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Propositional Resolution

Last course

I Substitutions and replacement

I Normal Forms

I Boolean Algebra

I Boolean functions

I The BDDC tools
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Propositional Resolution

John, Peter and Mary by simplification

(p⇒¬j)∧ (¬p⇒ j)∧ (j⇒m)⇒m∨p

¬(p⇒¬j)∨¬(¬p⇒ j)∨¬(j⇒m)∨m∨p

¬(¬p∨¬j)∨¬(¬¬p∨ j)∨¬(¬j ∨m)∨m∨p

(p∧ j)∨ (¬p∧¬j)∨ (j ∧¬m)∨m∨p

with x ∨ (x ∧ y)≡ x

(¬p∧¬j)∨ (j ∧¬m)∨m∨p

x ∨ (¬x ∧ y)≡ x ∨ y
¬j ∨ j ∨m∨p ≡>
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Propositional Resolution

Overview

Introduction

Some definitions and notations

Correctness

Completeness

Conclusion
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Propositional Resolution

Introduction

Deduction methods

I Is a formula valid ?

I Is a reasoning correct ?

Two methods :

The truth tables and transformations

Problem

If the number of variables increases, these methods are very long
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Propositional Resolution

Introduction

Example

By a truth table, to verify
a⇒ b,b⇒ c,c⇒ d ,d ⇒ e,e⇒ f , f ⇒ g,g⇒ h,h⇒ i, i⇒ j |= a⇒ j
we must test 210 = 1024 lines.

Or, by deduction, this is a correct reasoning :

1. By transitivity of the implication, a⇒ j |= a⇒ j .

2. By definition, the formula a⇒ j is a consequence of its own.

S. Devismes et al (Grenoble I) Propositional Resolution January 23, 2015 7 / 50



Propositional Resolution

Introduction

Example

By a truth table, to verify
a⇒ b,b⇒ c,c⇒ d ,d ⇒ e,e⇒ f , f ⇒ g,g⇒ h,h⇒ i, i⇒ j |= a⇒ j
we must test 210 = 1024 lines.

Or, by deduction, this is a correct reasoning :

1. By transitivity of the implication, a⇒ j |= a⇒ j .

2. By definition, the formula a⇒ j is a consequence of its own.

S. Devismes et al (Grenoble I) Propositional Resolution January 23, 2015 7 / 50



Propositional Resolution

Introduction

Example

By a truth table, to verify
a⇒ b,b⇒ c,c⇒ d ,d ⇒ e,e⇒ f , f ⇒ g,g⇒ h,h⇒ i, i⇒ j |= a⇒ j
we must test 210 = 1024 lines.

Or, by deduction, this is a correct reasoning :

1. By transitivity of the implication, a⇒ j |= a⇒ j .

2. By definition, the formula a⇒ j is a consequence of its own.

S. Devismes et al (Grenoble I) Propositional Resolution January 23, 2015 7 / 50



Propositional Resolution

Introduction

Today

I Formalisation of a deductive system (with 1 rule)

I How to prove a formula by resolution

I Correctness of a deductive system

I Completeness of a deductive system

I Some properties of resolution
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Propositional Resolution

Introduction

Intuition

Formulas are put into CNF (conjunction of clauses)

a∨¬b, b∨ c |= a∨ c

Can be seen as transitivity of implication

b⇒ a, ¬c⇒ b |= ¬c⇒ a
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Propositional Resolution

Some definitions and notations

Plan

Introduction

Some definitions and notations

Correctness

Completeness

Conclusion
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Propositional Resolution

Some definitions and notations

Definitions

Definition 2.1.1

I A literal is a member of a clause, if it is a member of the set of
literals of the clause.

I A clause A is included in a clause B, if all literals of clause A are
members of clause B. In this case, A is a sub-clause of B.

I Two clauses are equal if they have the same set of literals.
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Propositional Resolution

Some definitions and notations

Example 2.1.2

I p “∈” ¬q∨p∨ r ∨p

I p∨¬q “⊆” ¬q∨p∨ r ∨p

I ¬q∨p∨ r ∨p “\” p “=” ¬q∨ r

I p∨p∨p “\” p “=” ⊥
I Adding the literal r to the clause p yields the clause p∨ r

I Adding the literal p to the clause ⊥ yields the clause p

I The clauses p∨¬q, ¬q∨p, and p∨¬q∨p are equal
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Propositional Resolution

Some definitions and notations

Notation

s(A) the set of literals of the clause A.
By convention ⊥ is the empty clause and s(⊥) = /0.

