Towards proof automation: Herbrand's Theorem

Stéphane Devismes Pascal Lafourcade Michel Lévy Jean-François Monin (jean-francois.monin@imag.fr)

Université Joseph Fourier, Grenoble I

March 13, 2015

Overview

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand's Theorem

Conclusion

Plan

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand's Theorem

Conclusion

Reminder : In first-order logic, there is no algorithm for deciding whether a formula is valid or not.

Reminder : In first-order logic, there is no algorithm for deciding whether a formula is valid or not.

Semi-decidable program :

- If it terminates then it correctly decides whether the formula is valid or not.
 When the formula is valid, the decision generally comes with a proof.
- 2. If the formula is valid, then the program terminates. However, the execution can be long !

Reminder : In first-order logic, there is no algorithm for deciding whether a formula is valid or not.

Semi-decidable program :

- If it terminates then it correctly decides whether the formula is valid or not.
 When the formula is valid, the decision generally comes with a proof.
- 2. If the formula is valid, then the program terminates. However, the execution can be long !

Note that if the formula is not valid, termination is not guaranteed.

Reminder : In first-order logic, there is no algorithm for deciding whether a formula is valid or not.

Semi-decidable program :

- If it terminates then it correctly decides whether the formula is valid or not.
 When the formula is valid, the decision generally comes with a proof.
- 2. If the formula is valid, then the program terminates. However, the execution can be long !

Note that if the formula is not valid, termination is not guaranteed.

Let us now study such a program.

Herbrand's Theorem Herbrand Universe (domain) and Herbrand Base

Plan

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand's Theorem

Conclusion

Domain closure

Definition 5.1.1

Let *C* be a formula with free variables x_1, \ldots, x_n .

The domain closure of *C*, denoted by \forall (*C*), is the formula $\forall x_1 \dots \forall x_n C$.

Let Γ be a set of formulae, $\forall (\Gamma) = \{ \forall (A) \mid A \in \Gamma \}.$

Domain closure

Definition 5.1.1

Let *C* be a formula with free variables x_1, \ldots, x_n .

The domain closure of *C*, denoted by \forall (*C*), is the formula $\forall x_1 \dots \forall x_n C$.

Let Γ be a set of formulae, $\forall (\Gamma) = \{ \forall (A) \mid A \in \Gamma \}.$

Example 5.1.2

 $\forall (P(x) \land R(x,y)) =$

Domain closure

Definition 5.1.1

Let *C* be a formula with free variables x_1, \ldots, x_n .

The domain closure of *C*, denoted by \forall (*C*), is the formula $\forall x_1 \dots \forall x_n C$.

Let Γ be a set of formulae, $\forall (\Gamma) = \{ \forall (A) \mid A \in \Gamma \}.$

Example 5.1.2 $\forall (P(x) \land R(x,y)) =$ $\forall x \forall y (P(x) \land R(x,y)) \text{ or } \forall y \forall x (P(x) \land R(x,y))$

Generalisation of substitution

Definition 5.1.3

A substitution is a mapping from variables to terms.

Let A be a formula and σ be a substitution.

 $A\sigma$ is the formula obtained by replacing all free occurrences of variables by their respective image according to σ .

The formula $A\sigma$ is an instance of A.

Assumptions

We consider that

- ► the formulae do not contain neither the symbol equal, nor the propositional constants T,⊥, since their truth value is fixed in any interpretation
- every signature contains at least one constant.

Add the constant a.

Definition 5.1.4

Definition 5.1.4

 The Herbrand universe for Σ is the set of closed terms (*i.e.*, without variable) of this signature, denoted by D_Σ.

Definition 5.1.4

 The Herbrand universe for Σ is the set of closed terms (*i.e.*, without variable) of this signature, denoted by D_Σ.

Remark : this set is never empty, since $a \in D_{\Sigma}$.

Definition 5.1.4

1. The Herbrand universe for Σ is the set of closed terms (*i.e.*, without variable) of this signature, denoted by D_{Σ} .

Remark : this set is never empty, since $a \in D_{\Sigma}$.

2. The Herbrand base for Σ is the set of atomic formulae of this signature, denoted by B_{Σ} .

Definition 5.1.4

 The Herbrand universe for Σ is the set of closed terms (*i.e.*, without variable) of this signature, denoted by D_Σ.

