *L* is not a literal of *C*. Then there is a clause *C'* member of $\Gamma[L := \top]$ such that *C'* is obtained by removing *L^c* from *C*. The variable of *L* is not a variable of *C'*. Consequently *v* and $v[L := \top]$ give the same value to *C'*. Since *v* is model of $\Gamma[L := \top]$, *v* is model of *C'* therefore $v[L := \top]$ is model of *C'*. Since *C'* is included in *C*, $v[L := \top]$ is model of *C*.

Let C be a clause of Γ .

- 1. Suppose that the truth assignment v is model of $\Gamma[L := \top]$. Let us show that $v[L := \top]$ is model of Γ . Let C be a clause of Γ .
 - 1.1 Suppose that *L* is a literal of *C*, then $v[L := \top]$ is model of *C* since this truth assignment gives to *L* the value 1.
 - 1.2 Suppose that *L* is not a literal of *C*. Then there is a clause *C'* member of $\Gamma[L := \top]$ such that *C'* is obtained by removing *L^c* from *C*. The variable of *L* is not a variable of *C'*. Consequently *v* and $v[L := \top]$ give the same value to *C'*. Since *v* is model of $\Gamma[L := \top]$, *v* is model of *C'* therefore $v[L := \top]$ is model of *C'*. Since *C'* is included in *C*, $v[L := \top]$ is model of *C*.

Since *C* is any clause of Γ , $\nu[L := \top]$ is model of Γ .

Let C be a clause of Γ .

- 1. Suppose that the truth assignment v is model of $\Gamma[L := \top]$. Let us show that $v[L := \top]$ is model of Γ . Let C be a clause of Γ .
 - 1.1 Suppose that *L* is a literal of *C*, then $v[L := \top]$ is model of *C* since this truth assignment gives to *L* the value 1.
 - 1.2 Suppose that *L* is not a literal of *C*. Then there is a clause *C'* member of $\Gamma[L := \top]$ such that *C'* is obtained by removing *L^c* from *C*. The variable of *L* is not a variable of *C'*. Consequently *v* and $v[L := \top]$ give the same value to *C'*. Since *v* is model of $\Gamma[L := \top]$, *v* is model of *C'* therefore $v[L := \top]$ is model of *C'*. Since *C'* is included in *C*, $v[L := \top]$ is model of *C*.

Since *C* is any clause of Γ , $v[L := \top]$ is model of Γ .

2. Suppose the truth assignment v is model of $\Gamma[L := \bot]$. By an analogous proof, we show that $v[L := \bot]$ is model of Γ .

Lemma 2.1.22

Lemma 2.1.22

Let Γ a set of clauses, *C* a clause and *L* a literal. If $\Gamma[L := \top] \vdash C$ then $\Gamma \vdash C$ or $\Gamma \vdash C \lor L^c$.

Proof.

Starting from a proof of *C* starting from $\Gamma[L := \top]$, we obtain a proof of *C* or of $C \lor L^c$ starting from Γ by adding a literal L^c to the clauses where it has been removed from.

Lemma 2.1.22

Lemma 2.1.22

Let Γ a set of clauses, *C* a clause and *L* a literal. If $\Gamma[L := \top] \vdash C$ then $\Gamma \vdash C$ or $\Gamma \vdash C \lor L^c$.

Proof.

Starting from a proof of *C* starting from $\Gamma[L := \top]$, we obtain a proof of *C* or of $C \lor L^c$ starting from Γ by adding a literal L^c to the clauses where it has been removed from.

Let us formalise this tentative proof. Suppose that $\Gamma[L := \top] \vdash C$. There is a proof *P* of *C* starting from $\Gamma[L := \top]$. Suppose that for all proof of *D* starting from $\Gamma[L := \top]$, shorter than *P*, we have $\Gamma \vdash D$ or $\Gamma \vdash D \tilde{\vee} L^c$.

Lemma 2.1.22

Lemma 2.1.22

Let Γ a set of clauses, *C* a clause and *L* a literal. If $\Gamma[L := \top] \vdash C$ then $\Gamma \vdash C$ or $\Gamma \vdash C \lor L^c$.

Proof.