Example 2.1.3

s(¬q∨p∨ r ∨p∨¬p) =

{¬q,p, r ,¬p}
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Propositional Resolution

Some definitions and notations

Complementary literal

Definition 2.1.4

We note Lc the complementary literal of a literal L :

If L is a variable, Lc is the negation of L.

If L is the negation of a variable, Lc is obtained by removing the
negation of L.

Example 2.1.5

xc = ¬x and ¬xc = x .
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Propositional Resolution

Some definitions and notations

Resolvent

Definition 2.1.6

Let A and B be two clauses.

The clause C is a resolvent of A and B iff there exists a literal L such
that L ∈ s(A),Lc ∈ s(B),s(C) = (s(A)−{L})∪ (s(B)−{Lc}).

“C is a resolvent of A and B” is represented by :

A B

C

C is generated by A and B
A and B are the parents of the clause C.

S. Devismes et al (Grenoble I) Propositional Resolution January 23, 2015 15 / 50
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Propositional Resolution

Some definitions and notations

Examples with resolution

Example 2.1.7

Give the resolvents of :
I p∨q∨ r and p∨¬q∨ r

p∨q∨ r p∨¬q∨ r

p∨ r

I p∨¬q and ¬p∨q∨ r

p∨¬q ¬p∨q∨ r

¬p∨p∨ r

p∨¬q ¬p∨q∨ r

¬q∨q∨ r

I p and ¬p

p ¬p

⊥
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Propositional Resolution

Some definitions and notations

Property

Property 2.1.8

If one of the parents of a resolvent is valid, the resolvent is valid or
contains the other parent.

Proof.

See exercise 40. 2
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Propositional Resolution

Some definitions and notations

Problem with ∨

Given two clauses A and B, the formula A∨B is not a clause if one of
the two operands of the disjunction is the empty clause.

Example : ⊥∨p is not a clause.

S. Devismes et al (Grenoble I) Propositional Resolution January 23, 2015 18 / 50



Propositional Resolution

Some definitions and notations

Solution : ∨̃

Definition 2.1.9

Let C and D be two clauses.

We denote C ∨̃D the following clause :
I If C =⊥ then C ∨̃D = D,

I else if D =⊥ then C ∨̃D = C else C ∨̃D = C∨D.

Adding a literal L to the clause C, is building C ∨̃L.
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Propositional Resolution

Some definitions and notations

Resolvent : another definition

Definition 2.1.10

Let A and B be two clauses.

The clause C is a resolvent of A and B if and only if there is a literal L
such that :

I L is a member of the clause A, Lc is a member of the clause B

I C equals a clause A′ ∨̃B′ where A′ = A−{L} is obtained by
removing L from A and B′ = B−{Lc} is obtained by removing Lc

from B.
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Propositional Resolution

Some definitions and notations

Definition of a proof

Definition 2.1.11

Let Γ be a set of clauses and C a clause.

A proof of C starting from Γ is a list of clauses ending by C. Every
clause of the proof is a member of Γ or is a resolvent of the two
clauses already obtained.

The clause C is deduced from Γ (Γ yields C, or Γ proves C), denoted
Γ ` C, if there is a proof of C starting from Γ.
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Propositional Resolution

Some definitions and notations

Example

Example 2.1.12

Let Γ be the set of clauses ¬p∨q, p∨¬q, ¬p∨¬q, p∨q.
We show that Γ ` ⊥ :

1 p∨q Hypothesis
2 p∨¬q Hypothesis
3 p Resolvent of 1, 2
4 ¬p∨q Hypothesis
5 q Resolvent of 3, 4
6 ¬p∨¬q Hypothesis
7 ¬p Resolvent of 5, 6
8 ⊥ Resolvent of 3, 7
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Propositional Resolution

Some definitions and notations

Example

Example 2.1.12

Let Γ be the set of clauses ¬p∨q, p∨¬q, ¬p∨¬q, p∨q.
We show that Γ ` ⊥ :

