# Basis for automated proof: First-Order Resolution 

Stéphane Devismes Pascal Lafourcade Michel Lévy Jean-François Monin (jean-francois.monin@imag.fr)<br>Université Joseph Fourier, Grenoble I

March 20, 2015

## Plan

Introduction

Clausal form

Unification

First-Order Resolution

Completeness

## Idea

Skolemization yields formulae without quantifier.
This course presents a generalization of resolution to first-order logic :

- clausal form of skolemized formulae.
- generalization of resolution.
- Correctness and completeness of the method.


## Litteral, clause

## Definition 5.2.19

A positive litteral is an atomic formula. Ex: $P(x, y)$
A negative litteral is the negation of an atomic formula. Ex: $\neg Q(a)$
Every litteral is positive or negative.
A clause is a disjunction of litterals. Ex : $P(x, y) \vee \neg Q(a)$

## Clausal form of a formula

## Definition 5.2.20

Let $A$ be a closed formula. The clausal form of $A, F(A)$ is a set of clauses obtained from $A$ in two steps:

1. Skolemize $A$ into $B$
2. Replace $B$ with an equivalent set $\Gamma$ of clauses using distributivity of disjunction over conjunction.

## Clausal form of a formula

property 1

### 5.2.21

- The universal closure of the clausal form of a closed formula $A$ has a model if and only if $A$ is a consequence of $\forall(F(A))$.
- If $A$ has a model, then $\forall(F(A))$ has a model.


## Proof

## Proof.

Let $A$ be a closed formula, $B$ its Skolem form and $\Gamma$ its clausal form. From the properties of skolemization :

- $A$ is a consequence of $\forall(B)$.
- If $A$ has a model then $\forall(B)$ has a model.

Since $\Gamma$ is obtained using distributivity, $B$ and $\Gamma$ are equivalent, hence $\forall(B)$ and $\forall(\Gamma)$ are equivalent as well. Therefore, in the two properties above, $\forall(B)$ can be replaced with $\forall(\Gamma)$.

## Clausal form of a set of formulae

## Definition 5.2.22

Let $\Gamma$ be a set of closed formulae. We define the clausal form of $\Gamma$ as the union of clausal forms of all formulae of $\Gamma$, paying attention, in the course of skolemization, to use a new symbol for each eliminated existential quantifier.

## Clausal form of a set of formulae

Corollary 5.2.23
Let $\Gamma$ be a set of closed formulae and $\Delta$ the clausal form of $\Gamma$. We have :

- $\Gamma$ is a consequence of $\forall(\Delta)$
- if $\Gamma$ has a model then $\forall(\Delta)$ has a model.


## Adapting Herbrand's theorem to clausal forms

## Theorem 5.2.24

Let $\Gamma$ be a set of closed formulae and $\Delta$ the clausal form of $\Gamma$. $\Gamma$ is unsatisfiable if and only if there exists a finite unsatisfiable subset of instances of clauses of $\Delta$ on the signature of $\Delta$.

## Proof.

From Corollary 5.2.23, skolemization preserves satisfiability, then : $\Gamma$ is unsatisfiable if and only if $\forall(\Delta)$ is unsatisfiable.
From Corollary 5.1.18 of Herbrand's theorem, $\forall(\Delta)$ is unsatisfiable if and only if there exists a finite unsatisfiable subset of instances of clauses of $\Delta$ on the signature of $\Delta$.

## Example 5.2.25 (1/2)

Let $A=\exists y \forall z(P(z, y) \Leftrightarrow \neg \exists x(P(z, x) \wedge P(x, z)))$. Let's compute the clausal form of $A$.

## Example 5.2.25 (2/2)

## Unification : expression, solution

## Definition 5.3.1

- A term or a litteral is an expression.
- A substitution $\sigma$ (see definition 5.1.3) is a solution of equation $e_{1}=e_{2}$, if the two expressions $e_{1} \sigma$ and $e_{2} \sigma$ are syntactically identical.
- A substitution is a solution of a set of equations if it is a solution of each equation of the set.


