Logic formulae transformations

Stéphane Devismes Pascal Lafourcade Michel Lévy Course given by Jean-François Monin (jean-francois.monin@imag.fr)

Université Joseph Fourier, Grenoble I

16 January 2015

Previous lecture

- Introduction and history
- Propositional logic
- Syntax
- Meaning of formulae
- Important Equivalences

Our example with a truth table

Hypotheses :

- (H1) : If Peter is old, then John is not the son of Peter
- ► (H2) : If Peter is not old, then John is the son of Peter
- ▶ (H3) : If John is Peter's son then Mary is the sister of John
 Conclusion (C) : Mary is the sister of John, or Peter is old.

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

Our example with a truth table

Hypotheses :

- ► (H1) : If Peter is old, then John is not the son of Peter
- ► (H2) : If Peter is not old, then John is the son of Peter
- ► (H3) : If John is Peter's son then Mary is the sister of John

Conclusion (C) : Mary is the sister of John, or Peter is old.

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

p	j	m	$A = p \Rightarrow \neg j$	$B = \neg p \Rightarrow j$	$C = j \Rightarrow m$	$A \wedge B \wedge C$	m∨p	$A \wedge B \wedge C \Rightarrow m \lor p$
0	0	0	1	0	1	0	0	1
0	0	1	1	0	1	0	1	1
0	1	0	1	1	0	0	0	1
0	1	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1
1	1	0	0	1	0	0	1	1
1	1	1	0	1	1	0	1	1

Plan

Substitution and replacement

Normal forms

Boolean Algebra

Boolean functions

The BDDC tools

Conclusion

How to prove that a formula is valid?

How to prove that a formula is valid?

Truth table

How to prove that a formula is valid?

Truth table

Problem : for a formula having 100 variables, the truth table will contain 2¹⁰⁰ lines (unable to be computed, even by a computer !).

How to prove that a formula is valid?

Truth table

- Problem : for a formula having 100 variables, the truth table will contain 2¹⁰⁰ lines (unable to be computed, even by a computer !).
- Idea :
 - Simplify the formula using substitutions, replacements, or normal form transformations (disjunctive or conjunctive)
 - Then, solve the simplified formula using truth tables or a logic reasoning (for example : important equivalences)

Logic formulae transformations Substitution and replacement

Plan

Substitution and replacement

Normal forms

Boolean Algebra

Boolean functions

The BDDC tools

Conclusion

Definition 1.3.1

A substitution σ is a function mapping variables to formulae.

Definition 1.3.1

A substitution σ is a function mapping variables to formulae.

 $A\sigma$ = the formula *A* where all variables *x* are replaced by the formula $\sigma(x)$.

Definition 1.3.1

A substitution σ is a function mapping variables to formulae.

 $A\sigma$ = the formula *A* where all variables *x* are replaced by the formula $\sigma(x)$.

Example : $A = \neg (p \land q) \Leftrightarrow (\neg p \lor \neg q)$

► Let σ the following substitution : $\sigma(p) = (a \lor b), \sigma(q) = (c \land d)$

•
$$A\sigma =$$

Definition 1.3.1

A substitution σ is a function mapping variables to formulae.

 $A\sigma$ = the formula *A* where all variables *x* are replaced by the formula $\sigma(x)$.

Example : $A = \neg (p \land q) \Leftrightarrow (\neg p \lor \neg q)$

► Let σ the following substitution : $\sigma(p) = (a \lor b), \sigma(q) = (c \land d)$

• $A\sigma = \neg((a \lor b) \land (c \land d)) \Leftrightarrow (\neg(a \lor b) \lor \neg(c \land d))$

Finite support substitution

Definition 1.3.2 The support of a substitution σ

- The set of variables *x* such as $x\sigma \neq x$.
- A substitution σ which has finite support is denoted < x₁ := A₁,..., x_n := A_n >, where A₁,..., A_n are formulae, x₁,..., x_n are distinct variables and the substitution verifies :

$$\lor \quad \forall i, i \in 1, \dots n : x_i \sigma = A_i$$

$$\flat \forall y, y \notin \{x_1, \ldots, x_n\} : y\sigma = y$$

Finite support substitution

Definition 1.3.2 The support of a substitution σ

- The set of variables *x* such as $x\sigma \neq x$.
- A substitution σ which has finite support is denoted < x₁ := A₁,..., x_n := A_n >, where A₁,..., A_n are formulae, x₁,..., x_n are distinct variables and the substitution verifies :
 - ► $\forall i, i \in 1, ..., n : x_i \sigma = A_i$

•
$$\forall y, y \notin \{x_1, \ldots, x_n\} : y\sigma = y$$

Example 1.3.3

$$A = x \lor x \land y \Rightarrow z \land y \text{ and } \sigma = < x := a \lor b, z := b \land c > A\sigma =$$

Finite support substitution

Definition 1.3.2 The support of a substitution σ

- The set of variables *x* such as $x\sigma \neq x$.
- A substitution σ which has finite support is denoted < x₁ := A₁,..., x_n := A_n >, where A₁,..., A_n are formulae, x₁,..., x_n are distinct variables and the substitution verifies :
 - ► $\forall i, i \in 1, ..., n : x_i \sigma = A_i$

•
$$\forall y, y \notin \{x_1, \ldots, x_n\} : y\sigma = y$$

Example 1.3.3

$$A = x \lor x \land y \Rightarrow z \land y \text{ and } \sigma = \langle x := a \lor b, z := b \land c \rangle$$
$$A\sigma = (a \lor b) \lor (a \lor b) \land y \Rightarrow (b \land c) \land y$$

Property 1.3.4

Let *A* be a formula, *v* a truth assignment and σ a substitution, we have $[A\sigma]_v = [A]_w$ where for every variable *x*, $w(x) = [\sigma(x)]_v$.

Property 1.3.4

Let *A* be a formula, *v* a truth assignment and σ a substitution, we have $[A\sigma]_v = [A]_w$ where for every variable *x*, $w(x) = [\sigma(x)]_v$.

Example 1.3.5 : Let $A = x \lor y \lor d$ Let $\sigma = \langle x := a \lor b, y := b \land c \rangle$ Let v so that v(a) = 1, v(b) = 0, v(c) = 0, v(d) = 0

Property 1.3.4

Let *A* be a formula, *v* a truth assignment and σ a substitution, we have $[A\sigma]_v = [A]_w$ where for every variable *x*, $w(x) = [\sigma(x)]_v$.

Example 1.3.5 :

Let $A = x \lor y \lor d$ Let $\sigma = \langle x := a \lor b, y := b \land c \rangle$ Let v so that v(a) = 1, v(b) = 0, v(c) = 0, v(d) = 0 $A\sigma = (a \lor b) \lor (b \land c) \lor d$ $[A\sigma]_v = max(max(max(1,0), min(0,0), 0)) = 1$

Property 1.3.4

Let *A* be a formula, *v* a truth assignment and σ a substitution, we have $[A\sigma]_v = [A]_w$ where for every variable *x*, $w(x) = [\sigma(x)]_v$.

Example 1.3.5 :

Let
$$A = x \lor y \lor d$$

Let $\sigma = \langle x := a \lor b, y := b \land c \rangle$
Let v so that $v(a) = 1$, $v(b) = 0$, $v(c) = 0$, $v(d) = 0$
 $A\sigma = (a \lor b) \lor (b \land c) \lor d$
 $[A\sigma]_v = max(max(max(1,0),min(0,0),0)) = 1$
 $w(x) = [\sigma(x)]_v = [a \lor b]_v = max(1,0) = 1$
 $w(y) = [\sigma(y)]_v = [b \land c]_v = min(0,0) = 0$
 $w(d) = [\sigma(d)]_v = [d]_v = 0$

Property 1.3.4

Let *A* be a formula, *v* a truth assignment and σ a substitution, we have $[A\sigma]_v = [A]_w$ where for every variable *x*, $w(x) = [\sigma(x)]_v$.

Example 1.3.5 :

Let
$$A = x \lor y \lor d$$

Let $\sigma = \langle x := a \lor b, y := b \land c \rangle$
Let v so that $v(a) = 1, v(b) = 0, v(c) = 0, v(d) = 0$
 $A\sigma = (a \lor b) \lor (b \land c) \lor d$
 $[A\sigma]_v = max(max(max(1,0), min(0,0), 0)) = 1$
 $w(x) = [\sigma(x)]_v = [a \lor b]_v = max(1,0) = 1$
 $w(y) = [\sigma(y)]_v = [b \land c]_v = min(0,0) = 0$
 $w(d) = [\sigma(d)]_v = [d]_v = 0$
 $[A]_w = max(max(1,0), 0) = 1$

Property 1.3.4

Let *A* be a formula, *v* a truth assignment and σ a substitution, we have $[A\sigma]_v = [A]_w$ where for every variable *x*, $w(x) = [\sigma(x)]_v$.

