Introduction to logic

Stéphane Devismes Pascal Lafourcade Michel Lévy Course given by Jean-François Monin
(jean-francois.monin@imag.fr)
Université Joseph Fourier, Grenoble I

January 16, 2015

Organisation

12 weeks :

- Course, 1 h30 / week
- Seminar $2 \times 1 \mathrm{~h} 30=3 \mathrm{~h} /$ week

Material :

- Course support (French : course notes (with holes))
- Subject of the project

Planning

Important dates

- Winter break : 1 week in February
- Midterm exam : following week
- Spring break : 1 week in April
- Project defense : end of April
- Final exam : relevant week in May
- Second session : relevant week in June

Final mark

Evaluations

- Assessment 40\% : 4 periodic tests 10\%, midterm exam 40\% and project 50\%
- Exam : 60\%

Project groups : 3-4 students per project group.

- Part 1 : Modeling of a logic problem (set of problems)
- Part 2 : Transforming problems (instances) in clauses and solving them using an SAT solver
Examples of problems : Squaro, Sudoku, Master Mind ...

Bibliography

TECHNOSUP

INFORMATIQUE THÉORIQUE

Logique et démonstration

 automatiqueIntroduction à la logique propositionnelle et à la logique du premier ordre Michel LÉVY Pascal LAFOURCADE

Stéphane DEVISMES

Summary

Prerequisites
Introduction to Logic
Propositional Logic
Syntax
Meaning of formulae
Important equivalences
Conclusion

Summary

Prerequisites

Introduction to Logic

Propositional Logic

Syntax

Meaning of formulae

Important equivalences
Conclusion

Logic

Definitions

- Logic is used to specify what a correct reasoning is, regardless of the application domain.

Logic

Definitions

- Logic is used to specify what a correct reasoning is, regardless of the application domain.
- A reasoning is a way to obtain a conclusion starting from given hypotheses.

Logic

Definitions

- Logic is used to specify what a correct reasoning is, regardless of the application domain.
- A reasoning is a way to obtain a conclusion starting from given hypotheses.
- A correct reasoning does not say anything about the truth of the hypotheses, it only says that starting from the truth of the hypotheses, one can deduct the truth of the conclusion.

Examples

Example I

- Hypothesis I : All men are mortal
- Hypothesis II : Socrates is a man
- Conclusion : Socrates is mortal

Examples

Example I

- Hypothesis I : All men are mortal
- Hypothesis II : Socrates is a man
- Conclusion : Socrates is mortal

Example II

- Hypothesis I : All that is rare is expensive
- Hypothesis II : A cheap horse is rare
- Conclusion : A cheap horse is expensive !

Adding a hypothesis

Adding a hypothesis

Example III

- Hypothesis I : All that is rare is expensive
- Hypothesis II : A cheap horse is rare
- Hypothesis III : Every cheap thing is <not expensive»

Adding a hypothesis

Example III

- Hypothesis I : All that is rare is expensive
- Hypothesis II : A cheap horse is rare
- Hypothesis III : Every cheap thing is <not expensive»
- Conclusion : Contradictory hypotheses! Since :
- Hypothesis I + Hypothesis II : A cheap horse is expensive
- Hypothesis III : A cheap horse is not expensive

Little history...

- George Boole (1815-1864), creator of modern logic (especially Boolean Algebra)
- Friedrich Ludwig Gottlob Frege (1848-1925), work on the modern propositional calculus, predicate calculus, proof theory
- Bertrand Arthur William Russell (1872-1970), application of logic to the question of the foundation of mathematics (logicism)
- Alonzo Church (1903-1995), lambda-calculus
- Kurt GÃ〒del (1906-1978), the GÃ〒del's incompleteness theorems, completeness of the first-order predicate calculus
- Alan Mathison Turing (1912-1954), father of computer science and artificial intelligence

Applications

- Hardware : The Arithmetic Logic Unit (ALU) is constructed from < logic gates»
- Software verification and correctness :
- Meteor (ligne 14)
- Tools : provers COQ, PVS, Prover9, MACE, ...
- Artificial Intelligence :
- Turing Test
- Decision making tool : expert system (MyCin), ontology
- Semantic Web
- SAT Problem :
- Coding a decision making problem as a Boolean expression
- Applications in planning, model checking, diagnostic, ...
- Solvers : zchaff, satz, ...
- Programming : Prolog is used by numerous artificial intelligence programs and for computer aided linguistic processing
- Mathematical proofs, Security, ...

Overview of the Semester

TODAY

- Propositional logic
- Propositional resolution
- Natural deduction for propositional logic

MIDTERM EXAM

- First order logic
- Logical basis for automated proving (< first-order resolution »)
- First-order natural deduction

EXAM

Course Objectives

- Understanding a reasoning, in particular, being able to determine if a logical reasoning is correct or not.