Starting from a proof of *C* starting from $\Gamma[L := \top]$, we obtain a proof of *C* or of $C \lor L^c$ starting from Γ by adding a literal L^c to the clauses where it has been removed from.

Let us formalise this tentative proof. Suppose that $\Gamma[L := \top] \vdash C$. There is a proof *P* of *C* starting from $\Gamma[L := \top]$. Suppose that for all proof of *D* starting from $\Gamma[L := \top]$, shorter than *P*, we have $\Gamma \vdash D$ or $\Gamma \vdash D \tilde{\vee} L^c$. There are two possible cases :

- 1. *C* is a member of $\Gamma[L := \top]$.
- 2. C is resolvent of 2 clauses A and B preceding C in the proof P.

First case : *C* is a member of $\Gamma[L := \top]$

Hence there is a clause C' member of Γ such that s(C') = s(C) or $s(C') = s(C) \cup \{L^c\}$.

Let us examine those two cases.

First case : *C* is a member of $\Gamma[L := \top]$

Hence there is a clause C' member of Γ such that s(C') = s(C) or $s(C') = s(C) \cup \{L^c\}$.

Let us examine those two cases.

1. Suppose s(C') = s(C).

By definition of proof $\Gamma \vdash C$.

First case : *C* is a member of $\Gamma[L := \top]$

Hence there is a clause C' member of Γ such that s(C') = s(C) or $s(C') = s(C) \cup \{L^c\}$.

Let us examine those two cases.

1. Suppose s(C') = s(C).

By definition of proof $\Gamma \vdash C$.

2. Suppose $s(C') = s(C) \cup \{L^c\}$.

We have $s(C') = s(C \,\tilde{\lor} \, L^c)$ hence by definition of proof, $\Gamma \vdash C \,\tilde{\lor} \, L^c$

Hence by induction hypothesis :

- $\blacktriangleright \quad \Gamma \vdash A \text{ or } \Gamma \vdash A \tilde{\lor} L^c$
- $\blacktriangleright \quad \Gamma \vdash B \text{ or } \Gamma \vdash B \tilde{\lor} L^c$

Hence by induction hypothesis :

- $\Gamma \vdash A \text{ or } \Gamma \vdash A \tilde{\lor} L^c$
- $\blacktriangleright \quad \Gamma \vdash B \text{ or } \Gamma \vdash B \tilde{\lor} L^c$

Which results in 4 cases to examine.

- 1. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B$.
- 2. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B \tilde{\lor} L^c$.

- **3.** Suppose $\Gamma \vdash A \tilde{\lor} L^c$ and $\Gamma \vdash B$
- 4. Suppose $\Gamma \vdash A \,\widetilde{\lor} \, L^c$ and $\Gamma \vdash B \,\widetilde{\lor} \, L^c$

Hence by induction hypothesis :

- $\blacktriangleright \ \Gamma \vdash A \text{ or } \Gamma \vdash A \tilde{\vee} L^c$
- $\blacktriangleright \quad \Gamma \vdash B \text{ or } \Gamma \vdash B \tilde{\lor} L^c$

Which results in 4 cases to examine.

1. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B$.

Since *C* is resolvent of *A* and *B*, according to property 2.1.14, we have $\Gamma \vdash C$.

2. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B \tilde{\lor} L^c$.

- **3.** Suppose $\Gamma \vdash A \tilde{\lor} L^c$ and $\Gamma \vdash B$
- 4. Suppose $\Gamma \vdash A \tilde{\lor} L^c$ and $\Gamma \vdash B \tilde{\lor} L^c$

Hence by induction hypothesis :

- $\Gamma \vdash A \text{ or } \Gamma \vdash A \tilde{\vee} L^c$
- $\blacktriangleright \quad \Gamma \vdash B \text{ or } \Gamma \vdash B \tilde{\lor} L^c$

Which results in 4 cases to examine.

1. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B$.

Since *C* is resolvent of *A* and *B*, according to property 2.1.14, we have $\Gamma \vdash C$.