Remark : this set is never empty, since $a \in D_{\Sigma}$.

2. The Herbrand base for Σ is the set of atomic formulae of this signature, denoted by B_{Σ} .

Definition 4.3.8 (Reminder)

- A term over Σ is : either a variable, or a constant *s* where $s^{f_0} \in \Sigma$, or a term of the form $s(t_1, \ldots, t_n)$ where $n \ge 1$, $s^{f_0} \in \Sigma$ and where t_1, \ldots, t_n are terms over Σ .
- An atomic formula over Σ is : either one of the constants \top, \bot , or a propositional variable s where $s'^0 \in \Sigma$, or is of the form $s(t_1, \ldots, t_n)$ where $n \ge 1$, $s'^n \in \Sigma$ and where t_1, \ldots, t_n are terms over Σ .

1. Let
$$\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}, D_{\Sigma} = \{a, b\}$$
 and $B_{\Sigma} = \{a, b\}$

1. Let
$$\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}, D_{\Sigma} = \{a, b\}$$
 and $B_{\Sigma} =$

 $\{P(a),P(b),Q(a),Q(b)\}.$

1. Let
$$\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}, D_{\Sigma} = \{a, b\}$$
 and $B_{\Sigma} = \{a, b\}$

 $\{P(a),P(b),Q(a),Q(b)\}.$

2. Let $\Sigma = \{a^{f0}, f^{f1}, P^{r1}\}, D_{\Sigma} = \{f^n(a) \mid n \in \mathbb{N}\}$ and $B_{\Sigma} =$

1. Let
$$\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}, D_{\Sigma} = \{a, b\}$$
 and $B_{\Sigma} = \{a, b\}$

 $\{P(a),P(b),Q(a),Q(b)\}.$

2. Let $\Sigma = \{a^{f0}, f^{f1}, P^{r1}\}, D_{\Sigma} = \{f^n(a) \mid n \in \mathbb{N}\}$ and $B_{\Sigma} = \{f^n(a) \mid n \in \mathbb{N}\}$

 $\{P(f^n(a)) \mid n \in \mathbb{N}\}$

Plan

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand's Theorem

Conclusion

Definition 5.1.6

Definition 5.1.6

Let Σ be a signature and $E \subseteq B_{\Sigma}$. The Herbrand interpretation $H_{\Sigma,E}$ consists of the domain D_{Σ} and of the following mapping :

1. Constants symbol *s* are mapped to themselves.

Definition 5.1.6

- 1. Constants symbol *s* are mapped to themselves.
- 2. If *s* is a function symbol with $n \ge 1$ arguments and if $t_1, \ldots, t_n \in D_{\Sigma}$ then $s_{H_{\Sigma,E}}^{fn}(t_1, \ldots, t_n) = s(t_1, \ldots, t_n).$

Definition 5.1.6

- 1. Constants symbol *s* are mapped to themselves.
- 2. If *s* is a function symbol with $n \ge 1$ arguments and if $t_1, \ldots, t_n \in D_{\Sigma}$ then $s_{H_{\Sigma,E}}^{f_n}(t_1, \ldots, t_n) = s(t_1, \ldots, t_n).$
- 3. If the symbol *s* is a propositional variable, it is mapped to 1 (true), if and only if $s \in E$.

Definition 5.1.6

- 1. Constants symbol *s* are mapped to themselves.
- 2. If *s* is a function symbol with $n \ge 1$ arguments and if $t_1, \ldots, t_n \in D_{\Sigma}$ then $s_{H_{\Sigma,E}}^{fn}(t_1, \ldots, t_n) = s(t_1, \ldots, t_n).$
- 3. If the symbol *s* is a propositional variable, it is mapped to 1 (true), if and only if $s \in E$.
- 4. If *s* is a relation symbol with $n \ge 1$ arguments and if $t_1, \ldots, t_n \in D_{\Sigma}$ then $s_{H_{\Sigma, E}}^{rn} = \{(t_1, \ldots, t_n) \mid t_1, \ldots, t_n \in D_{\Sigma} \land s(t_1, \ldots, t_n) \in E\}.$

Property of Herbrand Interpretation

property 1

5.1.7 Let Σ be a signature and $E \subseteq B_{\Sigma}$. In the Herbrand interpretation $H_{\Sigma,E}$:

1. The value of a term with no variable is set to itself

Property of Herbrand Interpretation

property 1

5.1.7 Let Σ be a signature and $E \subseteq B_{\Sigma}$. In the Herbrand interpretation $H_{\Sigma,E}$:

- 1. The value of a term with no variable is set to itself
- 2. The interpretation is model of an atomic closed formula if and only if it is member of *E*.