Example 1.3.5 :

Let
$$A = x \lor y \lor d$$

Let $\sigma = \langle x := a \lor b, y := b \land c \rangle$
Let v so that $v(a) = 1, v(b) = 0, v(c) = 0, v(d) = 0$
 $A\sigma = (a \lor b) \lor (b \land c) \lor d$
 $[A\sigma]_v = max(max(max(1,0), min(0,0), 0)) = 1$
 $w(x) = [\sigma(x)]_v = [a \lor b]_v = max(1,0) = 1$
 $w(y) = [\sigma(y)]_v = [b \land c]_v = min(0,0) = 0$
 $w(d) = [\sigma(d)]_v = [d]_v = 0$
 $[A]_w = max(max(1,0), 0) = 1$

Proof.

Let *A* a formula, *v* a truth assignment and σ a substitution. Proof by induction on the height (or better : the structure) of *A*.

S. Devismes et al (Grenoble I)

Logic formulae transformations

Logic formulae transformations Substitution and replacement

Initial step : |A| = 0

Two possible cases :

► Let A = k be a constant (\top or \bot) : $[k\sigma]_v = [k]_v = [k]_w$. (\top (resp. \bot) yields 1 (resp. 0) for all truth assignments)

Induction

Hypothesis : Suppose the property is true for all formula of height less or equal to *n*.

Let A a formula of height n+1; there are two possible cases :

• Case 1 : Let
$$A = \neg B$$
.
 $[A\sigma]_v = [\neg B\sigma]_v = [\neg (B\sigma)]_v = 1 - [B\sigma]_v$ and
 $[A]_w = [\neg B]_w = 1 - [B]_w$.
Since $|B| = n$ we have $[B\sigma]_v = [B]_w$
for all variables $x, w(x) = [\sigma(x)]_v$.
Hence, $[A\sigma]_v = [A]_w$.

Induction

Hypothesis : Suppose the property is true for all formula of height less or equal to *n*. Let *A* a formula of height n+1; there are two possible cases :

► Case 2 : Let $A = (B \circ C)$, then $[A\sigma]_{\nu} = [(B \circ C)\sigma]_{\nu} = f_{\circ}([B\sigma]_{\nu}, [C\sigma]_{\nu})$ and $[A]_{w} = [B \circ C]_{w} = f_{\circ}([B]_{w}, [C]_{w})$, where f_{\circ} is the function associated to \circ corresponding to definition 1.2.1. Since |B| < n+1 and |C| < n+1 we obtain by induction hypothesis $[B\sigma]_{\nu} = [B]_{w}$ and $[C\sigma]_{\nu} = [C]_{w}$ where for every variable $x, w(x) = [\sigma(x)]_{\nu}$, which implies $[A\sigma]_{\nu} = [A]_{w}$.

Theorem 1.3.6

The application of a substitution to a valid formula gives a valid formula.

Proof.

Theorem 1.3.6

The application of a substitution to a valid formula gives a valid formula.

Proof.

Let *A* be a valid formula and σ a substitution. Let *v* be any truth assignment.

Theorem 1.3.6

The application of a substitution to a valid formula gives a valid formula.

Proof.

Let *A* be a valid formula and σ a substitution. Let *v* be any truth assignment.

According to property 1.3.4 : $[A\sigma]_v = [A]_w$ where for every variable *x*, $w(x) = [\sigma(x)]_v$.

Theorem 1.3.6

The application of a substitution to a valid formula gives a valid formula.

Proof.

Let *A* be a valid formula and σ a substitution. Let *v* be any truth assignment.

According to property 1.3.4 : $[A\sigma]_v = [A]_w$ where for every variable *x*, $w(x) = [\sigma(x)]_v$.

Since A is valid, $[A]_w = 1$. Consequently, $A\sigma$ equals 1 in every truth assignment, it is therefore a valid formula.

Example

Example

- Let *A* the formula $x \lor \neg x$
- A is valid

Example

- Let *A* the formula $x \lor \neg x$
- A is valid
- Let σ the following substitution : $\sigma(x) = (a \land b)$
- The formula $A\sigma$ is $(a \land b) \lor \neg (a \land b)$

Example

- Let *A* the formula $x \lor \neg x$
- A is valid
- Let σ the following substitution : $\sigma(x) = (a \land b)$
- The formula $A\sigma$ is $(a \wedge b) \vee \neg (a \wedge b)$
- According to theorem 1.3.6, Aσ is valid

Example

- Let *A* the formula $x \lor \neg x$
- A is valid
- Let σ the following substitution : $\sigma(x) = (a \land b)$
- The formula $A\sigma$ is $(a \wedge b) \vee \neg (a \wedge b)$
- According to theorem 1.3.6, Aσ is valid
- From the De Morgan laws, we have $A\sigma = (a \land b) \lor (\neg a \lor \neg b)$
- Hence, $A\sigma = (a \land b) \lor \neg a \lor \neg b$ is valid

Example 1.3.7

Let *A* the formula $\neg(p \land q) \Leftrightarrow (\neg p \lor \neg q)$. This formula is valid, it is an important equivalence. Let σ the following substitution : . The formula $A\sigma =$

Example 1.3.7

Let *A* the formula $\neg(p \land q) \Leftrightarrow (\neg p \lor \neg q)$. This formula is valid, it is an important equivalence. Let σ the following substitution : . The formula $A\sigma =$

 $\neg((a \lor b) \land (c \land d)) \Leftrightarrow (\neg(a \lor b) \lor \neg(c \land d))$ is also valid.

Replacement

Replace a formula by another formula.

Definition 1.3.8

Let A, B, C, D formulae.

The formula *D* is obtained by replacing in *C* certain occurences of *A* by

В

if there exist a formula *E* and a variable *x* so that, C = E < x := A > and D = E < x := B >.

Example 1.3.9

Consider the formula $C = ((a \Rightarrow b) \lor \neg(a \Rightarrow b)).$

The formula obtained by replacing all occurences of (a ⇒ b) by (a ∧ b) in C is

Example 1.3.9

Consider the formula $C = ((a \Rightarrow b) \lor \neg (a \Rightarrow b)).$

The formula obtained by replacing all occurences of (a ⇒ b) by (a ∧ b) in C is

 $D = ((a \wedge b) \vee \neg (a \wedge b)),$

it is obtained considering the formula $E = (x \lor \neg x)$ and the following substitutions $\langle x := (a \land b) \rangle$ et $\langle x := (a \Rightarrow b) \rangle$.

Example 1.3.9

Consider the formula $C = ((a \Rightarrow b) \lor \neg (a \Rightarrow b)).$

The formula obtained by replacing all occurences of (a ⇒ b) by (a ∧ b) in C is

 $D = ((a \wedge b) \vee \neg (a \wedge b)),$

it is obtained considering the formula $E = (x \lor \neg x)$ and the following substitutions $\langle x := (a \land b) \rangle$ et $\langle x := (a \Rightarrow b) \rangle$.

The formula obtained by replacing the first occurrence of (a ⇒ b) by (a ∧ b) in C is

Example 1.3.9

Consider the formula $C = ((a \Rightarrow b) \lor \neg (a \Rightarrow b)).$

The formula obtained by replacing all occurences of (a ⇒ b) by (a ∧ b) in C is

 $D = ((a \wedge b) \vee \neg (a \wedge b)),$

it is obtained considering the formula $E = (x \lor \neg x)$ and the following substitutions $\langle x := (a \land b) \rangle$ et $\langle x := (a \Rightarrow b) \rangle$.

The formula obtained by replacing the first occurrence of (a ⇒ b) by (a ∧ b) in C is

 $D = ((a \wedge b) \vee \neg (a \Rightarrow b)),$

it is obtained considering the formula $E = (x \lor \neg(a \Rightarrow b))$ and the following substitution $\langle x := (a \land b) \rangle$ and $\langle x := (a \Rightarrow b) \rangle$.