1 p∨q Hypothesis

2 p∨¬q Hypothesis
3 p Resolvent of 1, 2
4 ¬p∨q Hypothesis
5 q Resolvent of 3, 4
6 ¬p∨¬q Hypothesis
7 ¬p Resolvent of 5, 6
8 ⊥ Resolvent of 3, 7

S. Devismes et al (Grenoble I) Propositional Resolution January 23, 2015 22 / 50



Propositional Resolution

Some definitions and notations

Example

Example 2.1.12

Let Γ be the set of clauses ¬p∨q, p∨¬q, ¬p∨¬q, p∨q.
We show that Γ ` ⊥ :

1 p∨q Hypothesis
2 p∨¬q Hypothesis

3 p Resolvent of 1, 2
4 ¬p∨q Hypothesis
5 q Resolvent of 3, 4
6 ¬p∨¬q Hypothesis
7 ¬p Resolvent of 5, 6
8 ⊥ Resolvent of 3, 7

S. Devismes et al (Grenoble I) Propositional Resolution January 23, 2015 22 / 50



Propositional Resolution

Some definitions and notations

Example

Example 2.1.12

Let Γ be the set of clauses ¬p∨q, p∨¬q, ¬p∨¬q, p∨q.
We show that Γ ` ⊥ :

1 p∨q Hypothesis
2 p∨¬q Hypothesis
3 p Resolvent of 1, 2

4 ¬p∨q Hypothesis
5 q Resolvent of 3, 4
6 ¬p∨¬q Hypothesis
7 ¬p Resolvent of 5, 6
8 ⊥ Resolvent of 3, 7

S. Devismes et al (Grenoble I) Propositional Resolution January 23, 2015 22 / 50



Propositional Resolution

Some definitions and notations

Example

Example 2.1.12

Let Γ be the set of clauses ¬p∨q, p∨¬q, ¬p∨¬q, p∨q.
We show that Γ ` ⊥ :

1 p∨q Hypothesis
2 p∨¬q Hypothesis
3 p Resolvent of 1, 2
4 ¬p∨q Hypothesis

5 q Resolvent of 3, 4
6 ¬p∨¬q Hypothesis
7 ¬p Resolvent of 5, 6
8 ⊥ Resolvent of 3, 7

S. Devismes et al (Grenoble I) Propositional Resolution January 23, 2015 22 / 50



Propositional Resolution

Some definitions and notations

Example

Example 2.1.12

Let Γ be the set of clauses ¬p∨q, p∨¬q, ¬p∨¬q, p∨q.
We show that Γ ` ⊥ :

1 p∨q Hypothesis
2 p∨¬q Hypothesis
3 p Resolvent of 1, 2
4 ¬p∨q Hypothesis
5 q Resolvent of 3, 4

6 ¬p∨¬q Hypothesis
7 ¬p Resolvent of 5, 6
8 ⊥ Resolvent of 3, 7

S. Devismes et al (Grenoble I) Propositional Resolution January 23, 2015 22 / 50



Propositional Resolution

Some definitions and notations

Example

Example 2.1.12

Let Γ be the set of clauses ¬p∨q, p∨¬q, ¬p∨¬q, p∨q.
We show that Γ ` ⊥ :

1 p∨q Hypothesis
2 p∨¬q Hypothesis
3 p Resolvent of 1, 2
4 ¬p∨q Hypothesis
5 q Resolvent of 3, 4
6 ¬p∨¬q Hypothesis

7 ¬p Resolvent of 5, 6
8 ⊥ Resolvent of 3, 7

S. Devismes et al (Grenoble I) Propositional Resolution January 23, 2015 22 / 50



Propositional Resolution

Some definitions and notations

Example

Example 2.1.12

Let Γ be the set of clauses ¬p∨q, p∨¬q, ¬p∨¬q, p∨q.
We show that Γ ` ⊥ :

1 p∨q Hypothesis
2 p∨¬q Hypothesis
3 p Resolvent of 1, 2
4 ¬p∨q Hypothesis
5 q Resolvent of 3, 4
6 ¬p∨¬q Hypothesis
7 ¬p Resolvent of 5, 6

8 ⊥ Resolvent of 3, 7

S. Devismes et al (Grenoble I) Propositional Resolution January 23, 2015 22 / 50



Propositional Resolution

Some definitions and notations

Example

Example 2.1.12

Let Γ be the set of clauses ¬p∨q, p∨¬q, ¬p∨¬q, p∨q.
We show that Γ ` ⊥ :