Course Objectives

- Understanding a reasoning, in particular, being able to determine if a logical reasoning is correct or not.
- Reasoning, that is, building a correct reasoning using the tools of propositional logic and first order logic.

Course Objectives

- Understanding a reasoning, in particular, being able to determine if a logical reasoning is correct or not.
- Reasoning, that is, building a correct reasoning using the tools of propositional logic and first order logic.
- Modeling and formalizing a problem.

Course Objectives

- Understanding a reasoning, in particular, being able to determine if a logical reasoning is correct or not.
- Reasoning, that is, building a correct reasoning using the tools of propositional logic and first order logic.
- Modeling and formalizing a problem.
- Writing a rigorous proof.

Summary

Prerequisites

Introduction to Logic

Propositional Logic

Syntax

Meaning of formulae

Important equivalences
Conclusion

Propositional Logic

Definition

Propositional logic is the logic without quantifiers which only uses the laws governing the following logical operations :

- \neg (negation),
- \wedge (conjunction, also known as logical "and"),
- \vee (disjunction, also known as logical "or"),
- \Rightarrow (implication) and
- \Leftrightarrow (equivalence).

Remark

We limit our study to classical logic, which is the logic of two truth values : TRUE and FALSE

Example : Formal reasoning

Hypotheses:

- (H1) : If Peter is old, then John is not the son of Peter
- (H2) : If Peter is not old, then John is the son of Peter
- (H3) : If John is Peter's son then Mary is the sister of John

Conclusion (C) : Mary is the sister of John, or Peter is old.

Example : Formal reasoning

Hypotheses:

- (H1) : If Peter is old, then John is not the son of Peter
- (H2) : If Peter is not old, then John is the son of Peter
- (H3) : If John is Peter's son then Mary is the sister of John

Conclusion (C) : Mary is the sister of John, or Peter is old.

- p : "Peter is old"
- j : "John is the son of Peter"
- m : "Mary is the sister of John"
- (H1) : $p \Rightarrow \neg j$
- (H2) : $\neg p \Rightarrow j$
- (H3) $: j \Rightarrow m$

$$
\text { (C) }: m \vee p
$$

We prove that $H 1 \wedge H 2 \wedge H 3 \Rightarrow C$:

$$
(p \Rightarrow \neg j) \wedge(\neg p \Rightarrow j) \wedge(j \Rightarrow m) \Rightarrow m \vee p
$$

is true regardless of the truth value of the propositions p, j, m.

Summary

Prerequisites

Introduction to Logic Propositional Logic

Syntax

Meaning of formulae

Important equivalences
Conclusion

Vocabulary of the language

- The constants : T and \perp representing true and false respectively.
- The variables : a variable is an identifier, with or without index, for example, x, y_{1}.
- The parentheses : left (and right).
- The connectives : $\neg, \vee, \wedge, \Rightarrow, \Leftrightarrow$ respectively called negation, disjunction (or), conjunction (and), implication and equivalence.

(Strict) Formula

Definition 1.1.1

A strict formula is defined inductively as :

- T and \perp are strict formulae.
- A variable is a strict formula.
- If A is a strict formula then $\neg A$ is a strict formula.
- If A and B are strict formulae and if \circ is one of the following operations $\vee, \wedge, \Rightarrow, \Leftrightarrow$ then $(A \circ B)$ is a strict formula.

(Strict) Formula

Definition 1.1.1

A strict formula is defined inductively as :

- T and \perp are strict formulae.
- A variable is a strict formula.
- If A is a strict formula then $\neg A$ is a strict formula.
- If A and B are strict formulae and if \circ is one of the following operations $\vee, \wedge, \Rightarrow, \Leftrightarrow$ then $(A \circ B)$ is a strict formula.

Example 1.1.2

$(a \vee(\neg b \wedge c))$ is a strict formula, but not $a \vee(\neg b \wedge c)$, nor $(a \vee(\neg(b) \wedge c))$.

Height of a formula

Definition 1.1.10

The height of a formula A, denoted $|A|$, is inductively defined as :

- $|\mathrm{T}|=0$ and $|\perp|=0$.
- If A is a variable then $|A|=0$.
- $|\neg A|=1+|A|$.
- $|(A \circ B)|=\max (|A|,|B|)+1$.

Height of a formula

Definition 1.1.10

The height of a formula A, denoted $|A|$, is inductively defined as :

- $|T|=0$ and $|\perp|=0$.
- If A is a variable then $|A|=0$.
- $|\neg A|=1+|A|$.
- $|(A \circ B)|=\max (|A|,|B|)+1$.

Example 1.1.11

$|(a \vee(\neg b \wedge c))|=$

Height of a formula

Definition 1.1.10

The height of a formula A, denoted $|A|$, is inductively defined as :

- $|\mathrm{T}|=0$ and $|\perp|=0$.
- If A is a variable then $|A|=0$.
- $|\neg A|=1+|A|$.
- $|(A \circ B)|=\max (|A|,|B|)+1$.