Properties of the replacements (1/2)

Theorem 1.3.10

Let *C* a formula and *D* the formula obtained by replacing, in *C*, the occurences of formula *A* by formula *B*. We have : $(A \Leftrightarrow B) \models (C \Leftrightarrow D).$

Properties of the replacements (1/2)

Theorem 1.3.10

Let *C* a formula and *D* the formula obtained by replacing, in *C*, the occurences of formula *A* by formula *B*. We have : $(A \Leftrightarrow B) \models (C \Leftrightarrow D).$

Proof.

By definition of the replacement, there is a formula *E* and a variable *x* so that, C = E < x := A > et D = E < x := B >. Suppose that *v* is a model truth assignment of $(A \Leftrightarrow B)$. We therefore have $[A]_v = [B]_v$. According to property 1.3.4 :

• $[C]_v = [E]_w$ where w is identical to v except that $w(x) = [A]_v$

► $[D]_v = [E]_{w'}$ where w' is identical to v except that $w'(x) = [B]_v$ Since $[A]_v = [B]_v$, the truth assignments w and w' are identical, therefore $[C]_v = [D]_v$. Consequently, v is a model of $(C \Leftrightarrow D)$.

18 / 65

Application of the theorem (Example 1.3.12)

$p \Leftrightarrow q \models (p \lor (p \Rightarrow r)) \Leftrightarrow (p \lor (q \Rightarrow r)).$

S. Devismes et al (Grenoble I)

Properties of the replacements (2/2)

Corollary 1.3.11

Let *C* a formula and *D* the formula obtained by replacing, in *C*, one occurence of formula *A* by formula *B*. We have : if $A \equiv B$ then $C \equiv D$.

Properties of the replacements (2/2)

Corollary 1.3.11

Let *C* a formula and *D* the formula obtained by replacing, in *C*, one occurence of formula *A* by formula *B*. We have : if $A \equiv B$ then $C \equiv D$.

Proof.

If $A \equiv B$, then the formula $(A \Leftrightarrow B)$ is valid (property 1.2.10), hence the formula $(C \Leftrightarrow D)$ is also valid since, according to theorem 1.3.10, the consequence of $(A \Leftrightarrow B)$. Consequently $C \equiv D$.

Properties of the replacements (2/2)

Corollary 1.3.11

Let *C* a formula and *D* the formula obtained by replacing, in *C*, one occurence of formula *A* by formula *B*. We have : if $A \equiv B$ then $C \equiv D$.

Proof.

If $A \equiv B$, then the formula $(A \Leftrightarrow B)$ is valid (property 1.2.10), hence the formula $(C \Leftrightarrow D)$ is also valid since, according to theorem 1.3.10, the consequence of $(A \Leftrightarrow B)$. Consequently $C \equiv D$.

Example 1.3.12

$$(\neg(p \lor q) \Rightarrow (\neg(p \lor q) \lor r)) \equiv (\neg(p \lor q) \Rightarrow ((\neg p \land \neg q) \lor r)),$$

since $\neg(p \lor q) \equiv (\neg p \land \neg q).$

S. Devismes et al (Grenoble I)

Plan

Substitution and replacement

Normal forms

Boolean Algebra

Boolean functions

The BDDC tools

Conclusion

Definitions

Definition 1.4.1

• A literal is a variable or its negation.

Definitions

Definition 1.4.1

- A literal is a variable or its negation.
- A monomial is a conjunction of literals.

Definitions

Definition 1.4.1

- A literal is a variable or its negation.
- A monomial is a conjunction of literals.
- A clause is a disjunction of literals.

Logic formulae transformations Normal forms

Example 1.4.2

► $x, y, \neg z$ are literals.

- ► $x, y, \neg z$ are literals.
- $x \land \neg y \land z$ is a monomial whose unique model is $x \mapsto 1, y \mapsto 0, z \mapsto 1$.

- ► $x, y, \neg z$ are literals.
- $x \land \neg y \land z$ is a monomial whose unique model is $x \mapsto 1, y \mapsto 0, z \mapsto 1$.
- The monomial x ∧ ¬y ∧ z ∧ ¬x contains a variable and its negation : it is equivalent to ⊥.

- ► $x, y, \neg z$ are literals.
- $x \land \neg y \land z$ is a monomial whose unique model is $x \mapsto 1, y \mapsto 0, z \mapsto 1$.
- The monomial x ∧ ¬y ∧ z ∧ ¬x contains a variable and its negation : it is equivalent to ⊥.
- $x \lor \neg y \lor z$ is a clause whose unique counter model is $x \mapsto 0, y \mapsto 1, z \mapsto 0$.

- ► $x, y, \neg z$ are literals.
- $x \land \neg y \land z$ is a monomial whose unique model is $x \mapsto 1, y \mapsto 0, z \mapsto 1$.
- The monomial x ∧ ¬y ∧ z ∧ ¬x contains a variable and its negation : it is equivalent to ⊥.
- $x \lor \neg y \lor z$ is a clause whose unique counter model is $x \mapsto 0, y \mapsto 1, z \mapsto 0$.
- The clause x ∨ ¬y ∨ z ∨ ¬x contains a variable and its negation : it is equivalent to ⊤.

Normal form

Definition 1.4.3

A formula is in normal form if it only contains the operators \land, \lor, \neg and the negations are only applied to variables.

Normal form

Definition 1.4.3

A formula is in normal form if it only contains the operators \land,\lor,\neg and the negations are only applied to variables.

Example 1.4.4

The formula $\neg a \lor b$ is in normal form, while the formula $a \Rightarrow b$ is not in normal form, even if it is equivalent to the first one.

Normal form

Definition 1.4.3

A formula is in normal form if it only contains the operators \land,\lor,\neg and the negations are only applied to variables.

Example 1.4.4

The formula $\neg a \lor b$ is in normal form, while the formula $a \Rightarrow b$ is not in normal form, even if it is equivalent to the first one.

- 1. Equivalence elimination
- 2. Implication elimination
- 3. Shifting negations such that they only apply to variables

1. Eliminating an equivalence

Replacing an occurrence of $A \Leftrightarrow B$ by one of the sub-formulae (a) $(\neg A \lor B) \land (\neg B \lor A)$ (b) $(A \land B) \lor (\neg A \land \neg B)$

Eliminating an implication

Replacing an occurrence of $A \Rightarrow B$ by $\neg A \lor B$

Shifting negations

Replacing an occurrence of

- (a) $\neg \neg A$ by A
- (b) $\neg (A \lor B)$ by $\neg A \land \neg B$
- (c) $\neg (A \land B)$ by $\neg A \lor \neg B$

Simplify as soon as possible :

1. Replace a sub-formula of the form $\neg(A \Rightarrow B)$ by $A \land \neg B$.

- 1. Replace a sub-formula of the form $\neg(A \Rightarrow B)$ by $A \land \neg B$.
- 2. Replacing a conjunction by \perp if it contains
 - either a formula and its negation,
 - ► or a ⊥

- 1. Replace a sub-formula of the form $\neg(A \Rightarrow B)$ by $A \land \neg B$.
- 2. Replacing a conjunction by \perp if it contains
 - either a formula and its negation,
 - ▶ or a ⊥
- 3. Replace a disjunction by \top , if it contains
 - either a formula and its negation,
 - ► or a T

- 1. Replace a sub-formula of the form $\neg(A \Rightarrow B)$ by $A \land \neg B$.
- 2. Replacing a conjunction by \perp if it contains
 - either a formula and its negation,
 - ► or a ⊥
- 3. Replace a disjunction by \top , if it contains
 - either a formula and its negation,
 - ► or a T
- 4. Replace $\neg \top$ by \bot and $\neg \bot$ by \top

- 1. Replace a sub-formula of the form $\neg(A \Rightarrow B)$ by $A \land \neg B$.
- 2. Replacing a conjunction by \perp if it contains
 - either a formula and its negation,
 - ► or a ⊥
- 3. Replace a disjunction by \top , if it contains
 - either a formula and its negation,
 - ► or a T
- 4. Replace $\neg \top$ by \bot and $\neg \bot$ by \top
- 5. Eliminate the \perp from the disjunctions and the \top from the conjunctions

- 1. Replace a sub-formula of the form $\neg(A \Rightarrow B)$ by $A \land \neg B$.
- 2. Replacing a conjunction by \perp if it contains
 - either a formula and its negation,
 - ► or a ⊥
- 3. Replace a disjunction by ⊤, if it contains
 - either a formula and its negation,
 - ► or a T
- 4. Replace $\neg \top$ by \bot and $\neg \bot$ by \top
- 5. Eliminate the \perp from the disjunctions and the \top from the conjunctions
- 6. Apply the simplifications :

$$X \vee (x \wedge y) \equiv x,$$

- $x \wedge (x \vee y) \equiv x$,
- $x \lor (\neg x \land y) \equiv x \lor y$

- 1. Replace a sub-formula of the form $\neg(A \Rightarrow B)$ by $A \land \neg B$.
- 2. Replacing a conjunction by \perp if it contains
 - either a formula and its negation,
 - ► or a ⊥
- 3. Replace a disjunction by \top , if it contains
 - either a formula and its negation,
 - ► or a T
- 4. Replace $\neg \top$ by \bot and $\neg \bot$ by \top
- 5. Eliminate the \perp from the disjunctions and the \top from the conjunctions
- 6. Apply the simplifications :
 - $x \lor (x \land y) \equiv x$,
 - $\bullet \ x \wedge (x \vee y) \equiv x,$
 - $\bullet x \lor (\neg x \land y) \equiv x \lor y$
- 7. Apply the idempotence of the conjunction and the disjunction.

