Basis for automated proof: First-Order Resolution

Stéphane Devismes Pascal Lafourcade Michel Lévy Jean-François Monin (jean-francois.monin@imag.fr)

Université Joseph Fourier, Grenoble I

March 20, 2015

Plan

Introduction

Clausal form

Unification

First-Order Resolution

Completeness

Idea

Skolemization yields formulae without quantifier.

This course presents a generalization of resolution to first-order logic :

- clausal form of skolemized formulae.
- generalization of resolution.
- Correctness and completeness of the method.

Litteral, clause

Definition 5.2.19

A positive litteral is an atomic formula. Ex : P(x,y)

A negative litteral is the negation of an atomic formula. Ex: $\neg Q(a)$

Every litteral is positive or negative.

A clause is a disjunction of litterals. Ex : $P(x,y) \lor \neg Q(a)$

Clausal form of a formula

Definition 5.2.20

Let A be a closed formula. The clausal form of A, F(A) is a set of clauses obtained from A in two steps :

- 1. Skolemize A into B
- 2. Replace B with an equivalent set Γ of clauses using distributivity of disjunction over conjunction.

Clausal form of a formula

property 1

5.2.21

- ▶ The universal closure of the clausal form of a closed formula A has a model if and only if A is a consequence of $\forall (F(A))$.
- ▶ If A has a model, then $\forall (F(A))$ has a model.

Proof

Proof.

Let A be a closed formula, B its Skolem form and Γ its clausal form. From the properties of skolemization :

- ▶ *A* is a consequence of \forall (*B*).
- ▶ If A has a model then \forall (B) has a model.

Since Γ is obtained using distributivity, B and Γ are equivalent, hence $\forall (B)$ and $\forall (\Gamma)$ are equivalent as well. Therefore, in the two properties above, $\forall (B)$ can be replaced with $\forall (\Gamma)$.

Clausal form of a set of formulae

Definition 5.2.22

Let Γ be a set of closed formulae. We define the clausal form of Γ as the union of clausal forms of all formulae of Γ , paying attention, in the course of skolemization, to use a new symbol for each eliminated existential quantifier.

Clausal form of a set of formulae

Corollary 5.2.23

Let Γ be a set of closed formulae and Δ the clausal form of Γ . We have :

- ▶ Γ is a consequence of $\forall (\Delta)$
- ▶ if Γ has a model then $\forall (\Delta)$ has a model.

Adapting Herbrand's theorem to clausal forms

Theorem 5.2.24

Let Γ be a set of closed formulae and Δ the clausal form of Γ . Γ is unsatisfiable if and only if there exists a finite unsatisfiable subset of instances of clauses of Δ on the signature of Δ .

Proof.

From Corollary 5.2.23, skolemization preserves satisfiability, then : Γ is unsatisfiable if and only if $\forall (\Delta)$ is unsatisfiable.

From Corollary 5.1.18 of Herbrand's theorem, $\forall (\Delta)$ is unsatisfiable if and only if there exists a finite unsatisfiable subset of instances of clauses of Δ on the signature of Δ .

Example 5.2.25 (1/2)

Let $A = \exists y \forall z (P(z,y) \Leftrightarrow \neg \exists x (P(z,x) \land P(x,z)))$. Let's compute the clausal form of A.

Example 5.2.25 (2/2)

Unification: expression, solution

Definition 5.3.1

- ► A term or a litteral is an **expression**.
- A substitution σ (see definition 5.1.3) is a **solution** of equation $e_1 = e_2$, if the two expressions $e_1 \sigma$ and $e_2 \sigma$ are syntactically identical.
- A substitution is a solution of a set of equations if it is a solution of each equation of the set.

Unification: carrier of substitution

Definition 5.3.3

The carrier of a substitution σ is the set of variables x such that $x\sigma \neq x$.

We only consider substitutions with a finite carrier (a finite number of variables).