Example 1.1.11

$|(a \vee(\neg b \wedge c))|=$
3.

Tree

Example 1.1.3

The structure of the following formula $(a \vee(\neg b \wedge c)$) is illustrated by the following tree :

Exercise

$$
((p \wedge \neg(p \vee q)) \wedge \neg r)
$$

Exercise

$$
((p \wedge \neg(p \vee q)) \wedge \neg r)
$$

Sub-formula

Definition 1.1.4

We call sub-formula of a (strict) formula A every factor of A which is a (strict) formula.

Example 1.1.5

$(\neg b \wedge c)$ is a sub-formula of $(a \vee(\neg b \wedge c))$.

A sub-formula of the formula A could be identified as a sub-tree of the tree representing the formula A.

First result

Strict formulae decompose uniquely in their sub-formulae

Theorem 1.1.13

For every formula A, there is one and only one of the following cases :

- A is a variable,
- A is a constant,
- A can be written in a unique manner as $\neg B$ where B is a formula,
- A can be written in a unique manner as $(B \circ C)$ where B and C are formulae.

Proof.

Simple but tedious proof (cf. Course support)

Prioritized formula

Definition 1.1.14

A prioritized formula is inductively defined as:

- T and \perp are prioritized formulae,
- a variable is a prioritized formula,
- if A is a prioritized formula then $\neg A$ is a prioritized formula,
- if A and B are prioritized formulae the $A \circ B$ is a prioritized formula,
- if A is a prioritized formula then (A) is a prioritized formula.

Example 1.1.15

$a \vee \neg b \wedge c$ is a prioritized formula, but not a (strict) formula.

Binding priorities

Definition 1.1.16

The decreasing order of binding priorities is as follows : $\neg, \wedge, \vee, \Rightarrow$ and \Leftrightarrow.

For equal priority, the left-hand side connective binds more tightly, except for the implication (which is right-associative).

Binding priorities

Definition 1.1.16

The decreasing order of binding priorities is as follows : $\neg, \wedge, \vee, \Rightarrow$ and \Leftrightarrow.

For equal priority, the left-hand side connective binds more tightly, except for the implication (which is right-associative).

A prioritized formula is the abbreviation of the (strict) associated formula.

Example of prioritized formula

Example 1.1.17

- $a \wedge b \wedge c$ is the abbreviation of
- $a \wedge b \vee c$ is the abbreviation of
- $a \vee b \wedge c$ is the abbreviation of

Example of prioritized formula

Example 1.1.17

- $a \wedge b \wedge c$ is the abbreviation of

$$
((a \wedge b) \wedge c)
$$

- $a \wedge b \vee c$ is the abbreviation of

$$
((a \wedge b) \vee c)
$$

- $a \vee b \wedge c$ is the abbreviation of

$$
(a \vee(b \wedge c))
$$

Summary

Prerequisites

Introduction to Logic Propositional Logic

Syntax

Meaning of formulae
Important equivalences
Conclusion

Basic tables

0 indicates false and 1 indicates true.
The value of the constant T is 1 and the value of the constant \perp is 0

Table 1.1 (truth table of connectives)

x	y	$\neg x$	$x \vee y$	$x \wedge y$	$x \Rightarrow y$	$x \Leftrightarrow y$
0	0	1	0	0	1	1
0	1	1	1	0	1	0
1	0	0	1	0	0	0
1	1	0	1	1	1	1

Truth assignment of a formula

Definition 1.2.1

A truth assignment is a function from the set of variables of a formula to the set $\{0,1\}$. Let A be a formula and v a truth assignment, $[A]_{v}$ denotes the truth value of the formula A for the truth assignment v.

Truth assignment of a formula

Definition 1.2.1

A truth assignment is a function from the set of variables of a formula to the set $\{0,1\}$. Let A be a formula and v a truth assignment, $[A]_{v}$ denotes the truth value of the formula A for the truth assignment v.

Example : Let v a truth assignment such as $v(x)=0$ and $v(y)=1$

Truth assignment of a formula

Definition 1.2.1

A truth assignment is a function from the set of variables of a formula to the set $\{0,1\}$. Let A be a formula and v a truth assignment, $[A]_{v}$ denotes the truth value of the formula A for the truth assignment v.

Example : Let v a truth assignment such as $v(x)=0$ and $v(y)=1$ Applying the truth assignment v to $x \vee y$ is written as $[x \vee y]_{v}$

Truth assignment of a formula

Definition 1.2.1

A truth assignment is a function from the set of variables of a formula to the set $\{0,1\}$. Let A be a formula and v a truth assignment, $[A]_{v}$ denotes the truth value of the formula A for the truth assignment v.