Disjunctive normal form (DNF)

Definition 1.4.6

A formula is in disjunctive normal form (DNF) if and only if it is a disjunction (sum) of monomials.

Distribution of conjuctions over disjuctions $x \land (y \lor z) \equiv (x \land y) \lor (x \land z)$

Disjunctive normal form (DNF)

Definition 1.4.6

A formula is in disjunctive normal form (DNF) if and only if it is a disjunction (sum) of monomials.

Distribution of conjuctions over disjuctions $x \land (y \lor z) \equiv (x \land y) \lor (x \land z)$ The interest of DNFs is to highlight their models.

Disjunctive normal form (DNF)

Definition 1.4.6

A formula is in disjunctive normal form (DNF) if and only if it is a disjunction (sum) of monomials.

Distribution of conjuctions over disjuctions $x \land (y \lor z) \equiv (x \land y) \lor (x \land z)$ The interest of DNFs is to highlight their models.

Example 1.4.7

 $(x \land y) \lor (\neg x \land \neg y \land z)$ is a DNF, which has two models

Disjunctive normal form (DNF)

Definition 1.4.6

A formula is in disjunctive normal form (DNF) if and only if it is a disjunction (sum) of monomials.

Distribution of conjuctions over disjuctions $x \land (y \lor z) \equiv (x \land y) \lor (x \land z)$ The interest of DNFs is to highlight their models.

Example 1.4.7

 $(x \land y) \lor (\neg x \land \neg y \land z)$ is a DNF, which has two models

- ▶ $x \mapsto 1, y \mapsto 1$
- $\blacktriangleright x \mapsto 0, y \mapsto 0, z \mapsto 1$

Definition 1.4.11

A formula is a conjunctive normal form (CNF) if and only if it is a conjunction (product) of clauses.

Applying distributivity (unusual) of disjunction over conjunction :

- $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$
- $\bullet (B \land C) \lor A \equiv (B \lor A) \land (C \lor A).$

Definition 1.4.11

A formula is a conjunctive normal form (CNF) if and only if it is a conjunction (product) of clauses.

Applying distributivity (unusual) of disjunction over conjunction :

- $\bullet \ A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$
- $\bullet (B \land C) \lor A \equiv (B \lor A) \land (C \lor A).$

The interest of CNF is to highlight their counter-models.

Definition 1.4.11

A formula is a conjunctive normal form (CNF) if and only if it is a conjunction (product) of clauses.

Applying distributivity (unusual) of disjunction over conjunction :

- $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$
- $(B \land C) \lor A \equiv (B \lor A) \land (C \lor A).$

The interest of CNF is to highlight their counter-models.

Example 1.4.12

 $(x \lor y) \land (\neg x \lor \neg y \lor z)$ is a CNF, which has two counter-models.

Definition 1.4.11

A formula is a conjunctive normal form (CNF) if and only if it is a conjunction (product) of clauses.

Applying distributivity (unusual) of disjunction over conjunction :

- $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$
- $(B \land C) \lor A \equiv (B \lor A) \land (C \lor A).$

The interest of CNF is to highlight their counter-models.

Example 1.4.12

 $(x \lor y) \land (\neg x \lor \neg y \lor z)$ is a CNF, which has two counter-models.

- ▶ $x \mapsto 0, y \mapsto 0$
- $\blacktriangleright x \mapsto 1, y \mapsto 1, z \mapsto 0.$

Transform the formula $(a \Rightarrow b) \Leftrightarrow (\neg b \Rightarrow \neg a)$ in disjunction of monomials (*DNF*) :

• $(\neg a \lor b) \Leftrightarrow (\neg \neg b \lor \neg a)$

- $(\neg a \lor b) \Leftrightarrow (\neg \neg b \lor \neg a)$
- $(\neg a \lor b) \Leftrightarrow (b \lor \neg a)$

- $(\neg a \lor b) \Leftrightarrow (\neg \neg b \lor \neg a)$
- $(\neg a \lor b) \Leftrightarrow (b \lor \neg a)$
- $(\neg a \lor b) \land (b \lor \neg a) \lor \neg (\neg a \lor b) \land \neg (b \lor \neg a)$

- $(\neg a \lor b) \Leftrightarrow (\neg \neg b \lor \neg a)$
- $(\neg a \lor b) \Leftrightarrow (b \lor \neg a)$
- $\blacktriangleright (\neg a \lor b) \land (b \lor \neg a) \lor \neg (\neg a \lor b) \land \neg (b \lor \neg a)$
- $(\neg a \lor b) \land (b \lor \neg a) \lor (a \land \neg b) \land (\neg b \land a)$

- $(\neg a \lor b) \Leftrightarrow (\neg \neg b \lor \neg a)$
- $(\neg a \lor b) \Leftrightarrow (b \lor \neg a)$
- $\blacktriangleright (\neg a \lor b) \land (b \lor \neg a) \lor \neg (\neg a \lor b) \land \neg (b \lor \neg a)$
- $\blacktriangleright (\neg a \lor b) \land (b \lor \neg a) \lor (a \land \neg b) \land (\neg b \land a)$
- $\blacktriangleright (\neg a \land b) \lor (\neg a \land \neg a) \lor (b \land b) \lor (b \land \neg a) \lor (a \land \neg b \land \neg b \land a)$

- $(\neg a \lor b) \Leftrightarrow (\neg \neg b \lor \neg a)$
- $(\neg a \lor b) \Leftrightarrow (b \lor \neg a)$
- $\blacktriangleright (\neg a \lor b) \land (b \lor \neg a) \lor \neg (\neg a \lor b) \land \neg (b \lor \neg a)$
- $\blacktriangleright (\neg a \lor b) \land (b \lor \neg a) \lor (a \land \neg b) \land (\neg b \land a)$
- $\blacktriangleright (\neg a \land b) \lor (\neg a \land \neg a) \lor (b \land b) \lor (b \land \neg a) \lor (a \land \neg b \land \neg b \land a)$
- $\blacktriangleright (\neg a \land b) \lor \neg a \lor b \lor (b \land \neg a) \lor (a \land \neg b)$

- $(\neg a \lor b) \Leftrightarrow (\neg \neg b \lor \neg a)$
- $(\neg a \lor b) \Leftrightarrow (b \lor \neg a)$
- $\blacktriangleright (\neg a \lor b) \land (b \lor \neg a) \lor \neg (\neg a \lor b) \land \neg (b \lor \neg a)$
- $\blacktriangleright (\neg a \lor b) \land (b \lor \neg a) \lor (a \land \neg b) \land (\neg b \land a)$
- $\blacktriangleright (\neg a \land b) \lor (\neg a \land \neg a) \lor (b \land b) \lor (b \land \neg a) \lor (a \land \neg b \land \neg b \land a)$
- $\blacktriangleright (\neg a \land b) \lor \neg a \lor b \lor (b \land \neg a) \lor (a \land \neg b)$
- $\neg a \lor b \lor (a \land \neg b)$, since $x \lor (x \land y) \equiv x$

