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Herbrand’s Theorem

Introduction

Introduction

Reminder : In first-order logic, there is no algorithm for deciding
whether a formula is valid or not.

Semi-decidable program :

1. If it terminates then it correctly decides whether the formula is
valid or not.
When the formula is valid, the decision generally comes with a
proof.

2. If the formula is valid, then the program terminates. However, the
execution can be long !

Note that if the formula is not valid, termination is not guaranteed.

Let us now study such a program.
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Herbrand Universe (domain) and Herbrand Base

Domain closure

Definition 5.1.1

Let C be a formula with free variables x1, . . . ,xn.

The domain closure of C, denoted by ∀(C), is the formula ∀x1 . . .∀xnC.

Let Γ be a set of formulae, ∀(Γ) = {∀(A) | A ∈ Γ}.

Example 5.1.2

∀(P(x)∧R(x ,y)) =

∀x∀y(P(x)∧R(x ,y)) or ∀y∀x(P(x)∧R(x ,y))
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Herbrand Universe (domain) and Herbrand Base

Generalisation of substitution

Definition 5.1.3

A substitution is a mapping from variables to terms.

Let A be a formula and σ be a substitution.

Aσ is the formula obtained by replacing all free occurrences of
variables by their respective image according to σ.

The formula Aσ is an instance of A.
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Herbrand Universe (domain) and Herbrand Base

Assumptions

We consider that
I the formulae do not contain neither the symbol equal, nor the

propositional constants >,⊥, since their truth value is fixed in any
interpretation

I every signature contains at least one constant.

Add the constant a.
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Herbrand Universe (domain) and Herbrand Base

Definition 5.1.4

1. The Herbrand universe for Σ is the set of closed terms (i.e., without variable) of
this signature, denoted by DΣ.

Remark : this set is never empty, since a ∈ DΣ.

2. The Herbrand base for Σ is the set of atomic formulae of this signature, denoted
by BΣ.

Definition 4.3.8 (Reminder)

I A term over Σ is : either a variable, or a constant s where sf0 ∈Σ, or a term of the form
s(t1, . . . , tn) where n ≥ 1, sfn ∈Σ and where t1, . . . , tn are terms over Σ.

I An atomic formula over Σ is : either one of the constants >,⊥, or a propositional variable
s where sr0 ∈Σ, or is of the form s(t1, . . . , tn) where n ≥ 1, srn ∈Σ and where t1, . . . , tn
are terms over Σ.
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Herbrand Universe (domain) and Herbrand Base

Example 5.1.5

1. Let Σ = {af0,bf0,Pr1,Qr1}, DΣ = {a,b} and BΣ =

{P(a),P(b),Q(a),Q(b)}.

2. Let Σ = {af0, f f1,Pr1}, DΣ = {f n(a) | n ∈ N} and BΣ =

{P(f n(a)) | n ∈ N}
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Herbrand Interpretation

Herbrand Interpretation

Definition 5.1.6

Let Σ be a signature and E ⊆ BΣ. The Herbrand interpretation HΣ,E

consists of the domain DΣ and of the following mapping :

1. Constants symbol s are mapped to themselves.

2. If s is a function symbol with n ≥ 1 arguments and if
t1, . . . , tn ∈ DΣ then
sfn

HΣ,E
(t1, . . . , tn) = s(t1, . . . , tn).

3. If the symbol s is a propositional variable, it is mapped to 1 (true),
if and only if s ∈ E .

4. If s is a relation symbol with n ≥ 1 arguments and if
t1, . . . , tn ∈ DΣ then
srn

HΣ,E
= {(t1, . . . , tn) | t1, . . . , tn ∈ DΣ∧ s(t1, . . . , tn) ∈ E}.
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Herbrand Interpretation

Property of Herbrand Interpretation

property 1

5.1.7 Let Σ be a signature and E ⊆ BΣ. In the Herbrand interpretation
HΣ,E :

1. The value of a term with no variable is set to itself

2. The interpretation is model of an atomic closed formula if and
only if it is member of E .

The proof is a direct consequence of the definition of the Herbrand interpretation. Let

us note here, with an example, why we assumed that the formulae do not contain the
relation symbols >,⊥,=, whose value is fixed in all the interpretations.

Let us suppose on the contrary that > is a member of the base and not a member of

E . According to point 2, the interpretation HΣ,E will map > to the truth value 0, while

> is expected to be true in all interpretations.

S. Devismes et al (Grenoble I) Herbrand’s Theorem March 13, 2015 13 / 31
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Herbrand’s Theorem

Herbrand Interpretation

Example 5.1.8

Let Σ = {af0,bf0,Pr1,Qr1}

The set E = {P(b),Q(a)} defines the Herbrand interpretation H of
domain DΣ = {a,b} where :

I constants a and b are mapped to themselves and

I PH = {b} and QH = {a}.
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Herbrand Interpretation

Universal closure and Herbrand model

Theorem 5.1.16

Let Γ be a set of formulae with no quantifier over the signature Σ.

∀(Γ) has a model if and only if ∀(Γ) has a model which is a Herbrand
interpretation of Σ.

Proof.