- Suppose Γ ⊢ A and Γ ⊢ B V L^c. Since C is resolvent of A and B, there is M such that M ∈ A and M^c ∈ B and s(C) = (s(A) - {M}) ∪ (s(B) - {M^c}). No clause of Γ[L := ⊤] involves the literal L^c. Hence B which deducts from it, does not contain the literal L^c (see exercise 41) and consequently L^c ≠ M^c. Consequently (s(B) - {M^c}) ∪ {L^c} = (s(B) ∪ {L^c}) - {M^c} = (s(B V L^c) - {M^c}). We therefore have s(C V L^c) = (s(A) - {M}) ∪ (s(B) - {M^c}) ∪ {L^c} = (s(A) - {M}) ∪ (s(B V L^c) - {M^c}) And consequently C V L^c is a resolvent of A and B V L^c. Hence according to property 2.1.14, Γ ⊢ C V L^c.
- 3. Suppose $\Gamma \vdash A \tilde{\lor} L^c$ and $\Gamma \vdash B$
- 4. Suppose $\Gamma \vdash A \,\widetilde{\lor} \, L^c$ and $\Gamma \vdash B \,\widetilde{\lor} \, L^c$

Hence by induction hypothesis :

- $\Gamma \vdash A \text{ or } \Gamma \vdash A \tilde{\vee} L^c$
- $\blacktriangleright \quad \Gamma \vdash B \text{ or } \Gamma \vdash B \tilde{\lor} L^c$

Which results in 4 cases to examine.

1. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B$.

Since *C* is resolvent of *A* and *B*, according to property 2.1.14, we have $\Gamma \vdash C$.

- Suppose Γ ⊢ A and Γ ⊢ B V L^c. Since C is resolvent of A and B, there is M such that M ∈ A and M^c ∈ B and s(C) = (s(A) {M}) ∪ (s(B) {M^c}). No clause of Γ[L := ⊤] involves the literal L^c. Hence B which deducts from it, does not contain the literal L^c (see exercise 41) and consequently L^c ≠ M^c. Consequently (s(B) {M^c}) ∪ {L^c} = (s(B) ∪ {L^c}) {M^c} = (s(B V L^c) {M^c}). We therefore have s(C V L^c) = (s(A) {M}) ∪ (s(B) {M^c}) ∪ {L^c} = (s(A) {M^c}) ∪ (s(B V L^c) {M^c}). And consequently C V L^c is a resolvent of A and B V L^c. Hence according to property 2.1.14. Γ ⊢ C V L^c.
- Suppose Γ ⊢ A V L^c and Γ ⊢ B, by exchanging in the above case the roles of A and B, we obtain Γ ⊢ C V L^c.
- 4. Suppose $\Gamma \vdash A \tilde{\lor} L^c$ and $\Gamma \vdash B \tilde{\lor} L^c$

Hence by induction hypothesis :

- $\blacktriangleright \ \Gamma \vdash A \text{ or } \Gamma \vdash A \tilde{\vee} L^c$
- $\blacktriangleright \quad \Gamma \vdash B \text{ or } \Gamma \vdash B \tilde{\lor} L^c$

Which results in 4 cases to examine.

1. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B$.

Since *C* is resolvent of *A* and *B*, according to property 2.1.14, we have $\Gamma \vdash C$.

- Suppose Γ ⊢ A and Γ ⊢ B V L^c. Since C is resolvent of A and B, there is M such that M ∈ A and M^c ∈ B and s(C) = (s(A) {M}) ∪ (s(B) {M^c}). No clause of Γ[L := ⊤] involves the literal L^c. Hence B which deducts from it, does not contain the literal L^c (see exercise 41) and consequently L^c ≠ M^c. Consequently (s(B) {M^c}) ∪ {L^c} = (s(B) ∪ {L^c}) {M^c} = (s(B V L^c) {M^c}). We therefore have s(C V L^c) = (s(A) {M}) ∪ (s(B) {M^c}) ∪ {L^c} = (s(A) {M^c}) ∪ (s(B V L^c) {M^c}). And consequently C V L^c is a resolvent of A and B V L^c. Hence according to property 2.1.14. Γ ⊢ C V L^c.
- Suppose Γ ⊢ A V L^c and Γ ⊢ B, by exchanging in the above case the roles of A and B, we obtain Γ ⊢ C V L^c.
- 4. Suppose $\Gamma \vdash A \tilde{\vee} L^c$ and $\Gamma \vdash B \tilde{\vee} L^c$, as above we obtain $\Gamma \vdash C \tilde{\vee} L^c$.