## Unification : carrier of substitution

## Definition 5.3.3

The carrier of a substitution $\sigma$ is the set of variables $x$ such that $x \sigma \neq x$.

We only consider substitutions with a finite carrier (a finite number of variables).

## Definition 5.3.3

A substitution $\sigma$ with finite carrier is denoted by
$<x_{1}:=t_{1}, \ldots, x_{n}:=t_{n}>$ or just $x_{1}:=t_{1}, \ldots, x_{n}:=t_{n}$ when there is no ambiguity.
Variables $x_{1}, \ldots, x_{n}$ are distinct and the substitution satisfies :

- for $i$ from 1 to $n, x_{i} \sigma=t_{i}$
- for all variables $y$ such that $y \notin\left\{x_{1}, \ldots, x_{n}\right\}$, we have : $y \sigma=y$


## Unification : example 5.3.4

The equation $P(x, f(y))=P(g(z), z)$ has the solution :
$\square$
The set of equations $x=g(z), f(y)=z$ has the solution :

## Unification : composition of substitution

## Definition 5.3.5

- Let $\sigma$ and $\tau$ be 2 substitutions, we note $\sigma \tau$ the substitution such that for all variable $x, x \sigma \tau=(x \sigma) \tau$.
- The substitution $\sigma \tau$ is an instance of $\sigma$.
- Two substitutions are equivalent if each of them is an instance of the other.


## Unification : example 5.3.6

Consider substitutions

- $\sigma_{1}=<x:=g(z), y:=z>$
- $\sigma_{2}=<x:=g(y), z:=y>$
- $\sigma_{3}=<x:=g(a), y:=a, z:=a>$

We have the following relations between these substitutions :

## Unification : definition of the most general solution

Definition 5.3 .7 (mgu)
A solution of a set of equations is said to be the most general if any solution is an instance of it. Note that two <most general» solutions are equivalent.

## Example 5.3.8

Consider equation $f(x, g(z))=f(g(y), x)$.

## Unifier

## Definition 5.3.2

Let $\sigma$ be a substitution and $E$ a set of expressions. $E \sigma=\{t \sigma \mid t \in E\}$. The substitution $\sigma$ is a unifier of $E$ if and only if the set $E \sigma$ has only one element.

Let $\left\{e_{i} \mid 1 \leq i \leq n\right\}$ a finite set of expressions. The substitution $\sigma$ is a unifier of this set if and only if it is a solution of the set of equations $\left\{e_{i}=e_{i+1} \mid 1 \leq i<n\right\}$.

## Most General Unifier

## Definition 5.3.9

Let $E$ be a set of expressions. Recall that an expression is a term or a litteral. A unifier of $E$ is said to be a most general (or principal) unifier if any unifier is an instance of it.

## Most General Unifier and most general solution

## Remark 5.3.10

Let $E=\left\{e_{i} \mid 1 \leq i \leq n\right\}$ a set of expressions.
In the definition of a unifier, we mentioned that $\sigma$ is a unifier of $E$ if and only if $\sigma$ is a solution of the set $S=\left\{e_{i}=e_{i+1} \mid 1 \leq i<n\right\}$. Therefore, the Most General Unifier of $E$ is the most general solution of $S$.

## Unification : algorithm (sketch)

The algorithm separates equations into :

- equations to be solved, denoted by an equation
- solved equations, denoted by :=

Initially, there is no solved equations.

The algorithm stops when :

- No equations are still to be solved : the list of solved equations is the most general solution of the initial set of equations.
- or when it claims that there is no solution.


## Unification : algorithm (rules)

- Remove the equation. If the 2 sides of an equation are identical.
- Decompose. If the 2 sides of an equation are distincts :
- $\neg A=\neg B$ becomes $A=B$.
- $f\left(s_{1}, \ldots, s_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$, becomes $s_{1}=t_{1}, \ldots, s_{n}=t_{n}$. For $n=0$ this decomposition removes the equation.
- Failure of decomposition If an equation to be solved is of the form $f\left(s_{1}, \ldots, s_{n}\right)=g\left(t_{1}, \ldots, t_{p}\right)$ with $f \neq g$ then the algorithm claims that there is no solution.
In particular a failure is detected if we look for a solution to an equation between a positive litteral and a negative litteral.