Definition 5.3.3

A substitution σ with finite carrier is denoted by

 $< x_1 := t_1, \dots, x_n := t_n > \text{or just } x_1 := t_1, \dots, x_n := t_n \text{ when there is no ambiguity.}$

Variables x_1, \ldots, x_n are distinct and the substitution satisfies :

- ▶ for *i* from 1 to *n*, $x_i \sigma = t_i$
- for all variables y such that $y \notin \{x_1, \dots, x_n\}$, we have : $y\sigma = y$

Unification: example 5.3.4

The equation
$$P(x, f(y)) = P(g(z), z)$$
 has the solution :

The set of equations
$$x = g(z), f(y) = z$$
 has the solution :

Unification: composition of substitution

Definition 5.3.5

- Let σ and τ be 2 substitutions, we note $\sigma\tau$ the substitution such that for all variable x, $x\sigma\tau = (x\sigma)\tau$.
- ► The substitution στ is an instance of σ.
- ► Two substitutions are equivalent if each of them is an instance of the other.

Unification: example 5.3.6

Consider substitutions

►
$$\sigma_1 = \langle x := g(z), y := z \rangle$$

•
$$\sigma_2 = \langle x := g(y), z := y \rangle$$

•
$$\sigma_3 = \langle x := g(a), y := a, z := a \rangle$$

We have the following relations between these substitutions:

Unification: definition of the most general solution

Definition 5.3.7 (mgu)

A solution of a set of equations is said to be the most general if any solution is an instance of it. Note that two « most general » solutions are equivalent.

Example 5.3.8

Consider equation f(x, g(z)) = f(g(y), x).

Unifier

Definition 5.3.2

Let σ be a substitution and E a set of expressions. $E\sigma = \{t\sigma \mid t \in E\}$. The substitution σ is a unifier of E if and only if the set $E\sigma$ has only one element.

Let $\{e_i|1 \le i \le n\}$ a finite set of expressions. The substitution σ is a unifier of this set if and only if it is a solution of the set of equations $\{e_i = e_{i+1}|1 \le i < n\}$.

Most General Unifier

Definition 5.3.9

Let E be a set of expressions. Recall that an expression is a term or a litteral. A unifier of E is said to be a most general (or principal) unifier if any unifier is an instance of it.

Most General Unifier and most general solution

Remark 5.3.10

Let $E = \{e_i \mid 1 \le i \le n\}$ a set of expressions.

In the definition of a unifier, we mentioned that σ is a unifier of E if and only if σ is a solution of the set $S = \{e_i = e_{i+1} \mid 1 \le i < n\}$.

Therefore, the Most General Unifier of *E* is the most general solution of *S*.

Unification: algorithm (sketch)

The algorithm separates equations into:

- equations to be solved, denoted by an equation
- solved equations, denoted by :=

Initially, there is no solved equations.

The algorithm stops when:

- No equations are still to be solved: the list of solved equations is the most general solution of the initial set of equations.
- or when it claims that there is no solution.

Unification: algorithm (rules)

- ► Remove the equation. If the 2 sides of an equation are identical.
- Decompose. If the 2 sides of an equation are distincts :
 - ▶ $\neg A = \neg B$ becomes A = B.
 - ► $f(s_1,...,s_n) = f(t_1,...,t_n)$, becomes $s_1 = t_1,...,s_n = t_n$. For n = 0 this decomposition removes the equation.
- ▶ Failure of decomposition If an equation to be solved is of the form $f(s_1,...,s_n) = g(t_1,...,t_p)$ with $f \neq g$ then the algorithm claims that there is no solution.

In particular a failure is detected if we look for a solution to an equation between a positive litteral and a negative litteral.

Unification: algorithm (rules)

- ▶ **Orient.** If an equation is of the form t = x where t is a term which is not a variable and x is a variable, then we replace the equation with x = t.
- Elimination of a variable. If an equation to be solved is of the form x = t where x is a variable and t is a term without occurrence of x
 - 1. remove it from equations to be solved
 - 2. replace *x* by *t* in all equations (unsolved and solved)
 - 3. add x := t to the solved part
- ► Failure of elimination. If an equation to be solved is of the form *x* = *t* where *x* is a variable and *t* a term distinct from *x* and containing *x* then the algorithm claims that there is no solution.

1. Solve f(x, g(z)) = f(g(y), x).

2. Solve f(x, x, a) = f(g(y), g(a), y).

Unification: algorithm (example 5.3.11)

1. Solve
$$f(x,x,x) = f(g(y),g(a),y)$$
.

Remark: correctness and termination proofs for unification algorithm are in handout course notes.

Idea

Let Γ be a set of clauses. Suppose that $\forall (\Gamma)$ has no model. What can be done?