Example : Let v a truth assignment such as $v(x)=0$ and $v(y)=1$ Applying the truth assignment v to $x \vee y$ is written as $[x \vee y]_{v}$ This equals $0 \vee 1=1$

Truth assignment of a formula

Definition 1.2.1

A truth assignment is a function from the set of variables of a formula to the set $\{0,1\}$. Let A be a formula and v a truth assignment, $[A]_{v}$ denotes the truth value of the formula A for the truth assignment v.

Example : Let v a truth assignment such as $v(x)=0$ and $v(y)=1$
Applying the truth assignment v to $x \vee y$ is written as $[x \vee y]_{v}$
This equals $0 \vee 1=1$
Conclusion : $x \vee y$ is true for the truth assignment v

Truth value of a formula

Definition 1.2.2

Let A, B be two formulae, x a variable and v a truth assignment.

- $[x]_{v}=$
- $[\top]_{v}=,[\perp]_{v}=$
- $[\neg A]_{v}=$
- $[(A \vee B)]_{v}=$
- $[(A \wedge B)]_{v}=$
- $[(A \Rightarrow B)]_{v}=$
- $[(A \Leftrightarrow B)]_{v}=$

Truth value of a formula

Definition 1.2.2

Let A, B be two formulae, x a variable and v a truth assignment.

- $[x]_{v}=v(x)$
- $[\top]_{v}=,[\perp]_{v}=$
- $[\neg A]_{v}=$
- $[(A \vee B)]_{v}=$
- $[(A \wedge B)]_{v}=$
- $[(A \Rightarrow B)]_{v}=$
- $[(A \Leftrightarrow B)]_{v}=$

Truth value of a formula

Definition 1.2.2

Let A, B be two formulae, x a variable and v a truth assignment.

- $[x]_{v}=v(x)$
- $[\top]_{v}=1,[\perp]_{v}=$
- $[\neg A]_{v}=$
- $[(A \vee B)]_{v}=$
- $[(A \wedge B)]_{v}=$
- $[(A \Rightarrow B)]_{v}=$
- $[(A \Leftrightarrow B)]_{v}=$

Truth value of a formula

Definition 1.2.2

Let A, B be two formulae, x a variable and v a truth assignment.

- $[x]_{v}=v(x)$
- $[T]_{v}=1,[\perp]_{v}=0$
- $[\neg A]_{v}=$
- $[(A \vee B)]_{v}=$
- $[(A \wedge B)]_{v}=$
- $[(A \Rightarrow B)]_{v}=$
- $[(A \Leftrightarrow B)]_{v}=$

Truth value of a formula

Definition 1.2.2

Let A, B be two formulae, x a variable and v a truth assignment.

- $[x]_{v}=v(x)$
- $[\top]_{v}=1,[\perp]_{v}=0$
- $[\neg A]_{v}=1-[A]_{v}$
- $[(A \vee B)]_{v}=$
- $[(A \wedge B)]_{v}=$
- $[(A \Rightarrow B)]_{v}=$
- $[(A \Leftrightarrow B)]_{v}=$

Truth value of a formula

Definition 1.2.2

Let A, B be two formulae, x a variable and v a truth assignment.

- $[x]_{v}=v(x)$
- $[T]_{V}=1,[\perp]_{v}=0$
- $[\neg A]_{v}=1-[A]_{v}$
- $[(A \vee B)]_{v}=\max \left\{[A]_{v},[B]_{v}\right\}$
- $[(A \wedge B)]_{v}=$
- $[(A \Rightarrow B)]_{v}=$
- $[(A \Leftrightarrow B)]_{v}=$

Truth value of a formula

Definition 1.2.2

Let A, B be two formulae, x a variable and v a truth assignment.

- $[x]_{v}=v(x)$
- $[T]_{V}=1,[\perp]_{v}=0$
- $[\neg A]_{v}=1-[A]_{v}$
- $[(A \vee B)]_{v}=\max \left\{[A]_{v},[B]_{v}\right\}$
- $[(A \wedge B)]_{v}=\min \left\{[A]_{v},[B]_{v}\right\}$
- $[(A \Rightarrow B)]_{v}=$
- $[(A \Leftrightarrow B)]_{v}=$

Truth value of a formula

Definition 1.2.2

Let A, B be two formulae, x a variable and v a truth assignment.

- $[x]_{v}=v(x)$
- $[T]_{V}=1,[\perp]_{v}=0$
- $[\neg A]_{v}=1-[A]_{v}$
- $[(A \vee B)]_{v}=\max \left\{[A]_{v},[B]_{v}\right\}$
- $[(A \wedge B)]_{v}=\min \left\{[A]_{v},[B]_{v}\right\}$
- $[(A \Rightarrow B)]_{v}=$ if $[A]_{v}=0$ then 1 else $[B]_{v}$
- $[(A \Leftrightarrow B)]_{v}=$

Truth value of a formula

Definition 1.2.2

Let A, B be two formulae, x a variable and v a truth assignment.