Hence by induction hypothesis :

- $\blacktriangleright \ \Gamma \vdash A \text{ or } \Gamma \vdash A \tilde{\vee} L^c$
- $\blacktriangleright \quad \Gamma \vdash B \text{ or } \Gamma \vdash B \tilde{\lor} L^c$

Which results in 4 cases to examine.

1. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B$.

Since *C* is resolvent of *A* and *B*, according to property 2.1.14, we have $\Gamma \vdash C$.

- Suppose Γ ⊢ A and Γ ⊢ B V L^c. Since C is resolvent of A and B, there is M such that M ∈ A and M^c ∈ B and s(C) = (s(A) {M}) ∪ (s(B) {M^c}). No clause of Γ[L := ⊤] involves the literal L^c. Hence B which deducts from it, does not contain the literal L^c (see exercise 41) and consequently L^c ≠ M^c. Consequently (s(B) {M^c}) ∪ {L^c} = (s(B) ∪ {L^c}) {M^c} = (s(B V L^c) {M^c}). We therefore have s(C V L^c) = (s(A) {M}) ∪ (s(B) {M^c}) ∪ {L^c} = (s(A) {M^c}) ∪ (s(B V L^c) {M^c}). And consequently C V L^c is a resolvent of A and B V L^c. Hence according to property 2.1.14. Γ ⊢ C V L^c.
- Suppose Γ ⊢ A ∨̃ L^c and Γ ⊢ B, by exchanging in the above case the roles of A and B, we obtain Γ ⊢ C ∨̃ L^c.
- 4. Suppose $\Gamma \vdash A \tilde{\vee} L^c$ and $\Gamma \vdash B \tilde{\vee} L^c$, as above we obtain $\Gamma \vdash C \tilde{\vee} L^c$.

Consequently in the four cases we have $\Gamma \vdash C$ or $\Gamma \vdash C \lor I^c$ S. Devismes *et al* (Grenoble I) Propositional Resolution

Lemma 2.1.23

Lemma 2.1.23

Let Γ a set of clauses, *C* a clause and *L* a literal.

```
If \Gamma[L := \bot] \vdash C then \Gamma \vdash C or \Gamma \vdash C \lor L.
```

Proof.

Lemma 2.1.23

Lemma 2.1.23

Let Γ a set of clauses, *C* a clause and *L* a literal.

```
If \Gamma[L := \bot] \vdash C then \Gamma \vdash C or \Gamma \vdash C \lor L.
```

Proof.

Suppose $\Gamma[L := \bot] \vdash C$.

Lemma 2.1.23

Lemma 2.1.23

Let Γ a set of clauses, *C* a clause and *L* a literal.

If $\Gamma[L := \bot] \vdash C$ then $\Gamma \vdash C$ or $\Gamma \vdash C \lor L$.

Proof.

Suppose $\Gamma[L := \bot] \vdash C$. Since $\Gamma[L := \bot] = \Gamma[L^c := \top]$ and since $L^{c^c} = L$, according to lemma 2.1.22 we have $\Gamma \vdash C$ or $\Gamma \vdash C \lor L$.

Completeness of propositional resolution

Theorem 2.1.24

Let Γ a finite set of clauses. If Γ is unsatisfiable then $\Gamma \vdash \bot$.

Proof.

Suppose that Γ is unsatisfiable.

We show that $\Gamma \vdash \bot$ by induction on the number of variables of Γ .

Completeness of propositional resolution

Theorem 2.1.24

Let Γ a finite set of clauses. If Γ is unsatisfiable then $\Gamma \vdash \bot$.

Proof.

Suppose that Γ is unsatisfiable.

We show that $\Gamma \vdash \bot$ by induction on the number of variables of Γ .

Hypothesis : Suppose that for all set Δ of unsatisfiable clauses with less than *n* variables, we have $\Delta \vdash \bot$.

Completeness of propositional resolution

Theorem 2.1.24

Let Γ a finite set of clauses. If Γ is unsatisfiable then $\Gamma \vdash \bot$.

Proof.

```
Suppose that \Gamma is unsatisfiable.
```

We show that $\Gamma \vdash \bot$ by induction on the number of variables of Γ .