Rules of \ll factorization, copy, binary resolution \gg allow us to infer \perp from Γ .

Completeness of these rules is based on Herbrand's Theorem. The unification algorithm is used to find suitable instances of these clauses.

Three rules

- 1. Factorization : from $P(x, f(y)) \lor P(g(z), z) \lor Q(z, x)$ infer $P(g(f(y)), f(y)) \lor Q(f(y), g(f(y)))$. The inferred clause is obtained by computing the most general solution x := g(f(y)), z := f(y) of P(x, f(y)) = P(g(z), z).
- 2. The copy rule which renames the variables of a clause.
- 3. Binary resolution (BR) : from two premises without common variable $P(x,a) \vee Q(x)$ and $\neg P(b,y) \vee R(f(y))$ infer the resolvant $Q(b) \vee R(f(a))$, by computing the most general solution x := b, y := a of P(x,a) = P(b,y).

Resolution: 3 Rules

- 1. factorization,
- 2. copy,
- 3. resolvant

A clause, (a disjunction of litterals), is identified with the set of its litterals.

Factorization

Definition 5.4.2

The clause C' is a factor of clause C if C' = C or if there exists a subset E of C such that E has two elements at least, E is unifiable and $C' = C\sigma$ where σ is the most general unifier of E.

Example 5.4.3

The clause $P(x) \vee Q(g(x,y)) \vee P(f(a))$ has two factors :

Factorization

property 1

5.4.1 Let *A* be a formula without quantifier and *B* an instance of *A*.

$$\forall (A) \models \forall (B)$$

Proof.

See handout course notes.

property 1

5.4.4 Let C' be a factor of the clause C.

$$\forall (C) \models \forall (C')$$

Proof.

Since C' is an instance of C, it is a consequence of the property 5.4.1.

Definition 5.4.5

Let C be a clause and σ a substitution, which changes only the variables of C and whose restriction of variables of C is a bijection between thoses variables and variables of clause $C\sigma$.

The clause $C\sigma$ is a copy of the clause C.

We also say that the substitution σ is a renaming of C.

Definition 5.4.6

Let C be a clause and σ be a renaming of C. Let f the restriction of σ to variables of C and f^{-1} the inverse of f. Let σ_C^{-1} be the substitution defined for all variable x as follows:

- ▶ If *x* is a variable of $C\sigma$ then $x\sigma_C^{-1} = xf^{-1}$
- ► Otherwise $x\sigma_C^{-1} = x$.

This substitution is called the inverse of the renaming σ of C.

Example 5.4.7

Let $\sigma = \langle x := u, v := v \rangle$.

 σ is a renaming of P(x, y).

The litteral P(u, v), where $P(u, v) = P(x, y)\sigma$, is a copy of P(x, y).

Let $\tau = \langle u := x, v := y \rangle$. τ is the inverse of the renaming σ of P(x,y).

Note that $P(u,v)\tau = P(x,y)$: the litteral P(x,y) is a copy of P(u,v) by the renaming τ .

property 1

5.4.8 Let C be a clause and σ a renaming of C.

- 1. σ_C^{-1} is a renaming of $C\sigma$.
- 2. for all expressions or clauses E, whose variables are the ones of C, $E\sigma\sigma_C^{-1} = E$.

Then $C\sigma\sigma_C^{-1} = C$ and therefore C is a copy of $C\sigma$.

Proof.

Let f be the restriction of σ to variables of C. By the definition of renaming, f is a bijection between the variables of C and the variables of $C\sigma$.

- 1. By definition of σ_C^{-1} , this substitution changes only variables of $C\sigma$ and its restriction to variables of $C\sigma$ is the bijection f^{-1} . Therefore, σ_C^{-1} is a renaming of $C\sigma$.
- Let x a variable of C. By definition of f, xσσ_C⁻¹ = xff⁻¹ = x. Therefore, by induction on terms, litterals and clauses, for all expressions or clauses E, whose variables are variables of C, we have Eσσ_C⁻¹ = E.

property 1

5.4.9 Given two clauses which are a copy of each other, their universal closures are equivalent.

Proof.

Let C' be a copy of C. By definition, C' is an instance of C and by the previous property, C is a copy of C', hence an instance of C.

Therefore by Property 5.4.1, the universal closure of C is a consequence of the universal closure of C' and conversely. Therefore, these two universal closures are equivalent.