- $(\neg a \lor b) \Leftrightarrow (\neg \neg b \lor \neg a)$
- $(\neg a \lor b) \Leftrightarrow (b \lor \neg a)$
- $\blacktriangleright (\neg a \lor b) \land (b \lor \neg a) \lor \neg (\neg a \lor b) \land \neg (b \lor \neg a)$
- $\blacktriangleright (\neg a \lor b) \land (b \lor \neg a) \lor (a \land \neg b) \land (\neg b \land a)$
- $\blacktriangleright (\neg a \land b) \lor (\neg a \land \neg a) \lor (b \land b) \lor (b \land \neg a) \lor (a \land \neg b \land \neg b \land a)$
- $\blacktriangleright (\neg a \land b) \lor \neg a \lor b \lor (b \land \neg a) \lor (a \land \neg b)$
- $\neg a \lor b \lor (a \land \neg b)$, since $x \lor (x \land y) \equiv x$

•
$$\neg a \lor b \lor a$$
, since $x \lor (\neg x \land y) \equiv x \lor y$

- $(\neg a \lor b) \Leftrightarrow (\neg \neg b \lor \neg a)$
- $(\neg a \lor b) \Leftrightarrow (b \lor \neg a)$
- $\blacktriangleright (\neg a \lor b) \land (b \lor \neg a) \lor \neg (\neg a \lor b) \land \neg (b \lor \neg a)$
- $\blacktriangleright (\neg a \lor b) \land (b \lor \neg a) \lor (a \land \neg b) \land (\neg b \land a)$
- $\blacktriangleright (\neg a \land b) \lor (\neg a \land \neg a) \lor (b \land b) \lor (b \land \neg a) \lor (a \land \neg b \land \neg b \land a)$
- $\blacktriangleright (\neg a \land b) \lor \neg a \lor b \lor (b \land \neg a) \lor (a \land \neg b)$
- $\neg a \lor b \lor (a \land \neg b)$, since $x \lor (x \land y) \equiv x$
- $\neg a \lor b \lor a$, since $x \lor (\neg x \land y) \equiv x \lor y$
- ▶ $\top \lor b$

Transform the formula $(a \Rightarrow b) \Leftrightarrow (\neg b \Rightarrow \neg a)$ in disjunction of monomials *(DNF)*:

- $(\neg a \lor b) \Leftrightarrow (\neg \neg b \lor \neg a)$
- $(\neg a \lor b) \Leftrightarrow (b \lor \neg a)$
- $\blacktriangleright (\neg a \lor b) \land (b \lor \neg a) \lor \neg (\neg a \lor b) \land \neg (b \lor \neg a)$
- $\blacktriangleright (\neg a \lor b) \land (b \lor \neg a) \lor (a \land \neg b) \land (\neg b \land a)$
- $\blacktriangleright (\neg a \land b) \lor (\neg a \land \neg a) \lor (b \land b) \lor (b \land \neg a) \lor (a \land \neg b \land \neg b \land a)$
- $(\neg a \land b) \lor \neg a \lor b \lor (b \land \neg a) \lor (a \land \neg b)$
- $\neg a \lor b \lor (a \land \neg b)$, since $x \lor (x \land y) \equiv x$
- $\neg a \lor b \lor a$, since $x \lor (\neg x \land y) \equiv x \lor y$
- ▶ $\top \lor b$

S. Devismes et al (Grenoble I)

Example 1.4.8 et 1.4.13

Transformation in DNF of the following :

 $(a \lor b) \land (c \lor d \lor e) \equiv$

Example 1.4.8 et 1.4.13

Transformation in DNF of the following :

 $(a \lor b) \land (c \lor d \lor e) \equiv$

 $(a \wedge c) \lor (a \wedge d) \lor (a \wedge e) \lor (b \wedge c) \lor (b \wedge d) \lor (b \wedge e).$

```
Example 1.4.8 et 1.4.13
```

Transformation in DNF of the following :

 $(a \lor b) \land (c \lor d \lor e) \equiv$

 $(a \wedge c) \lor (a \wedge d) \lor (a \wedge e) \lor (b \wedge c) \lor (b \wedge d) \lor (b \wedge e).$

Transformation in CNF of the following :

 $(a \wedge b) \lor (c \wedge d \wedge e) \equiv$

Transformation in DNF of the following :

 $(a \lor b) \land (c \lor d \lor e) \equiv$

 $(a \wedge c) \lor (a \wedge d) \lor (a \wedge e) \lor (b \wedge c) \lor (b \wedge d) \lor (b \wedge e).$

Transformation in CNF of the following :

 $(a \wedge b) \lor (c \wedge d \wedge e) \equiv$

 $(a \lor c) \land (a \lor d) \land (a \lor e) \land (b \lor c) \land (b \lor d) \land (b \lor e).$

S. Devismes et al (Grenoble I)

PURPOSE

Determine if a formula is valid or not.

PURPOSE

Determine if a formula is valid or not.

Let A be a formula whose validity we wish to check :

PURPOSE

Determine if a formula is valid or not.

Let A be a formula whose validity we wish to check :

We transform $\neg A$ in an equivalent disjunction of monomials B

PURPOSE

Determine if a formula is valid or not.

Let A be a formula whose validity we wish to check :

We transform $\neg A$ in an equivalent disjunction of monomials B

• If $B \equiv \bot$ then $\neg A \equiv \bot$, hence $A \equiv \top$, that is, A is valid

PURPOSE

Determine if a formula is valid or not.

Let A be a formula whose validity we wish to check :

We transform $\neg A$ in an equivalent disjunction of monomials B

- If $B \equiv \bot$ then $\neg A \equiv \bot$, hence $A \equiv \top$, that is, A is valid
- Otherwise B is equal to a disjunction of nonzero monomials equivalent to ¬A, which gives us models of ¬A, hence counter-models of A.

Let
$$A = (p \Rightarrow (q \Rightarrow r)) \Rightarrow (p \land q \Rightarrow r)$$

Determine if A is valid.

Let
$$A = (p \Rightarrow (q \Rightarrow r)) \Rightarrow (p \land q \Rightarrow r)$$

Determine if A is valid.

$$\neg A
\equiv (p \Rightarrow (q \Rightarrow r)) \land \neg (p \land q \Rightarrow r)
\equiv (\neg p \lor \neg q \lor r) \land \neg (p \land q \Rightarrow r)
\equiv (\neg p \lor \neg q \lor r) \land (p \land q \land \neg r)
\equiv (\neg p \land p \land q \land \neg r) \lor (\neg q \land p \land q \land \neg r)
\lor (r \land p \land q \land \neg r)
\equiv \bot$$

by equality $\neg (B \Rightarrow C) \equiv B \land \neg C$ eliminating two implications by equality $\neg (B \Rightarrow C) \equiv B \land \neg C$ by distributivity of conjunction over disjunction since every monomial equals 0

Hence $\neg A \equiv \bot$ and $A \equiv \top$, that is *A* is valid.

Let $A = (a \Rightarrow b) \land c \lor (a \land d)$.

Determine if A is valid.

Let
$$A = (a \Rightarrow b) \land c \lor (a \land d)$$
.

Determine if A is valid.

$$\neg A$$

$$\equiv \neg((a \Rightarrow b) \land c) \land \neg(a \land d)$$

$$\equiv (\neg(a \Rightarrow b) \lor \neg c) \land (\neg a \lor \neg d)$$

$$\equiv ((a \land \neg b) \lor \neg c) \land (\neg a \lor \neg d)$$

$$\equiv (a \land \neg b \land \neg a) \lor (a \land \neg b \land \neg d)$$

$$\lor (\neg c \land \neg a) \lor (\neg c \land \neg d)$$

$$\equiv (a \land \neg b \land \neg d) \lor (\neg c \land \neg d)$$

shifting negations shifting negations shifting one negation elimination of the implication distributivity of disjunction over conjunction simplification

We obtain 3 models of $\neg A : (a \mapsto 1, b \mapsto 0, d \mapsto 0)$, $(a \mapsto 0, c \mapsto 0)$, $(c \mapsto 0, d \mapsto 0)$. That is, counter-models of A. Hence A is not valid.