1 p∨q Hypothesis
2 p∨¬q Hypothesis
3 p Resolvent of 1, 2
4 ¬p∨q Hypothesis
5 q Resolvent of 3, 4
6 ¬p∨¬q Hypothesis
7 ¬p Resolvent of 5, 6
8 ⊥ Resolvent of 3, 7

S. Devismes et al (Grenoble I) Propositional Resolution January 23, 2015 22 / 50



Propositional Resolution

Some definitions and notations

Proof tree

Example 2.1.12

Let Γ be the set of clauses ¬p∨q, p∨¬q, ¬p∨¬q, p∨q.
We show that Γ ` ⊥ :

p∨q p∨¬q

p ¬p∨q

q ¬p∨¬q

¬p

p∨q p∨¬q

p

⊥
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Propositional Resolution

Some definitions and notations

Definition 2.1.13

Proof length

A proof P of C starting from a set of clauses Γ is of length n if it
contains n lines.
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Propositional Resolution

Some definitions and notations

Monotony and Composition

Property 2.1.14

Let Γ, ∆ be two sets of clauses and A, B be two clauses.
1. Monotony of deduction : If Γ ` A and if Γ is included in ∆ then

∆ ` A

2. Composition of deductions : If Γ ` A, Γ ` B and if C is a resolvent
of A and B then Γ ` C.

Proof.

Exercise 39 2
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Propositional Resolution

Correctness

Definition

The correctness of a logic system states that all proofs obtained in this
system are � correct �.
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Propositional Resolution

Correctness

Correctness of the resolution rule

Theorem 2.1.15

If C is a resolvent of A and B then A,B |= C.

Proof.

If C is a resolvent of A and B, then there is a literal L so that
L ∈ s(A),Lc ∈ s(B),s(C) = (s(A)−{L})∪ (s(B)−{Lc}).

Let v a model truth assignment of A and B. We have [A]v = 1 and [B]v = 1

Let us show that [C]v = 1.

I Suppose that [L]v = 1.

Therefore [Lc ]v = 0. v is therefore a model of a literal of
(s(B)−{Lc}) since [B]v = 1. Hence [C]v = 1.

I Suppose that [Lc ]v = 1.

Therefore [L]v = 0. v is therefore a model of
(s(A)−{L}) since [A]v = 1. Hence [C]v = 1.

Since all truth assignment is model of L or Lc , v is a model of C.

2
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Propositional Resolution

Correctness

Correctness of the deduction

Theorem 2.1.16

Let Γ a set of clauses and C a clause. If Γ ` C then Γ |= C.

Proof.

Suppose that Γ ` C. There is a proof P of C starting from Γ. Suppose that for all proof
of D starting from Γ, shorter than P, we have Γ |= D.
Let us show that Γ |= C. There are two possible cases :

1. C has the same set of literals as a member of Γ, in this case Γ |= C.

2. Γ ` A, Γ ` B and
A B

C

By induction hypothesis : Γ |= A and Γ |= B. According to theorem 2.1.15 :
A,B |= C. Hence Γ |= C.

2
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Propositional Resolution

Completeness

Definition

Completeness for the refutation is the following property : If Γ |=⊥
then Γ ` ⊥.

We prove this result for finite Γ.
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Propositional Resolution

Completeness

Γ[L :=>]

Definition 2.1.18

Let Γ be a set of clauses and L a literal.

Γ[L :=>] is the set of clauses obtained by deleting the clauses for
which L is a member and by removing Lc from the other clauses.

We define Γ[L :=⊥] as Γ[Lc :=>].
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Propositional Resolution

Completeness

Examples

Example 2.1.19

Let Γ be the set of clauses ¬p∨q, ¬q∨ r , p∨q, p∨ r . We have :
I Γ[p :=>] =

{q,¬q∨ r}.
I Γ[p :=⊥] =

{¬q∨ r ,q, r}.
Let us observe that :

I (¬>∨q)∧ (¬q∨ r)∧ (>∨q)∧ (>∨ r) ≡
q(¬q∨ r) = Γ[p :=>].

I (¬⊥∨q)∧ (¬q∨ r)∧ (⊥∨q)∧ (⊥∨ r) ≡
(¬q∨ r)qr = Γ[p :=⊥].
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Propositional Resolution

Completeness

Notation and definition

Intuitively, v [L 7→ 1] is the truth assignment giving to L the value 1, to
Lc the value 0 and which does not change the value of the other
literals.