The proof is a direct consequence of the definition of the Herbrand interpretation.

Property of Herbrand Interpretation

property 1

5.1.7 Let Σ be a signature and $E \subseteq B_{\Sigma}$. In the Herbrand interpretation $H_{\Sigma,E}$:

- 1. The value of a term with no variable is set to itself
- 2. The interpretation is model of an atomic closed formula if and only if it is member of *E*.

The proof is a direct consequence of the definition of the Herbrand interpretation. Let

us note here, with an example, why we assumed that the formulae do not contain the relation symbols $\top, \bot, =$, whose value is fixed in all the interpretations.

Let us suppose on the contrary that \top is a member of the base and not a member of *E*. According to point 2, the interpretation $H_{\Sigma,E}$ will map \top to the truth value 0, while \top is expected to be true in all interpretations.

S. Devismes et al (Grenoble I)

Herbrand's Theorem

Let
$$\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}$$

The set $E = \{P(b), Q(a)\}$ defines the Herbrand interpretation *H* of domain $D_{\Sigma} = \{a, b\}$ where :

Let
$$\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}$$

The set $E = \{P(b), Q(a)\}$ defines the Herbrand interpretation *H* of domain $D_{\Sigma} = \{a, b\}$ where :

constants a and b are mapped to themselves and

•
$$P_H = \{b\}$$
 and $Q_H = \{a\}$.

Universal closure and Herbrand model

Theorem 5.1.16

Let Γ be a set of formulae with no quantifier over the signature Σ .

 $\forall(\Gamma)$ has a model if and only if $\forall(\Gamma)$ has a model which is a Herbrand interpretation of Σ .

Proof.

Cf. handout course notes

Example

Let $\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}$

The set $E = \{P(b), Q(a)\}$ defines the Herbrand interpretation *H* of domain $D_{\Sigma} = \{a, b\}$ where :

Example

Let $\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}$

The set $E = \{P(b), Q(a)\}$ defines the Herbrand interpretation *H* of domain $D_{\Sigma} = \{a, b\}$ where :

Constants a and b are mapped to themselves

•
$$P_H = \{b\}$$
 and $Q_H = \{a\}$.

Example

Let $\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}$

The set $E = \{P(b), Q(a)\}$ defines the Herbrand interpretation *H* of domain $D_{\Sigma} = \{a, b\}$ where :

Constants a and b are mapped to themselves

•
$$P_H = \{b\}$$
 and $Q_H = \{a\}$.

Let *I* be the interpretation of domain $\{0,1\}$ where :

▶
$$a_l = 0, b_l = 1,$$

•
$$P_l = \{1\}$$
 and $Q_l = \{0\}$.

I is a model of a set Γ of formulae with no quantifier over the signature Σ iff H is a Herbrand model of Γ

Plan

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand's Theorem

Conclusion

Herbrand's Theorem

Theorem 5.1.17

Let Γ be a set of formulae with no quantifiers, of signature Σ .

 $\forall(\Gamma)$ has a model *if and only if* every finite set of closed instances (over Σ) of formulae of Γ has a propositional model – a mapping from the Herbrand base B_{Σ} to $\{0,1\}$.

Proof ideas (1/2)

 \Rightarrow Suppose that $\forall(\Gamma)$ has a model *I*.

Instances of formulae of Γ are consequences of $\forall(\Gamma)$, hence they have *I* as model.

The model *I* can be seen as a propositional model *v* of domain B_{Σ} , the Herbrand base of the signature Σ , where for all $A \in B_{\Sigma}$, $v(A) = [A]_{I}$.

Hence v is a propositional model of every set of instances of the formulae of Γ .