S. Devismes et al (Grenoble I)

Plan

Substitution and replacement

Normal forms

Boolean Algebra

Boolean functions

The BDDC tools

Conclusion

A Boolen Algebra is a set of at least two elements, 0, 1, and three operations, complement (negation) (\bar{x}) , sum (disjunction) (+) and product (conjunction) (.), which verify the following axioms :

- 1. the sum is :
 - associative : x + (y + z) = (x + y) + z,
 - commutative : x + y = y + x,
 - 0 is the neutral element for sum : 0 + x = x,

A Boolen Algebra is a set of at least two elements, 0, 1, and three operations, complement (negation) (\bar{x}) , sum (disjunction) (+) and product (conjunction) (.), which verify the following axioms :

- 1. the sum is :
 - associative : x + (y + z) = (x + y) + z,
 - commutative : x + y = y + x,
 - 0 is the neutral element for sum : 0 + x = x,
- 2. the product is :
 - associative : x.(y.z) = (x.y).z,
 - commutative : x.y = y.x,
 - 1 is the neutral element for product : 1.x = x,

A Boolen Algebra is a set of at least two elements, 0, 1, and three operations, complement (negation) (\bar{x}) , sum (disjunction) (+) and product (conjunction) (.), which verify the following axioms :

- 1. the sum is :
 - associative : x + (y + z) = (x + y) + z,
 - commutative : x + y = y + x,
 - 0 is the neutral element for sum : 0 + x = x,
- 2. the product is :
 - associative : x.(y.z) = (x.y).z,
 - commutative : x.y = y.x,
 - 1 is the neutral element for product : 1.x = x,
- 3. the product is distributive over the sum : $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$,
- 4. the sum is distributive over the product : x + (y.z) = (x + y).(x + z),

A Boolen Algebra is a set of at least two elements, 0, 1, and three operations, complement (negation) (\bar{x}) , sum (disjunction) (+) and product (conjunction) (.), which verify the following axioms :

- 1. the sum is :
 - associative : x + (y + z) = (x + y) + z,
 - commutative : x + y = y + x,
 - 0 is the neutral element for sum : 0 + x = x,
- 2. the product is :
 - associative : x.(y.z) = (x.y).z,
 - commutative : x.y = y.x,
 - 1 is the neutral element for product : 1.x = x,
- 3. the product is distributive over the sum : $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$,
- 4. the sum is distributive over the product : x + (y.z) = (x + y).(x + z),
- 5. negation laws :
 - ► $x + \overline{x} = 1$,
 - ► $x.\overline{x} = 0.$

S. Devismes et al (Grenoble I)

Propositional logic is a Boolean Algebra

The axioms can be proven by truth tables.

Propositional logic is a Boolean Algebra

The axioms can be proven by truth tables.

Another example :

Boolean Algebra	$\mathcal{P}(X)$
1	X
0	Ø
\overline{p}	X-p
p+q	$p \cup q$
p.q	$p \cap q$

FIGURE : Figure 1.1

Property of a Boolean Algebra

Property 1.5.3

For all x, there is one and only one y such that x + y = 1 and xy = 0, in other words, the negation is unique.
 (proof can be found in the course support (poly))

Property of a Boolean Algebra

Property 1.5.3

- For all x, there is one and only one y such that x + y = 1 and xy = 0, in other words, the negation is unique.
 (proof can be found in the course support (poly))
- $\blacktriangleright \quad 1. \ \overline{1} = 0$
 - 2. $\overline{0} = 1$
 - 3. $\overline{\overline{x}} = x$
 - 4. Product idempotence : $x \cdot x = x$
 - 5. Sum idempotence : x + x = x
 - 6. 1 is an absorbing element for the sum : 1 + x = 1
 - 7. 0 is an absorbing element for the product : 0.x = 0
 - 8. De Morgan laws :
 - $\blacktriangleright \ \overline{xy} = \overline{x} + \overline{y}$
 - $\blacktriangleright \ \overline{x+y} = \overline{x}.\overline{y}$

Proof

 $1. \ \overline{1}=0.$

$1. \ \overline{1}=0.$

According to the definition of negation, $x.\overline{x} = 0$. Hence, $1.\overline{1} = 0$. Since 1 is a neutral element for product, we have $\overline{1} = 0$.

Proof

1. $\overline{1} = 0$.

According to the definition of negation, $x.\overline{x} = 0$. Hence, $1.\overline{1} = 0$. Since 1 is a neutral element for product, we have $\overline{1} = 0$.

2. $\overline{0} = 1$.

Proof

1. $\overline{1} = 0$.

According to the definition of negation, $x.\overline{x} = 0$. Hence, $1.\overline{1} = 0$. Since 1 is a neutral element for product, we have $\overline{1} = 0$.

2. $\overline{0} = 1$.

According to the definition of negation, $x + \overline{x} = 1$. Hence, $0 + \overline{0} = 1$. Since 0 is a neutral element for sum , we have $\overline{0} = 1$.

Proof

1. $\overline{1} = 0$.

According to the definition of negation, $x.\overline{x} = 0$. Hence, $1.\overline{1} = 0$. Since 1 is a neutral element for product, we have $\overline{1} = 0$.

2. $\overline{0} = 1$.

According to the definition of negation, $x + \overline{x} = 1$. Hence, $0 + \overline{0} = 1$. Since 0 is a neutral element for sum , we have $\overline{0} = 1$.

3. $\overline{\overline{x}} = x$.

$1. \ \overline{1}=0.$

According to the definition of negation, $x.\overline{x} = 0$. Hence, $1.\overline{1} = 0$. Since 1 is a neutral element for product, we have $\overline{1} = 0$.

2. $\overline{0} = 1$.

According to the definition of negation, $x + \overline{x} = 1$. Hence, $0 + \overline{0} = 1$. Since 0 is a neutral element for sum , we have $\overline{0} = 1$.

3. $\overline{\overline{x}} = x$.

According to the properties of negation and commutativity, we have : $\overline{x} + x = 1$, $\overline{x} \cdot x = 0$, $\overline{x} + \overline{\overline{x}} = 1$, and $\overline{x} \cdot \overline{\overline{x}} = 0$. Because of the uniqueness of negation (property 1.5.3), we deduce that $x = \overline{\overline{x}}$.

• Product idempotence : $x \cdot x = x$.

• Product idempotence : $x \cdot x = x$.

x =	<i>x</i> .1
=	$x.(x+\overline{x})$
=	$x.x + x.\overline{x}$
=	<i>x</i> . <i>x</i> +0
=	Х.Х

Proof

• Sum idempotence : x + x = x

• Sum idempotence : x + x = x

<i>x</i> =	<i>x</i> +0
=	$x + x.\overline{x}$
=	$(x+x).(x+\overline{x})$
=	(x+x).1
=	<i>x</i> + <i>x</i>

• 1 is an absorbing element of the sum : 1 + x = 1.

• 1 is an absorbing element of the sum : 1 + x = 1.

We use sum idempotence.

$$1 + x = (x + \overline{x}) + x$$
$$= x + \overline{x}$$
$$= 1$$

• 1 is an absorbing element of the sum : 1 + x = 1.

We use sum idempotence.

$$1+x = (x+\overline{x})+x$$
$$= x+\overline{x}$$
$$= 1$$

• 0 is an absorbing element for the product : 0.x = 0.

• 1 is an absorbing element of the sum : 1 + x = 1.

We use sum idempotence.

$$1+x = (x+\overline{x})+x$$
$$= x+\overline{x}$$
$$= 1$$

• 0 is an absorbing element for the product : 0.x = 0.

We use product idempotence.

$$0.x = (x.\overline{x}).x$$
$$= \overline{x}.x$$
$$= 0$$

We first show that $xy + (\bar{x} + \bar{y}) = 1$

We first show that $xy + (\bar{x} + \bar{y}) = 1$

$$x.y + (\overline{x} + \overline{y}) = (x + \overline{x} + \overline{y}).(y + \overline{x} + \overline{y})$$
$$= (1 + \overline{y}).(1 + \overline{x})$$
$$= 1.1$$
$$= 1$$

We first show that $xy + (\bar{x} + \bar{y}) = 1$

$$x.y + (\overline{x} + \overline{y}) = (x + \overline{x} + \overline{y}).(y + \overline{x} + \overline{y})$$
$$= (1 + \overline{y}).(1 + \overline{x})$$
$$= 1.1$$
$$= 1$$

We also show that $x.y.(\overline{x} + \overline{y}) = 0$.

We first show that $xy + (\bar{x} + \bar{y}) = 1$ $x.y + (\overline{x} + \overline{y}) = (x + \overline{x} + \overline{y}).(y + \overline{x} + \overline{y})$ = $(1+\overline{y}).(1+\overline{x})$ = 1.1= 1 We also show that $x.y.(\overline{x} + \overline{y}) = 0$. $x.y.(\overline{x}+\overline{y}) = x.y.\overline{x}+x.y.\overline{y}$ = 0.y + x.0= 0 + 0= 0

We first show that $xy + (\bar{x} + \bar{y}) = 1$ $x.y + (\overline{x} + \overline{y}) = (x + \overline{x} + \overline{y}).(y + \overline{x} + \overline{y})$ = $(1+\overline{y}).(1+\overline{x})$ = 1.1= 1 We also show that $x.y.(\overline{x} + \overline{y}) = 0$. $x.y.(\overline{x}+\overline{y}) = x.y.\overline{x}+x.y.\overline{y}$ = 0.y + x.0= 0 + 0= 0

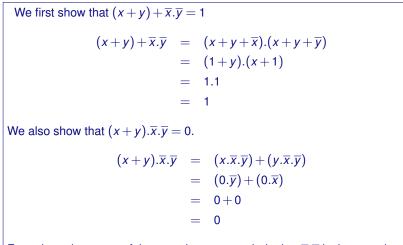
Since negation is unique $\overline{x} + \overline{y}$ is the negation of *xy*.