## Unification : algorithm (rules)

- Orient. If an equation is of the form $t=x$ where $t$ is a term which is not a variable and $x$ is a variable, then we replace the equation with $x=t$.
- Elimination of a variable. If an equation to be solved is of the form $x=t$ where $x$ is a variable and $t$ is a term without occurrence of $x$

1. remove it from equations to be solved
2. replace $x$ by $t$ in all equations (unsolved and solved)
3. add $x:=t$ to the solved part

- Failure of elimination. If an equation to be solved is of the form $x=t$ where $x$ is a variable and $t$ a term distinct from $x$ and containing $x$ then the algorithm claims that there is no solution.


## Unification : algorithm (example 5.3.11)

1. Solve $f(x, g(z))=f(g(y), x)$.
$\square$
2. Solve $f(x, x, a)=f(g(y), g(a), y)$.
$\square$

## Unification : algorithm (example 5.3.11)

1. Solve $f(x, x, x)=f(g(y), g(a), y)$.


Remark : correctness and termination proofs for unification algorithm are in handout course notes.

## Idea

Let $\Gamma$ be a set of clauses. Suppose that $\forall(\Gamma)$ has no model. What can be done?

Rules of < factorization, copy, binary resolution » allow us to infer $\perp$ from $\Gamma$.

Completeness of these rules is based on Herbrand's Theorem. The unification algorithm is used to find suitable instances of these clauses.

## Three rules

1. Factorization : from $P(x, f(y)) \vee P(g(z), z) \vee Q(z, x)$ infer $P(g(f(y)), f(y)) \vee Q(f(y), g(f(y)))$. The inferred clause is obtained by computing the most general solution $x:=g(f(y)), z:=f(y)$ of $P(x, f(y))=P(g(z), z)$.
2. The copy rule which renames the variables of a clause.
3. Binary resolution $(\mathrm{BR})$ : from two premises without common variable $P(x, a) \vee Q(x)$ and $\neg P(b, y) \vee R(f(y))$ infer the resolvant $Q(b) \vee R(f(a))$, by computing the most general solution $x:=b, y:=a$ of $P(x, a)=P(b, y)$.

## Resolution : 3 Rules

1. factorization,
2. copy,
3. resolvant

A clause, (a disjunction of litterals), is identified with the set of its litterals.

## Factorization

## Definition 5.4.2

The clause $C^{\prime}$ is a factor of clause $C$ if $C^{\prime}=C$ or if there exists a subset $E$ of $C$ such that $E$ has two elements at least, $E$ is unifiable and $C^{\prime}=C \sigma$ where $\sigma$ is the most general unifier of $E$.

## Example 5.4.3

The clause $P(x) \vee Q(g(x, y)) \vee P(f(a))$ has two factors:

## Factorization

## property 1

5.4.1 Let $A$ be a formula without quantifier and $B$ an instance of $A$. $\forall(A) \mid=\forall(B)$

## Proof.

See handout course notes.

## property 1

5.4.4 Let $C^{\prime}$ be a factor of the clause $C$. $\forall(C) \models \forall\left(C^{\prime}\right)$

Proof.
Since $C^{\prime}$ is an instance of $C$, it is a consequence of the property 5.4.1.

## Copy

## Definition 5.4.5

Let $C$ be a clause and $\sigma$ a substitution, which changes only the variables of $C$ and whose restriction ot variables of $C$ is a bijection between thoses variables and variables of clause $C \sigma$.

The clause Co is a copy of the clause C.

We also say that the substitution $\sigma$ is a renaming of $C$.

## Copy

## Definition 5.4.6

Let $C$ be a clause and $\sigma$ be a renaming of $C$. Let $f$ the restriction of $\sigma$ to variables of $C$ and $f^{-1}$ the inverse of $f$. Let $\sigma_{C}^{-1}$ be the substitution defined for all variable $x$ as follows :

- If $x$ is a variable of $C \sigma$ then $x \sigma_{C}^{-1}=x f^{-1}$
- Otherwise $x \sigma_{c}^{-1}=x$.