- $[x]_{v}=v(x)$
- $[T]_{v}=1,[\perp]_{v}=0$
- $[\neg A]_{v}=1-[A]_{v}$
- $[(A \vee B)]_{v}=\max \left\{[A]_{v},[B]_{v}\right\}$
- $[(A \wedge B)]_{v}=\min \left\{[A]_{v},[B]_{v}\right\}$
- $[(A \Rightarrow B)]_{v}=$ if $[A]_{v}=0$ then 1 else $[B]_{v}$
- $[(A \Leftrightarrow B)]_{v}=$ if $[A]_{v}=[B]_{v}$ then 1 else 0

Truth table

Definition 1.2.3

A truth table of a formula A is a table representing the truth values of A for all the possible values of the variables of A.

- a line of the truth table = an assignment
- a column of the truth table = the truth value of a formula.

Example :

Example 1.2.4

Give the truth table of the following formulae.

x	y	$x \Rightarrow y$	$\neg x$	$\neg x \vee y$	$(x \Rightarrow y) \Leftrightarrow(\neg x \vee y)$	$x \vee \neg y$
0	0					
0	1					
1	0					
1	1					

Example :

Example 1.2.4

Give the truth table of the following formulae.

x	y	$x \Rightarrow y$	$\neg x$	$\neg x \vee y$	$(x \Rightarrow y) \Leftrightarrow(\neg x \vee y)$	$x \vee \neg y$
0	0	1				
0	1	1				
1	0	0				
1	1	1				

Example :

Example 1.2.4

Give the truth table of the following formulae.

x	y	$x \Rightarrow y$	$\neg x$	$\neg x \vee y$	$(x \Rightarrow y) \Leftrightarrow(\neg x \vee y)$	$x \vee \neg y$
0	0	1	1			
0	1	1	1			
1	0	0	0			
1	1	1	0			

Example :

Example 1.2.4

Give the truth table of the following formulae.

x	y	$x \Rightarrow y$	$\neg x$	$\neg x \vee y$	$(x \Rightarrow y) \Leftrightarrow(\neg x \vee y)$	$x \vee \neg y$
0	0	1	1	1		
0	1	1	1	1		
1	0	0	0	0		
1	1	1	0	1		

Example :

Example 1.2.4

Give the truth table of the following formulae.

x	y	$x \Rightarrow y$	$\neg x$	$\neg x \vee y$	$(x \Rightarrow y) \Leftrightarrow(\neg x \vee y)$	$x \vee \neg y$
0	0	1	1	1	1	
0	1	1	1	1	1	
1	0	0	0	0	1	
1	1	1	0	1	1	

Example :

Example 1.2.4

Give the truth table of the following formulae.

x	y	$x \Rightarrow y$	$\neg x$	$\neg x \vee y$	$(x \Rightarrow y) \Leftrightarrow(\neg x \vee y)$	$x \vee \neg y$
0	0	1	1	1	1	1
0	1	1	1	1	1	0
1	0	0	0	0	1	1
1	1	1	0	1	1	1

Another example :

Give the truth table of

a	b	c	$\neg b$	$(\neg b \wedge c)$	$(a \vee(\neg b \wedge c))$
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Another example :

Give the truth table of

a	b	c	$\neg b$	$(\neg b \wedge c)$	$(a \vee(\neg b \wedge c))$
0	0	0	1		
0	0	1	1		
0	1	0	0		
0	1	1	0		
1	0	0	1		
1	0	1	1		
1	1	0	0		
1	1	1	0		

Another example :

Give the truth table of

a	b	c	$\neg b$	$(\neg b \wedge c)$	$(a \vee(\neg b \wedge c))$
0	0	0	1	0	
0	0	1	1	1	
0	1	0	0	0	
0	1	1	0	0	
1	0	0	1	0	
1	0	1	1	1	
1	1	0	0	0	
1	1	1	0	0	

Another example :

Give the truth table of

a	b	c	$\neg b$	$(\neg b \wedge c)$	$(a \vee(\neg b \wedge c))$
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	0	0	1
1	1	1	0	0	1

Equivalent formulae

Definition 1.2.5

Two formulae A and B are equivalent (denoted $A \equiv B$ or simply $A=B$) if they have the same truth value for every assignment.

Equivalent formulae

Definition 1.2.5

Two formulae A and B are equivalent (denoted $A \equiv B$ or simply $A=B$) if they have the same truth value for every assignment.

Example 1.2.6

$x \Rightarrow y=\neg x \vee y$

Equivalent formulae

Definition 1.2.5

Two formulae A and B are equivalent (denoted $A \equiv B$ or simply $A=B$) if they have the same truth value for every assignment.

Example 1.2.6

$x \Rightarrow y=\neg x \vee y$
Remark:
The logical connective \Leftrightarrow does not mean $A \equiv B$.