Definition 2.1.20

Let a truth assignment v , the truth assignment v [L 7→ 1] is an
assignment identical to v except possibly for x , the variable of L. If
L = x then v [L 7→ 1](x) = 1, if L = ¬x then v [L 7→ 1](x) = 0.

We define v [L 7→ 0] as v [Lc 7→ 1].
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Propositional Resolution

Completeness

Property of Γ[L := x]

Property 2.1.21

Let Γ a set of clauses and L a literal. Γ has a model if and only if
Γ[L :=>] or Γ[L :=⊥] has a model.

Proof.

Let v be a truth assignment.

⇒ The truth assignment v is a model of Γ.

⇐ Γ[L :=>] or Γ[L :=⊥] has a model.

2
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Propositional Resolution

Completeness

First case : v is model of Γ

1. Suppose that v gives to L the value 1 and let us show that v is a
model of Γ[L :=>].

Let C a clause of Γ[L :=>]. There is in Γ a clause C′ such that C
is obtained by removing Lc from C′. Since v is model of Γ, v is
model of C′ hence of a literal which is not Lc (since Lc equals 0 in
this truth assignment). Consequently, v is model of C. Since C is
any clause of Γ[L :=>], v is model of Γ[L :=>].

2. Suppose that v gives to L the value 0.

We get back to the
previous case by exchanging L and Lc and we show that v is
model of Γ[L :=⊥].
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Propositional Resolution

Completeness

Second case : Γ[L :=>] or Γ[L :=⊥] has a model

Let C be a clause of Γ.
1. Suppose that the truth assignment v is model of Γ[L :=>]. Let

us show that v [L :=>] is model of Γ. Let C be a clause of Γ.

1.1 Suppose that L is a literal of C, then v [L :=>] is model of C since
this truth assignment gives to L the value 1.

1.2 Suppose that L is not a literal of C. Then there is a clause C′

member of Γ[L :=>] such that C′ is obtained by removing Lc

from C. The variable of L is not a variable of C′. Consequently v
and v [L :=>] give the same value to C′. Since v is model of
Γ[L :=>], v is model of C′ therefore v [L :=>] is model of C′.
Since C′ is included in C, v [L :=>] is model of C.

Since C is any clause of Γ, v [L :=>] is model of Γ.

2. Suppose the truth assignment v is model of Γ[L :=⊥]. By an
analogous proof, we show that v [L :=⊥] is model of Γ.
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Propositional Resolution

Completeness

Lemma 2.1.22

Lemma 2.1.22

Let Γ a set of clauses, C a clause and L a literal. If Γ[L :=>] ` C then Γ ` C or
Γ ` C ∨̃Lc .

Proof.

Starting from a proof of C starting from Γ[L :=>], we obtain a proof of C or of C ∨̃Lc

starting from Γ by adding a literal Lc to the clauses where it has been removed from.

Let us formalise this tentative proof. Suppose that Γ[L :=>] ` C. There is a proof P
of C starting from Γ[L :=>]. Suppose that for all proof of D starting from Γ[L :=>],
shorter than P, we have Γ ` D or Γ ` D ∨̃Lc .

There are two possible cases :

1. C is a member of Γ[L :=>].

2. C is resolvent of 2 clauses A and B preceding C in the proof P.

2
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Propositional Resolution

Completeness

First case : C is a member of Γ[L :=>]

Hence there is a clause C′ member of Γ such that s(C′) = s(C) or
s(C′) = s(C)∪{Lc}.

Let us examine those two cases.

1. Suppose s(C′) = s(C).

By definition of proof Γ ` C.

2. Suppose s(C′) = s(C)∪{Lc}.
We have s(C′) = s(C ∨̃Lc) hence by definition of proof, Γ ` C ∨̃Lc
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Propositional Resolution

Completeness

Second case : C is resolvent of 2 clauses A and B
preceding C in the proof P

Hence by induction hypothesis :
I Γ ` A or Γ ` A ∨̃Lc

I Γ ` B or Γ ` B ∨̃Lc

Which results in 4 cases to examine.
1. Suppose Γ ` A and Γ ` B.