Binary resolvant

Definition 5.4.10

Let C and D be two clauses without common variables. The clause E is a binary resolvant of C and D if there is a litteral $L \in C$ and a litteral $M \in D$ such that L and M^c are unifiable and if $E = ((C - \{L\}) \cup (D - \{M\}))\sigma$ where σ is the most general solution of equation $L = M^c$.

Example 5.4.11

Let
$$C = P(x, y) \lor P(y, k(z))$$
 and $D = \neg P(a, f(a, y_1))$.

Binary resolvant

property 1

5.4.12 Let *E* be a resolvant binary of clauses *C* and *D* : $\forall (C), \forall (D) \models \forall (E).$

Proof.

See handout course notes.

Resolution:

Definition 5.4.13

Let Γ be a set of clauses and C be a clause.

A proof of C from Γ is a sequence of clauses terminated by C, where each clause is

- a member of Γ,
- a factor of a previous clause in the proof,
- a copy of a previous clause in the proof or
- a binary resolvant of 2 previous clauses in the proof.

C is first-order inferred from Γ , denoted by $\Gamma \vdash_{1fcb} C$, if there is a proof of *C* from Γ .

When there is no ambiguity, we remplace \vdash_{1fcb} by \vdash .

Resolution: Consistency

property 1

5.4.14 Let Γ be a set of clauses and C be a clause.

If
$$\Gamma \vdash_{1fcb} C$$
 then $\forall (\Gamma) \models \forall (C)$

This property is an immediate consequence of consistency of factorization, copy and binary resolution, using induction. See exercise 91.

Resolution: Example 5.4.15

Given the two clauses

1.
$$C_1 = P(x, y) \vee P(y, x)$$

2.
$$C_2 = \neg P(u,z) \lor \neg P(z,u)$$

Show by resolution that $\forall (C_1, C_2)$ has no model.

This example shows, a contrario, that binary resolution alone is incomplete: without factorization, the empty clauses cannot be inferred.

Resolution: Example 5.4.16

- 1. $C_1 = \neg P(z,a) \lor \neg P(z,x) \lor \neg P(x,z)$
- 2. $C_2 = P(z, f(z)) \vee P(z, a)$
- 3. $C_3 = P(f(z), z) \vee P(z, a)$

We give a proof that $\forall (C_1, C_2, C_3)$ has no model.

First-Order resolution

We define a new rule, first-order resolution, which is a combination of factorization, copy and binary resolution.

Definition 5.4.17

The clause E is a first-order resolvant of clauses C and D if E is a binary resolvant of C' and D' where C' is a factor of C and D' is a copy of a factor of D without common variable with C',

The rule which infers *E* from *C* and *D* is called first-order resolution.

Example 5.4.18

Let
$$C = \neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)$$
 and $D = P(z, f(z)) \lor P(z, a)$. $C' = \neg P(a, a)$ is a factor of C .

The clause P(a, f(a)) is a binary resolvant of C' and of D (which is factor of itself) then it is a first-order resolvant of C and D.

Three notions of proof by resolution

Let Γ be a set of clauses and C a clause.

Notations

- 1. $\Gamma \vdash_{p} C$: proof of C from Γ by propositional resolution (without substitution).
- 2. $\Gamma \vdash_{1fcb} C$: proof of C from Γ by factorization, copy and binary resolution.
- 3. $\Gamma \vdash_{1r} C$: proof of C from Γ obtained by first-order resolution.

By definition we have : $\Gamma \vdash_{1r} C$ implies $\Gamma \vdash_{1fcb} C$

Lifting theorem (1/3)

Theorem 5.4.19

Let C and D be two clauses. Let C' be an instance of C and D' be an instance of D. Let E' be a propositional resolvant of C' and D', there exists E a first-order resolvant of C and D having E' an an instance.

Proof.

See handout course notes.

Example 5.4.20

Let $C = P(x) \lor P(y) \lor R(y)$ and $D = \neg Q(x) \lor P(x) \lor \neg R(x) \lor P(y)$.

- ▶ The clauses $C' = P(a) \lor R(a)$ and $D' = \neg Q(a) \lor P(a) \lor \neg R(a)$ are respectively instances of C and D.
- ▶ The clause $E' = P(a) \lor \neg Q(a)$ is a propositional resolvant of C' and D'.
- ► The clause $E = P(x) \vee \neg Q(x)$ is a first-order resolvant of C and D having E' as an instance.