We first show that $(x + y) + \overline{x}.\overline{y} = 1$

We first show that $(x + y) + \overline{x}.\overline{y} = 1$

$$(x+y) + \overline{x}.\overline{y} = (x+y+\overline{x}).(x+y+\overline{y})$$
$$= (1+y).(x+1)$$
$$= 1.1$$
$$= 1$$

We first show that $(x + y) + \overline{x} \cdot \overline{y} = 1$ $(x+y)+\overline{x}.\overline{y} = (x+y+\overline{x}).(x+y+\overline{y})$ = (1+y)(x+1)= 1.1= 1 We also show that $(x + y).\overline{x}.\overline{y} = 0$. $(x+y).\overline{x}.\overline{y} = (x.\overline{x}.\overline{y}) + (y.\overline{x}.\overline{y})$ = $(0.\overline{y}) + (0.\overline{x})$ = 0 + 0= 0



From the uniqueness of the negation, we conclude that $\overline{x}.\overline{y}$ is the negation of (x + y)

S. Devismes et al (Grenoble I)

Definition

Definition 1.5.5

We denote A^* the dual formula of A, inductively defined as :

- ► $x^* = x$,
- ▶ 0* = 1,
- ▶ 1* = 0,
- ► $(\neg A)^* = (\neg A^*),$
- $\bullet (A \lor B)^* = (A^* \land B^*),$
- $\bullet (A \wedge B)^* = (A^* \vee B^*).$

Definition

Definition 1.5.5

We denote A^* the dual formula of A, inductively defined as :

- ► $x^* = x$,
- ▶ 0* = 1,
- ▶ 1* = 0,
- ► $(\neg A)^* = (\neg A^*),$
- $\blacktriangleright (A \lor B)^* = (A^* \land B^*),$
- $\bullet (A \wedge B)^* = (A^* \vee B^*).$

Example 1.5.6

 $(a.(\bar{b}+c))^* =$

Definition

Definition 1.5.5

We denote A^* the dual formula of A, inductively defined as :

- ► $x^* = x$,
- ▶ 0* = 1,
- ▶ 1* = 0,
- ► $(\neg A)^* = (\neg A^*),$
- $\blacktriangleright (A \lor B)^* = (A^* \land B^*),$
- $\blacktriangleright (A \land B)^* = (A^* \lor B^*).$

Example 1.5.6

$$(a.(\bar{b}+c))^* =$$

 $(a+(\bar{b}.c))$

Definition and properties

Theorem 1.5.7

If two formulae are equivalent, their duals are also equivalent.

Corollary 1.5.8

If a formula is valid, its dual is inconsistent.

For the proofs, see exercise 29.

Definition1.5.9 : Boolean equality

A formula A is equal to a formula B in a Boolean Algebra iff :

- ► A and B are syntactically identical,
- ► A and B constitute the two members of an axiom of Boolean Algebra,
- ► *B* equals *A* (the equality is symmetrical),
- there is a formula C such that A equals C and C equals B (transitivity of equality),
- ► there are two formulae C and D such that C equals D and B is obtained by replacing in A an occurrence of C by D.

Theorem 1.5.10

If two formulae are equal in a Boolean Algebra, then their duals are also equal.

Plan

Substitution and replacement

Normal forms

Boolean Algebra

Boolean functions

The BDDC tools

Conclusion

Definition 1.6.1 : Boolean function

A boolean function is a function whose arguments and the results belong to the set \mathbb{B} defined as $\{0, 1\}$.

Definition 1.6.1 : Boolean function

A boolean function is a function whose arguments and the results belong to the set \mathbb{B} defined as $\{0,1\}$.

Example 1.6.2

• The function $f : \mathbb{B} \to \mathbb{B} : f(x) = \neg x$

A boolean function is a function whose arguments and the results belong to the set \mathbb{B} defined as $\{0,1\}$.

Example 1.6.2

• The function $f : \mathbb{B} \to \mathbb{B} : f(x) = \neg x$

is a boolean function.

• The function $f : \mathbb{N} \to \mathbb{B} : f(x) = x \mod 2$

A boolean function is a function whose arguments and the results belong to the set \mathbb{B} defined as $\{0,1\}$.

Example 1.6.2

• The function $f : \mathbb{B} \to \mathbb{B} : f(x) = \neg x$

is a boolean function.

• The function $f : \mathbb{N} \to \mathbb{B} : f(x) = x \mod 2$

is not a boolean function.

• The function $f : \mathbb{B} \to \mathbb{N} : f(x) = x + 1$

A boolean function is a function whose arguments and the results belong to the set \mathbb{B} defined as $\{0,1\}$.

Example 1.6.2

• The function $f : \mathbb{B} \to \mathbb{B} : f(x) = \neg x$

is a boolean function.

• The function $f : \mathbb{N} \to \mathbb{B} : f(x) = x \mod 2$

is not a boolean function.

• The function $f : \mathbb{B} \to \mathbb{N} : f(x) = x + 1$

is not a boolean function.

• The function $f : \mathbb{B} \times \mathbb{B} \to \mathbb{B} : f(x, y) = \neg(x \wedge y)$

A boolean function is a function whose arguments and the results belong to the set \mathbb{B} defined as $\{0,1\}$.

Example 1.6.2

• The function $f : \mathbb{B} \to \mathbb{B} : f(x) = \neg x$

is a boolean function.

• The function $f : \mathbb{N} \to \mathbb{B} : f(x) = x \mod 2$

is not a boolean function.

• The function $f : \mathbb{B} \to \mathbb{N} : f(x) = x + 1$

is not a boolean function.

• The function $f : \mathbb{B} \times \mathbb{B} \to \mathbb{B} : f(x, y) = \neg(x \wedge y)$

is a boolean function.

Boolean functions and monomial sums

Theorem 1.6.3

For every variable *x*, we set $x^0 = \overline{x}$ and $x^1 = x$.

Let *f* be a boolean function of *n* arguments. This function is represented using *n* variables x_1, \ldots, x_n . Let *A* the following formula :

$$A = \sum_{f(a_1,\ldots,a_n)=1} x_1^{a_1} \ldots x_n^{a_n}.$$

 a_i are boolean values and A is the sum of the monomials $x_1^{a_1} \dots x_n^{a_n}$ such that $f(a_1, \dots, a_n) = 1$. By agreement, if function f always maps to 0 then A = 0.

For all assignment v such that $v(x_1) = a_1, \dots, v(x_n) = a_n$, we have $f(a_1, \dots, a_n) = [A]_v$.

S. Devismes et al (Grenoble I)

Example 1.6.4

The function *maj* with 3 arguments maps to 1 when at least 2 of its arguments equal 1.

Define the equivalent sum of monomials (theorem 1.6.3)

Example 1.6.4

The function *maj* with 3 arguments maps to 1 when at least 2 of its arguments equal 1.

Define the equivalent sum of monomials (theorem 1.6.3)

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	$maj(x_1, x_2, x_3)$		
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	1		
1	1	0	1		
1	1	1	1		
$\overline{maj(x_1, x_2, x_3)} = \overline{x_1}x_2x_3 + x_1\overline{x_2}x_3 + x_2\overline{x_3} + x_3\overline{x_2}x_3 $					

 $X_2 \overline{X_3} + X_1 X_2 X_3$

Let us verify the theorem 1.6.3 on example 1.6.4

Let us verify the theorem 1.6.3 on example 1.6.4

<i>x</i> ₁	x2	x ₃	$maj(x_1, x_2, x_3)$	$\overline{x_1} x_2 x_3$	$x_1 \overline{x_2} x_3$	$x_1 x_2 \overline{x_3}$	x ₁ x ₂ x ₃	$\overline{x_1}x_2x_3 + x_1\overline{x_2}x_3 + x_1x_2\overline{x_3} + x_1x_2x_3$
0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	1	1	1	0	0	0	1
1	0	0	0	0	0	0	0	0
1	0	1	1	0	1	0	0	1
1	1	0	1	0	0	1	0	1
1	1	1	1	0	0	0	1	1

Let v be any assignment.