Since C is resolvent of A and B, according to property 2.1.14, we have Γ ` C.

2. Suppose Γ ` A and Γ ` B ∨̃Lc .

Since C is resolvent of A and B, there is M such that
M ∈ A and Mc ∈ B and s(C) = (s(A)−{M})∪ (s(B)−{Mc}). No clause of Γ[L :=>]
involves the literal Lc . Hence B which deducts from it, does not contain the literal Lc (see
exercise 41) and consequently Lc 6= Mc . Consequently
(s(B)−{Mc})∪{Lc}= (s(B)∪{Lc})−{Mc}= (s(B ∨̃Lc)−{Mc}). We therefore
have
s(C ∨̃Lc) = (s(A)−{M})∪(s(B)−{Mc})∪{Lc}= (s(A)−{M})∪(s(B ∨̃Lc)−{Mc})
And consequently C ∨̃Lc is a resolvent of A and B ∨̃Lc . Hence according to
property 2.1.14, Γ ` C ∨̃Lc .

3. Suppose Γ ` A ∨̃Lc and Γ ` B

, by exchanging in the above case the roles of A and B, we
obtain Γ ` C ∨̃Lc .

4. Suppose Γ ` A ∨̃Lc and Γ ` B ∨̃Lc

, as above we obtain Γ ` C ∨̃Lc .

Consequently in the four cases, we have Γ ` C or Γ ` C ∨̃Lc .
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Propositional Resolution

Completeness

Lemma 2.1.23

Lemma 2.1.23

Let Γ a set of clauses, C a clause and L a literal.

If Γ[L :=⊥] ` C then Γ ` C or Γ ` C ∨̃L.

Proof.

Suppose Γ[L :=⊥] ` C. Since Γ[L :=⊥] = Γ[Lc :=>] and since
Lcc = L, according to lemma 2.1.22 we have Γ ` C or Γ ` C ∨̃L.

2
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Propositional Resolution

Completeness

Completeness of propositional resolution

Theorem 2.1.24

Let Γ a finite set of clauses. If Γ is unsatisfiable then Γ ` ⊥.

Proof.

Suppose that Γ is unsatisfiable.

We show that Γ ` ⊥ by induction on the number of variables of Γ.

Hypothesis : Suppose that for all set ∆ of unsatisfiable clauses with
less than n variables, we have ∆ ` ⊥.

Let Γ unsatisfiable with n variables. Let us show that Γ ` ⊥. We
distinguish two cases depending on whether n is null or not.

2
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Propositional Resolution

Completeness

The base case (basis)

Suppose that n is null.

Hence Γ = /0 or Γ = {⊥}. The first case is impossible, since the empty
set is valid (any truth assignment is a model of it). Hence Γ = {⊥} and
consequently Γ ` ⊥.
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Propositional Resolution

Completeness

Inductive step

Suppose that n is not null.

Let x a variable appearing in Γ.

According to the property 2.1.21,
Γ[x :=⊥] and Γ[x :=>] are unsatisfiable.

Since the variable x does not appear in these two sets of clauses, the
induction hypothesis applies, hence : Γ[x :=⊥] ` ⊥ and
Γ[x :=>] ` ⊥. From lemmas 2.1.22 and 2.1.23, we deduce either
Γ ` ⊥, or Γ ` ¬x and Γ ` x . In the first case, the proof is finished. In
the second case, since ⊥ is a resolvent of ¬x and x , we also have
Γ ` ⊥.
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Propositional Resolution

Completeness

Conclusion

Corollary 2.1.25

Let Γ a finite set of clauses. Γ is unsatisfiable if and only if Γ ` ⊥.
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Conclusion : Today

I Formalisation of a deductive system

I Correctness of the system

I Completeness of the system
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Conclusion : Next course

I Comprehensive strategy

I Davis-Putnam
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Conclusion

Homework

Hypotheses :

I (H1) : If Peter is old, then John is not the son of Peter

I (H2) : If Peter is not old, then John is the son of Peter

I (H3) : If John is Peter’s son then Mary is the sister of John

Conclusion (C) : Either Mary is the sister of John or Peter is old.

Prove, using resolution, that we can derive the conclusion C from the
premises H1, H2, H3.

Hint : Transform into clauses the premises and the negation of the
conclusion.
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Conclusion

Thank you for your attention.

Questions ?
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