Lifting theorem (2/3)

Theorem 5.4.21

Let Γ be a set of clauses and Δ a set of instances of clauses from Γ , and C_1, \ldots, C_n a proof by propositional resolution from Δ .

There exists a proof D_1, \ldots, D_n by first-order resolution from Γ such that for i between 1 and n, the clause C_i is a instance of D_i .

Proof.

By induction on n. Let $C_1, \ldots, C_n, C_{n+1}$ a proof by propositional resolution starting with Δ . By induction, there exists a proof D_1, \ldots, D_n by first-order resolution starting from Γ such that, for i between 1 and n, the clause C_i is an instance of D_i .

- 1. Suppose that $C_{n+1} \in \Delta$. There exists $E \in \Gamma$ where C_{n+1} is an instance then we take $D_{n+1} = E$.
- 2. Suppose that C_{n+1} is a propositional resolvant of C_j and C_k where $j,k \le n$. From the previous slide, there exists E, first-order resolvant of D_j and D_k : we take $D_{n+1} = E$.

Lifting theorem (3/3)

Corollary 5.4.22

Let Γ be a set of clauses and Δ a set of instances of clauses of Γ .

Suppose that $\Delta \vdash_{p} C$.

There exists *D* such that $\Gamma \vdash_{1r} D$ and *C* is an instance of *D*.

Example 5.4.23

Consider the set of clauses

$$P(f(x)) \vee P(u), \neg P(x) \vee Q(z), \neg Q(x) \vee \neg Q(y).$$

The universal closure of this set of clauses is unsatisfiable and we show it in three ways

1. By instanciation on the Herbrand's domain $a, f(a), f(f(a)), \ldots$: $P(f(x)) \vee P(u)$ is instanciated by x := a, u := f(a) to P(f(a)) $\neg P(x) \lor Q(z)$ is instanciated by x := f(a), z := a to $\neg P(f(a)) \lor Q(a)$ $\neg Q(x) \lor \neg Q(y)$ is instanciated by x := a, y := a to $\neg Q(a)$ These these 3 instances together are unsatisfiable, as shown in

the following proof by propositional resolution:

$$\frac{P(f(a)) \qquad \neg P(f(a)) \lor Q(a)}{Q(a)} \qquad \neg Q(a)$$

Example 5.4.23

$$P(f(x)) \vee P(u), \neg P(x) \vee Q(z), \neg Q(x) \vee \neg Q(y).$$

This proof by propositional resolution is lifted to a proof by first-order resolution :

$$\frac{P(f(x))\vee P(u) \qquad \neg P(x)\vee Q(z)}{Q(z)} \qquad \neg Q(x)\vee \neg Q(y)$$

3. Each first-order resolution rule is decomposed into factorization, copy and binary resolution :

$$\frac{\frac{P(f(x))\vee P(u)}{P(f(x))} \frac{fact}{-P(y)\vee Q(z)} \frac{\neg P(x)\vee Q(z)}{copy}}{Q(z)} rb \qquad \frac{\neg Q(x)\vee \neg Q(y)}{\neg Q(x)} fact}{rb}$$

Refutational completeness of first-order resolution

Theorem 5.4.24

Let Γ be a set of clauses. Propositions : (1) $\Gamma \vdash_{1r} \bot$, (2) $\Gamma \vdash_{1fcb} \bot$, and (3) $\forall (\Gamma) \models \bot$ are equivalent.

Proof.

- (1) implies (2) because first-order resolution is a combinaison of factorization, copy and binary resolution.
- ▶ (2) implies (3) because factorization, copy and binary resolution are consistent.
- ▶ (3) implies (1). Suppose that $\forall (\Gamma) \models \bot$, that is, $\forall (\Gamma)$ is unsatisfiable. By Herbrand's theorem, there is a finite set Δ of instances without variable of clauses of Γ which has no propositional model. By completeness of propositional resolution, we have : $\Delta \vdash_{p} \bot$. From the lifting corollary 5.4.22, there exists D such that $\Gamma \vdash_{1r} D$ and \bot is an instance of D. But in this case, we have $D = \bot$.

Conclusion

Thanks of your attention.

Questions?