Note that for all variable x, $v(x^a) = 1$ if and only if v(x) = a.

Let v be any assignment.

Note that for all variable x, $v(x^a) = 1$ if and only if v(x) = a. From this remark, we deduce the following property :

$$v(x_1^{a_1}...x_n^{a_n}) = 1$$
 if and only if $v(x_1) = a_1,...,v(x_n) = a_n$. (1)

Let v be any assignment.

Note that for all variable x, $v(x^a) = 1$ if and only if v(x) = a. From this remark, we deduce the following property :

$$v(x_1^{a_1}...x_n^{a_n}) = 1$$
 if and only if $v(x_1) = a_1,...,v(x_n) = a_n$. (1)

Let a_1, \ldots, a_n a list of *n* boolean values and *v* an assignment such that $v(x_1) = a_1, \ldots, v(x_n) = a_n$. Consider the following two cases :

Let v be any assignment.

Note that for all variable x, $v(x^a) = 1$ if and only if v(x) = a. From this remark, we deduce the following property :

$$v(x_1^{a_1} \dots x_n^{a_n}) = 1$$
 if and only if $v(x_1) = a_1, \dots, v(x_n) = a_n.$ (1)

Let a_1, \ldots, a_n a list of *n* boolean values and *v* an assignment such that $v(x_1) = a_1, \ldots, v(x_n) = a_n$. Consider the following two cases : 1. $f(a_1, \ldots, a_n) = 1$:

2. $f(a_1,...,a_n) = 0$:

Let v be any assignment.

Note that for all variable x, $v(x^a) = 1$ if and only if v(x) = a. From this remark, we deduce the following property :

$$v(x_1^{a_1}...x_n^{a_n}) = 1$$
 if and only if $v(x_1) = a_1,...,v(x_n) = a_n.$ (1)

Let a₁,..., a_n a list of *n* boolean values and *v* an assignment such that v(x₁) = a₁,...v(x_n) = a_n. Consider the following two cases :
1. f(a₁,..., a_n) = 1 : The monomial x₁<sup>a₁</sub>...x_n^{a_n} is then one of the monomials of *A*. According to (1), we have v(x₁^{a₁}...x_n<sup>a_n) = 1. Since, according to the definition of *A*, this monomial is the element of the sum *A*, we have [*A*]_v = 1.
</sup></sup>

2. $f(a_1,...,a_n) = 0$:

Let v be any assignment.

Note that for all variable x, $v(x^a) = 1$ if and only if v(x) = a. From this remark, we deduce the following property :

$$v(x_1^{a_1} \dots x_n^{a_n}) = 1$$
 if and only if $v(x_1) = a_1, \dots, v(x_n) = a_n.$ (1)

Let $a_1, ..., a_n$ a list of *n* boolean values and *v* an assignment such that $v(x_1) = a_1, ..., v(x_n) = a_n$. Consider the following two cases :

- f(a₁,..., a_n) = 1 : The monomial x₁<sup>a₁</sub>...x_n^{a_n} is then one of the monomials of *A*. According to (1), we have v(x₁^{a₁}...x_n^{a_n}) = 1. Since, according to the definition of *A*, this monomial is the element of the sum *A*, we have [*A*]_V = 1.
 </sup>
- 2. $f(a_1, ..., a_n) = 0$: Let us suppose, by contradiction, that $[A]_v = 1$. In that case, there exists a monomial of A, $x_1^{b_1}, ..., x_n^{b_n}$, such that $v(x_1^{b_1}, ..., x_n^{b_n}) = 1$. According to the definition of A, we have $f(b_1, ..., b_n) = 1$. Yet, according to (1), we have $v(x_1^{b_1}, ..., x_n^{b_n}) = 1$ if and only if $v(x_1) = b_1, ..., v(x_n) = b_n$, thus according to the definition of v, $a_1 = b_1, ..., a_n = b_n$. We therefore obtain a contradiction with $f(a_1, ..., a_n) = 1$, consequently $[A]_v = 0$.

Boolean functions and product of clauses

Theorem 1.6.5

For every variable *x*, we set $x^0 = \overline{x}$ and $x^1 = x$.

Let *f* a boolean function of *n* arguments. This function is represented using *n* variables x_1, \ldots, x_n . Let *A* the following formula :

$$A = \prod_{f(a_1,\ldots,a_n)=0} x_1^{\overline{a_1}} + \ldots + x_n^{\overline{a_n}}.$$

Les a_i are boolean values and A is the product of the clauses $x_1^{\overline{a_1}} + \ldots + x_n^{\overline{a_n}}$ such that $f(a_1, \ldots, a_n) = 0$. By agreement, if function f always maps to 1 then A = 1.

For all assignment v such that $v(x_1) = a_1, \ldots, v(x_n) = a_n$, we have $f(a_1, \ldots, a_n) = [A]_v$.

S. Devismes et al (Grenoble I)

```
Proof of theorem 1.6.5
```

The proof of the theorem is a homework.

Let *v* any assignment. Note that for every variable *x*, $v(x^a) = 0$ if and only if $v(x) \neq a$. From this remark, we deduce the following property :

$$v(x_1^{\overline{a_1}} + \dots x_n^{\overline{a_n}}) = 0 \quad \Leftrightarrow \quad v(x_1) \neq \overline{a_1}, \dots v(x_n) \neq \overline{a_n}$$
(2)

$$\Leftrightarrow v(x_1) = a_1, \dots v(x_n) = a_n.$$
 (3)

From the above properties, we deduce as before that $f(x_1, \ldots x_n) = A$.

Example 1.6.6

The function *maj* of 3 arguments equals 1 if at least 2 of its arguments equal 1.

Define the equivalent product of clauses (theorem 1.6.5)

Example 1.6.6

The function *maj* of 3 arguments equals 1 if at least 2 of its arguments equal 1.

Define the equivalent product of clauses (theorem 1.6.5)

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	$maj(x_1, x_2, x_3)$		
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	1		
1	1	0	1		
1	1	1	1		

 $maj(x_1, x_2, x_3) = (x_1 + x_2 + x_3)(x_1 + x_2 + \overline{x_3})(x_1 + \overline{x_2} + x_3)(\overline{x_1} + x_2 + x_3)$ S. Devismes et al (Grenoble I) 16 January 2015

Logic formulae transformations

57 / 65

Let us verify theorem 1.6.5 on the example 1.6.6

Let us verify theorem 1.6.5 on the example 1.6.6

<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	$maj(x_1, x_2, x_3)$	$x_1 + x_2 + x_3$	$x_1 + x_2 + \overline{x_3}$	$x_1 + \overline{x_2} + x_3$	$\overline{x_1} + x_2 + x_3$	$(x_1 + x_2 + x_3) (x_1 + x_2 + \overline{x_3}) (x_1 + \overline{x_2} + x_3) (\overline{x_1} + x_2 + x_3)$
0	0	0	0	0	1	1	1	0
0	0	1	0	1	0	1	1	0
0	1	0	0	1	1	0	1	0
0	1	1	1	1	1	1	1	1
1	0	0	0	1	1	1	0	0
1	0	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1

Plan

Substitution and replacement

Normal forms

Boolean Algebra

Boolean functions

The BDDC tools

Conclusion

BDDC (Binary Decision Diagram based Calculator)

BDDC is a tool for the manipulation of propositional formulae developed by Pascal Raymond and available at the following address :

http://www-verimag.imag.fr/~raymond/tools/bddc-manual/ bddc-manual-pages.html.

Plan

Substitution and replacement

Normal forms

Boolean Algebra

Boolean functions

The BDDC tools

Conclusion

Logic formulae transformations Conclusion

Conclusion : Today

- Substitution and replacement
- Normal forms
- Boolean Algebra
- Boolean function
- The BDDC tool

Plan of the Semester

TODAY

- Propositional logic *
- Propositional resolution
- Natural propositional deduction
- First order logic

MIDTERM EXAM

- Basis for the automatic proof (« first order resolution »)
- First order natural deduction

EXAM

Conclusion : Next course

Logic formulae transformations Conclusion

Thank you for your attention.

Questions?

Prove by formula simplification our example

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

S. Devismes et al (Grenoble I)