This substitution is called the inverse of the renaming $\sigma$ of $C$.

## Copy

## Example 5.4.7

Let $\sigma=\langle x:=u, y:=v>$.
$\sigma$ is a renaming of $P(x, y)$.
The litteral $P(u, v)$, where $P(u, v)=P(x, y) \sigma$, is a copy of $P(x, y)$.
Let $\tau=\langle u:=x, v:=y>. \tau$ is the inverse of the renaming $\sigma$ of $P(x, y)$.

Note that $P(u, v) \tau=P(x, y)$ : the litteral $P(x, y)$ is a copy of $P(u, v)$ by the renaming $\tau$.

## Copy

## property 1

5.4.8 Let $C$ be a clause and $\sigma$ a renaming of $C$.

1. $\sigma_{C}^{-1}$ is a renaming of $C \sigma$.
2. for all expressions or clauses $E$, whose variables are the ones of $C, E \sigma \sigma_{C}^{-1}=E$.

Then $C \sigma \sigma_{C}^{-1}=C$ and therefore $C$ is a copy of $C \sigma$.

## Proof.

Let $f$ be the restriction of $\sigma$ to variables of $C$. By the definition of renaming, $f$ is a bijection between the variables of $C$ and the variables of $C \sigma$.

1. By definition of $\sigma_{C}^{-1}$, this substitution changes only variables of $C \sigma$ and its restriction to variables of $C \sigma$ is the bijection $f^{-1}$. Therefore, $\sigma_{C}^{-1}$ is a renaming of $C \sigma$.
2. Let $x$ a variable of $C$. By definition of $f, x \sigma \sigma_{C}^{-1}=x f f^{-1}=x$. Therefore, by induction on terms, litterals and clauses, for all expressions or clauses $E$, whose variables are variables of $C$, we have $E \sigma \sigma_{C}^{-1}=E$.

## Copy

## property 1

5.4.9 Given two clauses which are a copy of each other, their universal closures are equivalent.

## Proof.

Let $C^{\prime}$ be a copy of $C$. By definition, $C^{\prime}$ is an instance of $C$ and by the previous property, $C$ is a copy of $C^{\prime}$, hence an instance of $C$.

Therefore by Property 5.4.1, the universal closure of $C$ is a consequence of the universal closure of $C^{\prime}$ and conversely. Therefore, these two universal closures are equivalent.

## Binary resolvant

## Definition 5.4.10

Let $C$ and $D$ be two clauses without common variables. The clause $E$ is a binary resolvant of $C$ and $D$ if there is a litteral $L \in C$ and a litteral $M \in D$ such that $L$ and $M^{C}$ are unifiable and if
$E=((C-\{L\}) \cup(D-\{M\})) \sigma$ where $\sigma$ is the most general solution of equation $L=M^{C}$.

## Example 5.4.11

Let $C=P(x, y) \vee P(y, k(z))$ and $D=\neg P\left(a, f\left(a, y_{1}\right)\right)$.

## Binary resolvant

property 1
5.4.12 Let $E$ be a resolvant binary of clauses $C$ and $D$ : $\forall(C), \forall(D) \models \forall(E)$.

## Proof.

See handout course notes.

## Resolution :

Definition 5.4.13
Let $\Gamma$ be a set of clauses and $C$ be a clause.
A proof of $C$ from $\Gamma$ is a sequence of clauses terminated by $C$, where each clause is

- a member of $\Gamma$,
- a factor of a previous clause in the proof,
- a copy of a previous clause in the proof or
- a binary resolvant of 2 previous clauses in the proof.
$C$ is first-order inferred from $\Gamma$, denoted by $\Gamma \vdash_{1 f c b} C$, if there is a proof of $C$ from $\Gamma$.

When there is no ambiguity, we remplace $\vdash_{1 \text { fcb }}$ by $\vdash$.