Validity, tautology (1/2)

Definition 1.2.8

- A formula is valid if its value is 1 for all truth assignments.
- A valid formula is also called a tautology.
- The fact that A is valid is denoted by $\models A$.

Validity, tautology (1/2)

Definition 1.2.8

- A formula is valid if its value is 1 for all truth assignments.
- A valid formula is also called a tautology.
- The fact that A is valid is denoted by $\models A$.

Example 1.2.9

- the formula $(x \Rightarrow y) \Leftrightarrow(\neg x \vee y)$ is valid;
- the formula $x \Rightarrow y$ is not valid since
it is false for the truth assignment $x=1$ and $y=0$, therefore it is not a tautology.

Valid, tautology (2/2)

Property 1.2.10

The formulae A and B are equivalent if and only if formula $A \Leftrightarrow B$ is valid.

Proof.

The property is a consequence of table 1.1 and of the previous definitions.

Model for a formula

Definition 1.2.11

A truth assignment v for which a formula has truth value equal to 1 is a model for that formula.
v satisfies A or v makes A true.

Model for a formula

Definition 1.2.11

A truth assignment v for which a formula has truth value equal to 1 is a model for that formula.
v satisfies A or v makes A true.
Example 1.2.12
A model for $x \Rightarrow y$ is :

Model for a formula

Definition 1.2.11

A truth assignment v for which a formula has truth value equal to 1 is a model for that formula.
v satisfies A or v makes A true.

Example 1.2.12

A model for $x \Rightarrow y$ is :
$x=1, y=1$ where the truth assignment $x=0$ and any y.

Model for a formula

Definition 1.2.11

A truth assignment v for which a formula has truth value equal to 1 is a model for that formula.
v satisfies A or v makes A true.
Example 1.2.12
A model for $x \Rightarrow y$ is :
$x=1, y=1$ where the truth assignment $x=0$ and any y.
On the contrary, the truth assignment $x=1$ and $y=0$ is not a model for $x \Rightarrow y$.

Model for a set of formulae

Definition 1.2.13

A truth assignment is a model for a set of formulae if and only if it is a model for every formula in the set.

Model for a set of formulae

Definition 1.2.13

A truth assignment is a model for a set of formulae if and only if it is a model for every formula in the set.

Example 1.2.14
A model of $\{a \Rightarrow b, b \Rightarrow c\}$ is :

Model for a set of formulae

Definition 1.2.13

A truth assignment is a model for a set of formulae if and only if it is a model for every formula in the set.

Example 1.2.14
A model of $\{a \Rightarrow b, b \Rightarrow c\}$ is :

$$
a=0, b=0(\text { and for any } c) .
$$

Property of a model for a set of formulae

Property 1.2.15

An assignment is a model for a set of formulae if and only if it is a model of the intersection of all the formulae in the set.

The proof is requested in the exercise 11.

Property of a model for a set of formulae

Property 1.2.15

An assignment is a model for a set of formulae if and only if it is a model of the intersection of all the formulae in the set.

The proof is requested in the exercise 11.

Example 1.2.16

The set of formulae $\{a \Rightarrow b, b \Rightarrow c\}$ and the formula $(a \Rightarrow b) \wedge(b \Rightarrow c)$ have identical models.

Counter-model

Definition 1.2.17

A truth assignment v which yields the value 0 for a formula is a counter-model for the formula.
v does not satisfy the formula or v makes the formula false.

Counter-model

Definition 1.2.17

A truth assignment v which yields the value 0 for a formula is a counter-model for the formula.
v does not satisfy the formula or v makes the formula false.

Example 1.2.18

A counter-model of $x \Rightarrow y$ is :

Counter-model

Definition 1.2.17

A truth assignment v which yields the value 0 for a formula is a counter-model for the formula.
v does not satisfy the formula or v makes the formula false.

Example 1.2.18

A counter-model of $x \Rightarrow y$ is :

$$
\text { the assignment } x=1, y=0 \text {. }
$$

Counter-model

Definition 1.2.17

A truth assignment v which yields the value 0 for a formula is a counter-model for the formula.
v does not satisfy the formula or v makes the formula false.

Example 1.2.18

A counter-model of $x \Rightarrow y$ is :
the assignment $x=1, y=0$.

Remark 1.2.19

The notion of counter-model applies to sets of formulae the same way as the notion of model.

Satisfiable formula

Definition 1.2.20

A formula (a set of formulae respectively) is satisfiable if there exists a truth assignment which is a model for the formula (or the set of formulae).

Definition 1.2.21

A formula (a set of formulae respectively) is unsatisfiable if it is not satisfiable.

Satisfiable formula

Definition 1.2.20

A formula (a set of formulae respectively) is satisfiable if there exists a truth assignment which is a model for the formula (or the set of formulae).

