
Introduction to trees and proofs

Jean-François Monin

2014-06-04

Outline

Formal methods and Coq

Trees

Decomposing, case analysis

Functions and implication

Outline

Formal methods and Coq

Trees

Decomposing, case analysis

Functions and implication

Formal Methods

Prove that some piece of software behaves accordingly to a given
specification

Boils down to theorem proving: programs and specifications are
represented by logical formulas

Hand waving not allowed

Several complementary approaches and tools



In summary

I Describe a model

I Explain it

I Reason about it

I Be clean and precise

Use math and logic

Some industrial uses

Spacecrafts, airplanes (Airbus, Boeing)

Microsoft
Intel
French railways
Telecom operators
Nuclear power plants
Banks
Cryptography

Coq

A language

I Logic formulas

I Proofs

I Programs

A software proof assistant

Very secure by architectural design

Outline

Formal methods and Coq

Trees

Decomposing, case analysis

Functions and implication



Formal models, proofs and programs

Based on a common structure: trees

I Can be implemented in many ways by software
(pointers, arrays, . . .)

I This talk: use an intuitive and graphical presentation of trees

Developed by the same activity

which can be

I explicit: using an appropriate syntax for trees

I interactive: using commands for building trees step by step

Make a strong use of types

I Everything has a type, even types have a type

I Computations can be carried out on types as well

Basic building blocks for trees: rules

input1 input2 . . . inputn
howto

output

input1, input2 . . . , inputn and output are types

howto explains how to make an output,
given input1, input2 . . . , inputn

Proofs

Same constructs with another reading

Basic building blocks for proof trees: rules

input1 input2 . . . inputn
howto

output

input1, input2 . . . , inputn and output are propositions

input1, input2 . . . , inputn are hypotheses
output is the conclusion

howto justifies how to make a proof of output,
given proofs of input1, input2 . . . , inputn



Combining rules

Basic building blocks can be combined

Just plug outputs to identical inputs

Some rules:

I 1 input comes from exactly 1 output

I an output can be plugged (used) 1, several or 0 times

Alltogether

We get 1 output
from many inputs
using a complex (composed) howto

General shape: trees

4

1 2 3

Interpretation

I At positions 1, 2, 3, 4: types

I 1, 2, 3: inputs

I 4: output (or result)

Makes the output from the inputs

Plugging trees

3

1

8

1 3

118

12
12

=

4

6

11

6 4

Subtrees can have local additional inputs



Simple examples with 0 input

monday
day

tuesday
day

wednesday
day

thursday
day

friday
day

saturday
day

sunday
day

white
color

black
color

The horizontal bar means: MAKES

Intermezzo: definitions

Definition Mo := monday. Definition Th := thursday.

Definition Tu := tuesday. Definition Fr := friday.

Definition We := wednesday. Definition Sa := saturday.

Definition Su := sunday.

Mo
day

Tu
day

We
day

Th
day

Fr
day

Sa
day

Su
day

These trees are considered the same as the previous ones
(top of previous slide)

Simple example with 4 identical inputs

Making a 4-tuple of days

day day day day
Mk4day

tuple4

Mk4day makes a tuple4 from

I a day

I a day

I a day

I a day

Plugging day into Mk4day

Building blocks

Mo
day

We
day

Fr
day

We
day

day day day day
Mk4day

tuple4

Connecting them yields the concrete 4-tuple of day

Mo
day

We
day

Fr
day

We
day

Mk4day
tuple4



Another view on Mk4day

As a rule

day day day day
Mk4day

tuple4

As a tree

x1︷︸︸︷
day

x2︷︸︸︷
day

x3︷︸︸︷
day

x4︷︸︸︷
day

Mk4day
tuple4

This is called an open tree

Closed and open trees

The meaning (or value) of

Mo
day

We
day

Mo
day

Th
day

Mk4day
tuple4

is completely defined: this is called a closed tree.

In contrast, the meaning of the open tree

Mo
day

x2︷︸︸︷
day

We
day

x4︷︸︸︷
day

Mk4day
tuple4

depends on x2 and x4.

Environment

The meaning of the open tree

Mo
day

x2︷︸︸︷
day

We
day

x4︷︸︸︷
day

Mk4day
tuple4

depends on x2 and x4. It has a meaning for all trees plugged into
x2 and x4.

The variables x2 : day and x4 : day make up the environment of
this tree

More 4-tuples

x1︷︸︸︷
day

x2︷︸︸︷
day

x3︷︸︸︷
day

x4︷︸︸︷
day

Mk4day
tuple4

x1︷ ︸︸ ︷
color

x2︷ ︸︸ ︷
color

x3︷ ︸︸ ︷
color

x4︷ ︸︸ ︷
color

Mk4co
tuple4

x1︷ ︸︸ ︷
tuple4

x2︷ ︸︸ ︷
tuple4

x3︷ ︸︸ ︷
tuple4

x4︷ ︸︸ ︷
tuple4

Mk4t4
tuple4



Lists of days

nil
daylist

d︷︸︸︷
day

u︷ ︸︸ ︷
daylist

cons
daylist

Examples with proofs

Consider basic propositions, e.g.:

Proposition Intended meaning
H hot – the temperature is greater than 35 C

W the glass contains water

C the blackboard is clean

HaW the temperature is greater than 35 C and the glass
contains water

HoW the temperature is greater than 35 C or the glass
contains water

Given a proof h of H and a proof w of W ,
what is a proof of HaW ?
what is a proof of HoW ?