Cf. handout course notes 2
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Herbrand Interpretation

Example

Let Σ = {af0,bf0,Pr1,Qr1}

The set E = {P(b),Q(a)} defines the Herbrand interpretation H of
domain DΣ = {a,b} where :

I Constants a and b are mapped to themselves

I PH = {b} and QH = {a}.

Let I be the interpretation of domain {0,1} where :

I aI = 0, bI = 1,

I PI = {1} and QI = {0}.

I is a model of a set Γ of formulae with no quantifier over the signature
Σ iff H is a Herbrand model of Γ
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Herbrand’s Theorem

Theorem 5.1.17

Let Γ be a set of formulae with no quantifiers, of signature Σ.

∀(Γ) has a model if and only if
every finite set of closed instances (over Σ) of formulae of Γ has a
propositional model – a mapping from the Herbrand base BΣ to {0,1}.
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Herbrand’s Theorem

Proof ideas (1/2)

⇒ Suppose that ∀(Γ) has a model I.
Instances of formulae of Γ are consequences of ∀(Γ), hence they
have I as model.
The model I can be seen as a propositional model v of domain
BΣ, the Herbrand base of the signature Σ, where for all A ∈ BΣ,
v(A) = [A]I .

Hence v is a propositional model of every set of instances of the
formulae of Γ.
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Herbrand’s Theorem

Proof ideas (2/2)

⇐ Suppose that every finite set of closed instances over the
signature Σ of the formulae of Γ has a propositional model of
domain BΣ.
According to the compactness theorem (theorem 1.2.30), the set
of all closed instances over the signature Σ has therefore a
propositional model v of domain BΣ.
This propositional model can be seen as Herbrand model of ∀(Γ)
associated to the set of elements of the Herbrand base for which
v is a model. According to theorem 5.1.16, ∀(Γ) has a model.
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Herbrand’s Theorem

Other version of Herbrand’s Theorem

Corollary 5.1.18

Let Γ be a set of formulae without quantifier over signature Σ.

∀(Γ) is unsatisfiable if and only if there is
a finite unsatisfiable set of closed instances of formulae taken from Γ

Proof.

Negate each side of the equivalence of the previous statement of
Herbrand’s theorem. 2
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Herbrand’s Theorem

Semi-decision procedure : unsatisfiability of ∀(Γ)

Let Γ be a finite set of formulae with no quantifier.
Enumerate the set of closed instances of the formulae of Γ over the
signature Σ and stop as soon as :

I (1) a set is unsatisfiable, hence ∀(Γ) is unsatisfiable.

I (2) termination without contradiction (in this case, the Herbrand
universe only contains constants) hence ∀(Γ) is satisfiable, we
have a model.

I (3) we are � tired �, hence we cannot conclude.
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Herbrand’s Theorem

Example 5.1.19 (1/5)

Let Γ = {P(x),Q(x),¬P(a)∨¬Q(b)} and Σ = {af0,bf0,Pr1,Qr1}.

DΣ = {a,b}.

The set {P(a),Q(b),¬P(a)∨¬Q(b)} of instances over the Herbrand
universe is unsatisfiable, hence ∀(Γ) is unsatisfiable.
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Herbrand’s Theorem

Example 5.1.19 (2/5)

Let Γ = {P(x)∨Q(x),¬P(a),¬Q(b)} and Σ = {af0,bf0,Pr1,Qr1}.

The set of all the instances over the Herbrand universe
{P(a)∨Q(a),P(b)∨Q(b),¬P(a),¬Q(b)} has a propositional model
caracterised by E = {P(b),Q(a)}.

Hence the Herbrand interpretation associated to E is a model of ∀(Γ).
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Example 5.1.19 (3/5)

Let Γ = {P(x),¬P(f (x))} and Σ = {af0, f f1,Pr1}.

DΣ = {f n(a)|n ∈ N}.

The set {P(f (a)),¬P(f (a))} of instances over the Herbrand universe
is unsatisfiable, hence ∀(Γ) is unsatisfiable.
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Herbrand’s Theorem

Example 5.1.19 (4/5)

Let Γ = {P(x)∨¬P(f (x)),¬P(a),P(f (f (a)))} and Σ = {af0, f f1,Pr1}.

The set {P(a)∨¬P(f (a)),P(f (a))∨¬P(f (f (a))),¬P(a),P(f (f (a)))}
of instances over the Herbrand universe is unsatisfiable, hence ∀(Γ) is
unsatisfiable.

Remark : note that we had to consider 2 instances of the first formula
of Γ to obtain a contradiction.
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Herbrand’s Theorem

Example 5.1.19 (5/5)

Let Γ = {R(x ,s(x)),R(x ,y)∧R(y ,z)⇒ R(x ,z),¬R(x ,x)} and
Σ = {af0,sf1,Rr2}.

DΣ = {sn(a) | n ∈ N}. This is an infinite domain.

∀(Γ) has an infinite model : the interpretation I of domain N with
∀n ∈ N, sI(n) = n + 1 and RI = {(n,p) | n < p}, in short
R(x ,y) = x < y .

∀(Γ) has no finite model, i.e., it is useless to look for finite models.

Since ∀(Γ) has a model, we are in a situation where the previously
presented procedure will never be able to answer.
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