## Resolution : Consistency

## property 1

5.4.14 Let $\Gamma$ be a set of clauses and $C$ be a clause.

If $\Gamma \vdash_{1 f c b} C$ then $\forall(\Gamma) \models \forall(C)$
This property is an immediate consequence of consistency of factorization, copy and binary resolution, using induction. See exercise 91.

## Resolution : Example 5.4.15

Given the two clauses

1. $C_{1}=P(x, y) \vee P(y, x)$
2. $C_{2}=\neg P(u, z) \vee \neg P(z, u)$

Show by resolution that $\forall\left(C_{1}, C_{2}\right)$ has no model.

This example shows, a contrario, that binary resolution alone is incomplete : without factorization, the empty clauses cannot be inferred.

## Resolution : Example 5.4.16

1. $C_{1}=\neg P(z, a) \vee \neg P(z, x) \vee \neg P(x, z)$
2. $C_{2}=P(z, f(z)) \vee P(z, a)$
3. $C_{3}=P(f(z), z) \vee P(z, a)$

We give a proof that $\forall\left(C_{1}, C_{2}, C_{3}\right)$ has no model.

## First-Order resolution

We define a new rule, first-order resolution, which is a combination of factorization, copy and binary resolution.

## Definition 5.4.17

The clause $E$ is a first-order resolvant of clauses $C$ and $D$ if $E$ is a binary resolvant of $C^{\prime}$ and $D^{\prime}$ where $C^{\prime}$ is a factor of $C$ and $D^{\prime}$ is a copy of a factor of $D$ without common variable with $C^{\prime}$,

The rule which infers $E$ from $C$ and $D$ is called first-order resolution.

## Example 5.4.18

Let $C=\neg P(z, a) \vee \neg P(z, x) \vee \neg P(x, z)$ and $D=P(z, f(z)) \vee P(z, a)$. $C^{\prime}=\neg P(a, a)$ is a factor of $C$.
The clause $P(a, f(a))$ is a binary resolvant of $C^{\prime}$ and of $D$ (which is factor of itself) then it is a first-order resolvant of $C$ and $D$.

## Three notions of proof by resolution

Let $\Gamma$ be a set of clauses and $C$ a clause.

## Notations

1. $\Gamma \vdash_{p} C$ : proof of $C$ from $\Gamma$ by propositional resolution (without substitution).
2. $\Gamma \vdash_{1_{\text {fcb }} C}$ : proof of $C$ from $\Gamma$ by factorization, copy and binary resolution.
3. $\Gamma \vdash_{1 r} C$ : proof of $C$ from $\Gamma$ obtained by first-order resolution.

By definition we have : $\Gamma \vdash_{1 r} C$ implies $\Gamma \vdash_{1 f c b} C$

## Lifting theorem (1/3)

## Theorem 5.4.19

Let $C$ and $D$ be two clauses. Let $C^{\prime}$ be an instance of $C$ and $D^{\prime}$ be an instance of $D$. Let $E^{\prime}$ be a propositional resolvant of $C^{\prime}$ and $D^{\prime}$, there exists $E$ a first-order resolvant of $C$ and $D$ having $E^{\prime}$ an an instance.

## Proof.

See handout course notes.

## Example 5.4.20

Let $C=P(x) \vee P(y) \vee R(y)$ and $D=\neg Q(x) \vee P(x) \vee \neg R(x) \vee P(y)$.

- The clauses $C^{\prime}=P(a) \vee R(a)$ and $D^{\prime}=\neg Q(a) \vee P(a) \vee \neg R(a)$ are respectively instances of $C$ and $D$.
- The clause $E^{\prime}=P(a) \vee \neg Q(a)$ is a propositional resolvant of $C^{\prime}$ and $D^{\prime}$.
- The clause $E=P(x) \vee \neg Q(x)$ is a first-order resolvant of $C$ and $D$ having $E^{\prime}$ as an instance.


## Lifting theorem (2/3)

## Theorem 5.4.21

Let $\Gamma$ be a set of clauses and $\Delta$ a set of instances of clauses from $\Gamma$, and $C_{1}, \ldots, C_{n}$ a proof by propositional resolution from $\Delta$.