Examples with proofs

h︷︸︸︷
H

w︷︸︸︷
W

conj HW

HaW

h︷︸︸︷
H

case1 HoW

HoW

w︷︸︸︷
W

case2 HoW

HoW

To go farther: making propositions

Given 2 propositions P and Q, make a new proposition whose
intended meaning is:
P and Q hold together.

This proposition is noted P ∧ Q,
Note that it is itself a tree (at the level of propositions, not at the
level of proofs)

P︷ ︸︸ ︷
Prop

Q︷ ︸︸ ︷
Prop

and
Prop

Similarly, P ∨ Q represents the tree:

P︷ ︸︸ ︷
Prop

Q︷ ︸︸ ︷
Prop

or
Prop



General conjunctions and disjunctions

p︷︸︸︷
P

q︷︸︸︷
Q

conj
P ∧ Q

p︷︸︸︷
P

or left

P ∨ Q

q︷︸︸︷
Q

or right

P ∨ Q

Outline

Formal methods and Coq

Trees

Decomposing, case analysis

Functions and implication

Decomposing, case analysis

I Given a 4-tuple t, extract its components

I Given a day d , provide a color depending on d

I Given a color c , provide a day depending on c

I Given a proof of A ∧ B, provide a proof of A

I Given a proof of A ∨ B, provide a proof of B ∨ A
A proof of B ∨ A is needed in each case

Case analysis

Question
Give a day for each possible value c in color

white
color

black
color

Example

white maps to thursday, black maps to monday

····
c

color
thursday

day
monday

day
destruct

day

Warning: the order of branches matters



Does it make sense? Subtle point!

Statement of the previous question

Give a day for each possible value in color

Here assume that all trees with color as output are (in this order)

either white
color

or black
color

The real story is more subtle

I Claim of exhaustivity: related to inductive types

I However, there are (infinitely) many trees which make a color

I However, they eventually reduce to one of the declared cases:
related to computations and so-called strong normalization

Building block of a case analysis

In this presentation, the order of contructors matters:
white, black
The destruct construct is driven by 2 parameters

I the type of the value to be analyzed
each enumerated type (e.g., color) comes automatically with
its destruct construct, which should actually be written, e.g.
destructcolor

I the type of the result (e.g., day)

A︷︸︸︷
Set

c︷ ︸︸ ︷
color

x2︷︸︸︷
A

x3︷︸︸︷
A

destruct
A

Correct version of the previous example

day
Set

c︷ ︸︸ ︷
color

thursday
day

monday
day

destruct
day

Decomposing

Original question

Given a proof tree p of A ∧ B, provide a proof of A
We know that the only possible shape of p is

····
a

A

····
b

B
conj

A ∧ B

where
····
a

A

is an arbitrarily large proof tree concluding to A

and similarly for
····
b

B

So the answer is a, but how to get it?



Decomposing

More general question

Given a proof tree p of A ∧ B,
prove some proposition C using the two components building p.

Rule

C
Prop

····
p

A ∧ B

a︷︸︸︷
A

b︷︸︸︷
B····

f

C
destruct[a b]

C

Reading

Let us prove C assuming a, a proof of A and b, a proof of B; as we
have a proof of A ∧ B, we get a proof of C.

Warning

C
Prop

····
p

A ∧ B

a︷︸︸︷
A

b︷︸︸︷
B····

f

C
destruct[a b]

C

The subtree

a︷︸︸︷
A

b︷︸︸︷
B····

f

C

contains additional local inputs a and b

a and b are not available outside f

Example: a proof of B ∧ A from A ∧ B

B ∧ A
Prop

ab︷ ︸︸ ︷
A ∧ B

b︷︸︸︷
B

a︷︸︸︷
A

conj
B ∧ A

destruct[a b]
B ∧ A

Shape of this proof tree

ab︷ ︸︸ ︷
A ∧ B····
B ∧ A

Case analysis and decomposition

For a disjunction A ∨ B, we have 2 cases, and each one has 1 input

C
Prop

····
p

A ∨ B

a︷︸︸︷
A····
f

C

b︷︸︸︷
B····
g

C
destruct[a | b]

C

The hypothesis a is available only inside f

The hypothesis b is available only inside g



Exercises

I a proof of B ∨ A from A ∨ B

I a proof of A from A ∧ B
I a proof of B ∧ B from A ∧ B
I draw the case analysis and decomposition rules for 4-tuples

Outline

Formal methods and Coq

Trees

Decomposing, case analysis

Functions and implication

Implication

What is a function from day to color?

I open a new scope where d represents an arbitrary tree with
day as output

I make a tree with output color from d

I in this subtree, d is available; but not outside

What is a proof that P implies Q?

I open a new scope with p an arbitrary proof of P (an arbitrary
proof tree with P as the conclusion)

I make a proof tree with conclusion Q from p

I in this subtree, p is available; but not outside

It is just a function from P to Q

Again: some subtrees have additional inputs

Introduction rules for implications/functions

a︷︸︸︷
A····
u

B
intro a

A→ B

Warning: this a is available only in u



Example

B ∧ A
Prop

ab︷ ︸︸ ︷
A ∧ B

b︷︸︸︷
B

a︷︸︸︷
A

conj
B ∧ A

destruct[a b]
B ∧ A

intro ab
A ∧ B→ B ∧ A

Applying a function / modus ponens

····
f

A → B

····
t

A
apply

B


	Formal methods and Coq
	Trees
	Decomposing, case analysis
	Functions and implication

