UNIVERSITE JOSEPH FOURIER SCEINCIS. TUZI INILOCEL MIZZOLINI.

INF122 2008-2009 - TD série 9

Exercice 1

Donner les propriétés de relations suivantes parmi les 6 possibles (réflexive, irréflexive, symétrique, anti-symétrique, asymétrique, transitive) :

1. la relation d'égalité sur les entiers,

Corrigé

réflexive, symétrique, transitive

2. la relation de perpendicularité sur l'ensemble des droites du plan,

Corrigé

irrréflexive,

3. la relation de parallélisme sur l'ensemble des droites,

Corrigé

réflexive, symétrique, transitive

4. la relation "est le carré de" sur les entiers.

Corrigé

anti-symétrique

En déduire lesquelles sont des ordres et lesquelles sont des relations d'équivalence.

Corrigé

La première.

Exercice 2

Explicitez toutes les relations d'équivalence et toutes les relations d'ordre sur $\{a,b,c\}$. Donnez l'ensemble quotient des relations d'équivalences.

Exercice 3

```
Soient les relations définies comme suit :
```

```
 \begin{array}{l} -R_1 = \{((x_1,x_2),(y_1,y_2)) \in \mathbb{N}^{*2} \times \mathbb{N}^{*2} \mid x_1y_2 = x_2y_1\} \\ -R_2 = \{((x_1,x_2),(y_1,y_2)) \in \mathbb{N}^{*2} \times \mathbb{N}^{*2} \mid x_1y_2 < x_2y_1\} \\ -R_3 = \{((x_1,x_2),(y_1,y_2)) \in \mathbb{N}^{*2} \times \mathbb{N}^{*2} \mid x_1y_2 \geq x_2y_1\} \\ \text{Lesquelles sont des ordres? des relations d'équivalence?} \\ \text{Rappel}: \mathbb{N}^* \stackrel{\text{def}}{=} \mathbb{N} \setminus \{0\} \end{array}
```

Corrigé

Equivalence : R_1 . Ordre : R_2 et R_3

Exercice 4

Démontrer qu'une relation totale (définie partout), symétrique et transitive est réflexive.

Corrigé

(Indications). Soit A un ensemble et R une relation symétrique, transitive et totale. Soit a un élément quelconque de A. Comme R est totale il existe un élément b de A tel que $(a,b) \in R$. Comme R est symétrique, on a alors $(b,a) \in R$, puis par transitivité $(a,a) \in R$. On en déduit $\forall x \ x \in A \Rightarrow (x,x) \in R$, cqfd.

L'arbre de preuve est de taille raisonnable : moins de 10 étages, et encore plus raisonnable si on prend des règles raccourcies pour la réflexivité, la symétrie et la transitivité (non présentées dans la version actuelle du cours).

Exercice 5

- 1. Démontrez que l'inverse d'une relation d'ordre est aussi une relation d'ordre.
- 2. Démontrez que l'inverse d'une relation d'équivalence est aussi une relation d'équivalence.

Corrigé

On démontre que l'inverse d'une relation réflexive (respectivement symétrique, anti-symétrique, transitive) est elle-même réflexive (respectivement symétrique, anti-symétrique, transitive).

Réflexivité : on utilise $(x,x) \in R^{-1} \stackrel{\mathrm{def}}{=\!\!\!=} (x,x) \in R$)

Symétrie : soit (x, y) un couple arbitraire de R^{-1} ; par définition de R^{-1} , on a $(y, x) \in R$; par symétrie de R, on en déduit $(x, y) \in R$, c-à-d. $(y, x) \in R^{-1}$, cqfd.

Transitivité et anti-symétrie : même démarche.

Exercice 6

Démontrez les assertions suivantes :

- 1. La composition des relations est associative.
- 2. Elle est monotone.
- 3. \cup -distributive : $(R_1 \cup R_2) \circ R = (R_1 \circ R) \cup (R_2 \circ R)$
- 4. $(R_1 \cap R_2) \circ R \subseteq (R_1 \circ R) \cap (R_2 \circ R)$

Corrigé

Associativité de \circ : il faut démontrer qu'étant donné trois relations R, S, T arbitraires, $(R \circ S) \circ T = R \circ (S \circ T)$. Comme $(R \circ S) \circ T$ et $R \circ (S \circ T)$ sont des **ensembles** (de couples), on utilise l'extensionalité. Autrement dit on démontre $\forall (x,y), (x,y) \in (R \circ S) \circ T \iff (x,y) \in R \circ (S \circ T)$. Dans ce corrigé on démontre juste $\forall (x,y), (x,y) \in (R \circ S) \circ T \Rightarrow (x,y) \in R \circ (S \circ T)$, la réciproque étant similaire. Soient donc x et y arbitraires tels que $(x,y) \in (R \circ S) \circ T$. Par définition de \circ , on a $\exists b, (x,b) \in R \circ S \wedge (b,y) \in T$. Soit donc b_0 arbitraire vérifiant $(x,b_0) \in R \circ S$

$$et (b_0, y) \in T. (2)$$

Par définition de \circ dans (1), on a $\exists a, (x, a) \in R \land (a, b) \in S$. Soit donc a_0 arbitraire vérifiant

$$(x, a_0) \in R \tag{3}$$

$$et (a_0, b_0) \in S. \tag{4}$$

De (4) et (2) et de la définition de
$$\circ$$
, on déduit $(a_0, y) \in S \circ T$. (5)

De (3) et (5) et de la définition de \circ , on déduit $(x,y) \in R \circ (S \circ T)$, cqfd.

Il esrt conseillé de fabriquer l'arbre de preuve : bon exercice sur \exists_E