Definition 1.2.21
A formula (a set of formulae respectively) is unsatisfiable if it is not satisfiable.

Example 1.2.22

$x \wedge \neg x$ is unsatisfiable, but $x \Rightarrow y$ is not.

Satisfiable formula

Definition 1.2.20

A formula (a set of formulae respectively) is satisfiable if there exists a truth assignment which is a model for the formula (or the set of formulae).

Definition 1.2.21
A formula (a set of formulae respectively) is unsatisfiable if it is not satisfiable.

Example 1.2.22

$x \wedge \neg x$ is unsatisfiable, but $x \Rightarrow y$ is not.

Remark 1.2.23

Logicians use the term consistent as a synonym for satisfiable and contradictory as synonym of unsatisfiable.

Logical consequence (entailment)

Definition 1.2.24

A is a consequence of the set of hypotheses $\Gamma(\Gamma \neq A)$ if every model of Γ is model of A.

Remark 1.2.26

We denote by $\models A$ the fact that A is valid, since A is valid if and only if A is a consequence of the empty set.

Example of a consequence

Example 1.2.28

$$
a \Rightarrow b, b \Rightarrow c \mid=a \Rightarrow c .
$$

Example of a consequence

Example 1.2.28

$$
a \Rightarrow b, b \Rightarrow c \vDash a \Rightarrow c
$$

a	b	c	$a \Rightarrow b$	$b \Rightarrow c$	$a \Rightarrow c$
0	0	0	1	1	1
0	0	1	1	1	1
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	0	1	0
1	0	1	0	1	1
1	1	0	1	0	0
1	1	1	1	1	1

ESSENTIAL property

Often used in exercises and during EXAMS.

Property 1.2.27

Let A_{1}, \ldots, A_{n}, B be $n+1$ formulae. Let H_{n} the conjunction of the formulae A_{1}, \ldots, A_{n}. The following three formulations are equivalent :

1. $A_{1}, \ldots, A_{n} \models B$, meaning that B is a consequence of the hypotheses A_{1}, \ldots, A_{n}.
2. The formula $H_{n} \Rightarrow B$ is valid.
3. $H_{n} \wedge \neg B$ is unsatisfiable.

Proof.

The property is a consequence of table 1.1

Proof (1/3)

- $1 \Rightarrow 2$: let us suppose that $A_{1}, \ldots, A_{n} \models B$: every model of A_{1}, \ldots, A_{n} is also a model of B.
- Let v be a truth assignment non-model of $A_{1}, \ldots, A_{n}: \exists i,\left[A_{i}\right]_{v}=0$, therefore $\left[H_{n}\right]_{v}=0$. Thus $\left[H_{n} \Rightarrow B\right]_{v}=1$.
- Let v be a truth assignment model of A_{1}, \ldots, A_{n} : $\left[A_{i}\right]_{v}=1$ for $i=1, \ldots, n$, therefore $\left[H_{n}\right]_{v}=1$.
But v is a model of B therefore $[B]_{v}=1$. Thus $\left[H_{n} \Rightarrow B\right]_{v}=1$.
Therefore $H_{n} \Rightarrow B$ is valid.

Proof (2/3)

- $2 \Rightarrow 3$: let us suppose that $H_{n} \Rightarrow B$ is valid : $\forall v$ truth assignment, $\left[H_{n} \Rightarrow B\right]_{v}=1$.
- let $\left[H_{n}\right]_{v}=0$,
- let $\left[H_{n}\right]_{v}=1$ and $[B]_{v}=1$.

However $\left[H_{n} \wedge \neg B\right]_{v}=\min \left(\left[H_{n}\right]_{v},[\neg B]_{v}\right)=\min \left(\left[H_{n}\right]_{v}, 1-[B]_{v}\right)$. In both cases, we have $\left[H_{n} \wedge \neg B\right]_{v}=0$. Therefore $H_{n} \wedge \neg B$ is unsatisfiable.

Proof (3/3)

- $3 \Rightarrow 1$: let us suppose that $H_{n} \wedge \neg B$ is unsatisfiable : \forall truth assignment, the formula $H_{n} \wedge \neg B$ is contradictory.
Let us show that the models of A_{1}, \ldots, A_{n} are also models for B. Let v be a truth assignment model of $A_{1}, \ldots, A_{n}:\left[A_{i}\right]_{v}=1$ for $i=1, \ldots, n$ therefore $\left[H_{n}\right]_{v}=\left[A_{1} \wedge \ldots \wedge A_{n}\right]_{v}=1$.
According to our hypothesis $[\neg B]_{v}=0$. Hence, $1-[B]_{v}=0$. So $[B]_{v}=1$, i.e. v is a model for B.

Using the result of exercise 7, we conclude.