There exists a proof $D_{1}, \ldots, D_{n}$ by first-order resolution from $\Gamma$ such that for $i$ between 1 and $n$, the clause $C_{i}$ is a instance of $D_{i}$.

## Proof.

By induction on $n$. Let $C_{1}, \ldots, C_{n}, C_{n+1}$ a proof by propositional resolution starting with $\Delta$. By induction, there exists a proof $D_{1}, \ldots, D_{n}$ by first-order resolution starting from $\Gamma$ such that, for $i$ between 1 and $n$, the clause $C_{i}$ is an instance of $D_{i}$.

1. Suppose that $C_{n+1} \in \Delta$. There exists $E \in \Gamma$ where $C_{n+1}$ is an instance then we take $D_{n+1}=E$.
2. Suppose that $C_{n+1}$ is a propositional resolvant of $C_{j}$ and $C_{k}$ where $j, k \leq n$. From the previous slide, there exists $E$, first-order resolvant of $D_{j}$ and $D_{k}$ : we take $D_{n+1}=E$.

## Lifting theorem (3/3)

## Corollary 5.4.22

Let $\Gamma$ be a set of clauses and $\Delta$ a set of instances of clauses of $\Gamma$.

Suppose that $\Delta \vdash_{p} C$.
There exists $D$ such that $\Gamma \vdash_{1 r} D$ and $C$ is an instance of $D$.

## Example 5.4.23

Consider the set of clauses

$$
P(f(x)) \vee P(u), \neg P(x) \vee Q(z), \neg Q(x) \vee \neg Q(y) .
$$

The universal closure of this set of clauses is unsatisfiable and we show it in three ways

1. By instanciation on the Herbrand's domain $a, f(a), f(f(a)), \ldots$ : $P(f(x)) \vee P(u)$ is instanciated by $x:=a, u:=f(a)$ to $P(f(a))$ $\neg P(x) \vee Q(z)$ is instanciated by $x:=f(a), z:=a$ to $\neg P(f(a)) \vee Q(a)$
$\neg Q(x) \vee \neg Q(y)$ is instanciated by $x:=a, y:=a$ to $\neg Q(a)$
These these 3 instances together are unsatisfiable, as shown in the following proof by propositional resolution :
$\frac{P(f(a)) \quad \neg P(f(a)) \vee Q(a)}{Q(a)} \quad \neg Q(a)$

## Example 5.4.23

$P(f(x)) \vee P(u), \neg P(x) \vee Q(z), \neg Q(x) \vee \neg Q(y)$.
2. This proof by propositional resolution is lifted to a proof by first-order resolution :

$$
\begin{array}{cr}
\frac{P(f(x)) \vee P(u)}{} \quad \neg P(x) \vee Q(z) \\
Q(z) & \neg Q(x) \vee \neg Q(y) \\
\hline
\end{array}
$$

3. Each first-order resolution rule is decomposed into factorization, copy and binary resolution :

## Refutational completeness of first-order resolution

## Theorem 5.4.24

Let $\Gamma$ be a set of clauses. Propositions : (1) $\Gamma \vdash_{1 r} \perp$, (2) $\Gamma \vdash_{1 f c b} \perp$, and (3) $\forall(\Gamma) \models \perp$ are equivalent.

## Proof.

- (1) implies (2) because first-order resolution is a combinaison of factorization, copy and binary resolution.
- (2) implies (3) because factorization, copy and binary resolution are consistent.
- (3) implies (1). Suppose that $\forall(\Gamma) \models \perp$, that is, $\forall(\Gamma)$ is unsatisfiable. By Herbrand's theorem, there is a finite set $\Delta$ of instances without variable of clauses of $\Gamma$ which has no propositional model. By completeness of propositional resolution, we have : $\Delta \vdash_{p} \perp$. From the lifting corollary 5.4.22, there exists $D$ such that $\Gamma \vdash_{1 r} D$ and $\perp$ is an instance of $D$. But in this case, we have $D=\perp$.


## Conclusion

# Thanks of your attention. 

## Questions?