Proof ideas (2/2)

- Suppose that every finite set of closed instances over the signature Σ of the formulae of Γ has a propositional model of domain B_Σ.
 - According to the compactness theorem (theorem 1.2.30), the set of all closed instances over the signature Σ has therefore a propositional model *v* of domain B_{Σ} .
 - This propositional model can be seen as Herbrand model of $\forall(\Gamma)$ associated to the set of elements of the Herbrand base for which *v* is a model. According to theorem 5.1.16, $\forall(\Gamma)$ has a model.

Other version of Herbrand's Theorem

Corollary 5.1.18

Let Γ be a set of formulae without quantifier over signature Σ .

 $\forall(\Gamma)$ is unsatisfiable if and only if there is a *finite* unsatisfiable set of closed instances of formulae taken from Γ

Proof.

Negate each side of the equivalence of the previous statement of Herbrand's theorem.

Let Γ be a finite set of formulae with no quantifier. Enumerate the set of closed instances of the formulae of Γ over the signature Σ and stop as soon as :

Let Γ be a finite set of formulae with no quantifier. Enumerate the set of closed instances of the formulae of Γ over the signature Σ and stop as soon as :

• (1) a set is unsatisfiable, hence $\forall(\Gamma)$ is unsatisfiable.

Let Γ be a finite set of formulae with no quantifier. Enumerate the set of closed instances of the formulae of Γ over the signature Σ and stop as soon as :

- (1) a set is unsatisfiable, hence $\forall(\Gamma)$ is unsatisfiable.
- (2) termination without contradiction (in this case, the Herbrand universe only contains constants) hence ∀(Γ) is satisfiable, we have a model.

Let Γ be a finite set of formulae with no quantifier. Enumerate the set of closed instances of the formulae of Γ over the signature Σ and stop as soon as :

- (1) a set is unsatisfiable, hence $\forall(\Gamma)$ is unsatisfiable.
- (2) termination without contradiction (in this case, the Herbrand universe only contains constants) hence ∀(Γ) is satisfiable, we have a model.
- ► (3) we are « tired », hence we cannot conclude.

Let $\Gamma = \{P(x), Q(x), \neg P(a) \lor \neg Q(b)\}$ and $\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}.$

Let $\Gamma = \{P(x), Q(x), \neg P(a) \lor \neg Q(b)\}$ and $\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}.$

 $D_{\Sigma} = \{a, b\}.$

Let $\Gamma = \{P(x), Q(x), \neg P(a) \lor \neg Q(b)\}$ and $\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}.$

 $D_{\Sigma} = \{a, b\}.$

The set $\{P(a), Q(b), \neg P(a) \lor \neg Q(b)\}$ of instances over the Herbrand universe is unsatisfiable, hence $\forall (\Gamma)$ is unsatisfiable.

Let $\Gamma = \{ P(x) \lor Q(x), \neg P(a), \neg Q(b) \}$ and $\Sigma = \{ a^{f0}, b^{f0}, P^{r1}, Q^{r1} \}.$

Let $\Gamma = \{P(x) \lor Q(x), \neg P(a), \neg Q(b)\}$ and $\Sigma = \{a^{f0}, b^{f0}, P^{r1}, Q^{r1}\}.$

The set of all the instances over the Herbrand universe $\{P(a) \lor Q(a), P(b) \lor Q(b), \neg P(a), \neg Q(b)\}$ has a propositional model caracterised by $E = \{P(b), Q(a)\}.$

Hence the Herbrand interpretation associated to *E* is a model of $\forall (\Gamma)$.

Let $\Gamma = \{P(x), \neg P(f(x))\}$ and $\Sigma = \{a^{f0}, f^{f1}, P^{r1}\}.$

Let
$$\Gamma = \{P(x), \neg P(f(x))\}$$
 and $\Sigma = \{a^{f0}, f^{f1}, P^{r1}\}.$

 $D_{\Sigma} = \{ f^n(a) | n \in \mathbb{N} \}.$

Let
$$\Gamma = \{P(x), \neg P(f(x))\}$$
 and $\Sigma = \{a^{f0}, f^{f1}, P^{r1}\}.$

 $D_{\Sigma} = \{ f^n(a) | n \in \mathbb{N} \}.$

The set $\{P(f(a)), \neg P(f(a))\}$ of instances over the Herbrand universe is unsatisfiable, hence $\forall(\Gamma)$ is unsatisfiable.