Instance of the property

Example 1.2.28

a	b	c	$a \Rightarrow b$	$b \Rightarrow c$	$a \Rightarrow c$	$(a \Rightarrow b) \wedge(b \Rightarrow c)$ $\Rightarrow(a \Rightarrow c)$	$(a \Rightarrow b) \wedge(b \Rightarrow c)$ $\wedge \neg(a \Rightarrow c)$
0	0	0	1	1	1	1	0
0	0	1	1	1	1	1	0
0	1	0	1	0	1	1	0
0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	0
1	0	1	0	1	1	1	0
1	1	0	1	0	0	1	0
1	1	1	1	1	1	1	0

Compactness

Theorem 1.2.30 Propositional compactness

A set of propositional formulae has a model if an only if every finite subset of it has a model.

Compactness

Theorem 1.2.30 Propositional compactness

A set of propositional formulae has a model if an only if every finite subset of it has a model.

This theorem may look trivial. However, its proof is complex (cf. Poly). In order to understand the (difficulty of the) problem, it suffices to note that this theorem applies in particular to infinite sets of formulae ...

Compactness

Theorem 1.2.30 Propositional compactness

A set of propositional formulae has a model if an only if every finite subset of it has a model.

This theorem may look trivial. However, its proof is complex (cf. Poly). In order to understand the (difficulty of the) problem, it suffices to note that this theorem applies in particular to infinite sets of formulae ...

This result will be used at a later stage in the course (basis for the automated theorem proving).

Summary

Prerequisites

Introduction to Logic

 Propositional Logic
Syntax

Meaning of formulae

Important equivalences

Conclusion

Disjunction

Disjunction

- associative $x \vee(y \vee z) \equiv(x \vee y) \vee z$

Disjunction

- associative $x \vee(y \vee z) \equiv(x \vee y) \vee z$
- commutative $x \vee y \equiv y \vee x$

Disjunction

- associative $x \vee(y \vee z) \equiv(x \vee y) \vee z$
- commutative $x \vee y \equiv y \vee x$
- idempotent $x \vee x \equiv x$

Conjunction

Conjunction

- associative $x \wedge(y \wedge z) \equiv(x \wedge y) \wedge z$

Conjunction

- associative $x \wedge(y \wedge z) \equiv(x \wedge y) \wedge z$
- commutative $x \wedge y \equiv y \wedge x$

Conjunction

- associative $x \wedge(y \wedge z) \equiv(x \wedge y) \wedge z$
- commutative $x \wedge y \equiv y \wedge x$
- idempotent $x \wedge x \equiv x$

Distributivity

Distributivity

- Multiplication is distributive over addition

$$
x \wedge(y \vee z) \equiv(x \wedge y) \vee(x \wedge z)
$$

Distributivity

- Multiplication is distributive over addition

$$
x \wedge(y \vee z) \equiv(x \wedge y) \vee(x \wedge z)
$$

- Addition is distributive over multiplication

$$
x \vee(y \wedge z) \equiv(x \vee y) \wedge(x \vee z)
$$

Neutrality and Absorption

Neutrality and Absorption

- 0 is a neutral element for disjunction $0 \vee x \equiv x$
- 1 is a neutral element for conjunction $1 \wedge x \equiv x$

Neutrality and Absorption

- 0 is a neutral element for disjunction $0 \vee x \equiv x$
- 1 is a neutral element for conjunction $1 \wedge x \equiv x$
- 1 is an absorbing element for disjunction $1 \vee x \equiv 1$
- 0 is an absorbing element for conjunction $0 \wedge x \equiv 0$

Negation

- Negation laws:
- $x \wedge \neg x \equiv 0$.
- $x \vee \neg x \equiv 1$ (The law of excluded middle).

Negation

- Negation laws:
- $x \wedge \neg x \equiv 0$.
- $x \vee \neg x \equiv 1$ (The law of excluded middle).
- $\neg \neg x \equiv x$.
- $\neg 0 \equiv 1$.
- $\neg 1 \equiv 0$.

De Morgan laws

- $\neg(x \wedge y) \equiv \neg x \vee \neg y$.
- $\neg(x \vee y) \equiv \neg x \wedge \neg y$.

Simplification laws

Property 1.2.31

For every x, y we have :

- $x \vee(x \wedge y) \equiv x$
- $x \wedge(x \vee y) \equiv x$
- $x \vee(\neg x \wedge y) \equiv x \vee y$

Proof.

The proof is requested in exercise 12.

Summary

Prerequisites

Introduction to Logic

 Propositional Logic SyntaxMeaning of formulae
Important equivalences
Conclusion

Conclusion : Today

- Introduction and history
- Propositional logic
- Syntax
- Meaning of formulae
- Important Equivalences

Conclusion : Next course

- Substitutions and replacements
- Normal Forms
- Boolean Algebra
- Boolean functions
- The BDDC tool

Conclusion

Thank you for your attention.

Questions?

Oxford's motto

The more I study, the more I know
 The more I know, the more I forget
 The more I forget, the less I know