Hypothesis : Suppose that for all set Δ of unsatisfiable clauses with less than *n* variables, we have $\Delta \vdash \bot$.

Let Γ unsatisfiable with *n* variables. Let us show that $\Gamma \vdash \bot$. We distinguish two cases depending on whether *n* is null or not.

The base case (basis)

Suppose that *n* is null.

Hence $\Gamma = \emptyset$ or $\Gamma = \{\bot\}$. The first case is impossible, since the empty set is valid (any truth assignment is a model of it). Hence $\Gamma = \{\bot\}$ and consequently $\Gamma \vdash \bot$.

Suppose that *n* is not null.

Let *x* a variable appearing in Γ .

Suppose that *n* is not null.

Let *x* a variable appearing in Γ . According to the property 2.1.21, $\Gamma[x := \bot]$ and $\Gamma[x := \top]$ are unsatisfiable.

Suppose that *n* is not null.

Let *x* a variable appearing in Γ . According to the property 2.1.21, $\Gamma[x := \bot]$ and $\Gamma[x := \top]$ are unsatisfiable. Since the variable *x* does not appear in these two sets of clauses, the induction hypothesis applies, hence : $\Gamma[x := \bot] \vdash \bot$ and $\Gamma[x := \top] \vdash \bot$.

Suppose that *n* is not null.

Let *x* a variable appearing in Γ . According to the property 2.1.21, $\Gamma[x := \bot]$ and $\Gamma[x := \top]$ are unsatisfiable. Since the variable *x* does not appear in these two sets of clauses, the induction hypothesis applies, hence : $\Gamma[x := \bot] \vdash \bot$ and $\Gamma[x := \top] \vdash \bot$. From lemmas 2.1.22 and 2.1.23, we deduce either $\Gamma \vdash \bot$, or $\Gamma \vdash \neg x$ and $\Gamma \vdash x$.

Suppose that *n* is not null.

Let *x* a variable appearing in Γ . According to the property 2.1.21, $\Gamma[x := \bot]$ and $\Gamma[x := \top]$ are unsatisfiable. Since the variable *x* does not appear in these two sets of clauses, the induction hypothesis applies, hence : $\Gamma[x := \bot] \vdash \bot$ and $\Gamma[x := \top] \vdash \bot$. From lemmas 2.1.22 and 2.1.23, we deduce either $\Gamma \vdash \bot$, or $\Gamma \vdash \neg x$ and $\Gamma \vdash x$. In the first case, the proof is finished.

Suppose that *n* is not null.

Let *x* a variable appearing in Γ . According to the property 2.1.21, $\Gamma[x := \bot]$ and $\Gamma[x := \top]$ are unsatisfiable. Since the variable *x* does not appear in these two sets of clauses, the induction hypothesis applies, hence : $\Gamma[x := \bot] \vdash \bot$ and $\Gamma[x := \top] \vdash \bot$. From lemmas 2.1.22 and 2.1.23, we deduce either $\Gamma \vdash \bot$, or $\Gamma \vdash \neg x$ and $\Gamma \vdash x$. In the first case, the proof is finished. In the second case, since \bot is a resolvent of $\neg x$ and *x*, we also have $\Gamma \vdash \bot$.

Conclusion

Corollary 2.1.25

Let Γ a finite set of clauses. Γ is unsatisfiable if and only if $\Gamma \vdash \bot$.

Plan

Introduction

Some definitions and notations

Correctness

Completeness

Conclusion

Propositional Resolution Conclusion

Conclusion : Today

- Formalisation of a deductive system
- Correctness of the system
- Completeness of the system

Conclusion : Next course

- Comprehensive strategy
- Davis-Putnam

Homework

Hypotheses :

- ► (H1) : If Peter is old, then John is not the son of Peter
- ► (H2) : If Peter is not old, then John is the son of Peter
- ► (H3) : If John is Peter's son then Mary is the sister of John

Conclusion (C) : Either Mary is the sister of John or Peter is old.

Prove, using resolution, that we can derive the conclusion C from the premises H1, H2, H3.

Hint : Transform into clauses the premises and the negation of the conclusion.

Propositional Resolution Conclusion

Conclusion

Thank you for your attention.

Questions?