Let $\Gamma = \{P(x) \lor \neg P(f(x)), \neg P(a), P(f(f(a)))\}$ and $\Sigma = \{a^{f0}, f^{f1}, P^{r1}\}.$

Let $\Gamma = \{P(x) \lor \neg P(f(x)), \neg P(a), P(f(f(a)))\}$ and $\Sigma = \{a^{f0}, f^{f1}, P^{r1}\}$. The set $\{P(a) \lor \neg P(f(a)), P(f(a)) \lor \neg P(f(f(a))), \neg P(a), P(f(f(a)))\}$ of instances over the Herbrand universe is unsatisfiable, hence $\forall(\Gamma)$ is unsatisfiable.

Let $\Gamma = \{P(x) \lor \neg P(f(x)), \neg P(a), P(f(f(a)))\}$ and $\Sigma = \{a^{f0}, f^{f1}, P^{r1}\}$. The set $\{P(a) \lor \neg P(f(a)), P(f(a)) \lor \neg P(f(f(a))), \neg P(a), P(f(f(a)))\}$ of instances over the Herbrand universe is unsatisfiable, hence $\forall(\Gamma)$ is unsatisfiable.

Remark : note that we had to consider 2 instances of the first formula of Γ to obtain a contradiction.

Let $\Gamma = \{R(x, s(x)), R(x, y) \land R(y, z) \Rightarrow R(x, z), \neg R(x, x)\}$ and $\Sigma = \{a^{f_0}, s^{f_1}, R^{r_2}\}.$

Let $\Gamma = \{R(x, s(x)), R(x, y) \land R(y, z) \Rightarrow R(x, z), \neg R(x, x)\}$ and $\Sigma = \{a^{f_0}, s^{f_1}, R^{r_2}\}.$

 $D_{\Sigma} = \{ s^n(a) \mid n \in \mathbb{N} \}$. This is an infinite domain.

Let $\Gamma = \{R(x, s(x)), R(x, y) \land R(y, z) \Rightarrow R(x, z), \neg R(x, x)\}$ and $\Sigma = \{a^{f0}, s^{f1}, R^{f2}\}.$

 $D_{\Sigma} = \{s^n(a) \mid n \in \mathbb{N}\}.$ This is an infinite domain.

 $\forall (\Gamma)$ has an infinite model : the interpretation *I* of domain \mathbb{N} with $\forall n \in \mathbb{N}$, $s_l(n) = n+1$ and $R_l = \{(n,p) \mid n < p\}$, in short R(x,y) = x < y.

Let $\Gamma = \{R(x, s(x)), R(x, y) \land R(y, z) \Rightarrow R(x, z), \neg R(x, x)\}$ and $\Sigma = \{a^{f0}, s^{f1}, R^{f2}\}.$

 $D_{\Sigma} = \{s^n(a) \mid n \in \mathbb{N}\}.$ This is an infinite domain.

 $\forall (\Gamma)$ has an infinite model : the interpretation *I* of domain \mathbb{N} with $\forall n \in \mathbb{N}$, $s_l(n) = n+1$ and $R_l = \{(n,p) \mid n < p\}$, in short R(x,y) = x < y.

 $\forall(\Gamma)$ has no finite model, i.e., it is useless to look for finite models.

Let $\Gamma = \{R(x, s(x)), R(x, y) \land R(y, z) \Rightarrow R(x, z), \neg R(x, x)\}$ and $\Sigma = \{a^{f0}, s^{f1}, R^{f2}\}.$

 $D_{\Sigma} = \{s^n(a) \mid n \in \mathbb{N}\}.$ This is an infinite domain.

 $\forall (\Gamma)$ has an infinite model : the interpretation *I* of domain \mathbb{N} with $\forall n \in \mathbb{N}$, $s_l(n) = n+1$ and $R_l = \{(n,p) \mid n < p\}$, in short R(x,y) = x < y.

 $\forall(\Gamma)$ has no finite model, i.e., it is useless to look for finite models.

Since $\forall(\Gamma)$ has a model, we are in a situation where the previously presented procedure will never be able to answer.

Plan

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand's Theorem

Conclusion

Herbrand's Theorem Conclusion

Today

- Herbrand base, model, interpretation and theorem
- Semidecidable algorithm
- Application

Herbrand's Theorem Conclusion

Next

