5th Asian-Pacific Summer Sc oorn\ Formal Methods‘:

August 5-10, 2013, Tsinghua University, Beijing, China

Functions

jean-jacques.levy@inria.fr
2013-8-6

http://sts.thss.tsinghua.edu.cn/Cogschool2013

E_ ? % @ Notes adapted from

E Assia Mahboubi
b (coq school 2010, Paris) and

E Benjamin Pierce (software
[=I: foundations course, UPenn)

Plan

* notation for functions in Coq

* A-notation

* A-calculus

* enumerated types

* pattern-matching on constructors

unctions in Coqg

NTRE DE RECHERCHE
COMMUN
INRIA
MICROSOFT RESEARCH

definitions (1/3)

three equivalent definitions:

Definition plusOne (x: nat) : nat := x + 1.
Check plusOne.

Definition plusOne := fun (x: nat) => x + 1.
Check plusOne.

Definition plusOne := fun x => x + 1.
Check plusOne.

Compute (fun x:nat => x + 1) 3.

higher-order definitions:

Definition plusTwo (x: nat) : nat := x + 2.
Definition twice := fun f => fun (x:nat) => f (f x).

Compute twice plusTwo 3.

lambda-terms (2/3) Recap

¢ Coq commands / keywords:

» Coq tries to guess the type, but could fail.
(type inference)

— Definition for functions definitions
. . - — Check to show types
¢ but always possible to give explicit types.
ysp ¢ P Yp — Compute to show values

¢ Types can be higher-order
(see later with polymorphic functions)

¢ Types can also depend on values
(see later the constructor cases)

lambda-terms (3/3) constructive logic

e Coq treats with an extention of the A-calculus with
inductive data types. It's a small programming language.

* the typed A-calculus is used as a trick to make a
correspondence between proofs and A-terms and propositions
and types for constructive logics (see other lectures).
(Curry-Howard correspondence)

constructive logic

¢ An example of a non constructive proof:

Theorem
There exists 2 irrational numbers a and b
such that a® is rational.

Proof
We know that /2 is not rational. Take a = b = /2.

- aP is rational. OK!

- aP is irrational. Then let ¢ = a®.

Then ¢® = (a®)? = a?*b = a2 = 2. Done!

QED

constructive logic

* An example of a non constructive proof:

Theorem
There exists 2 irrational numbers a and b
such that a® is rational.

Proof
We know that v/2 is not rational. Take a = b = /2.

- aP is rational. OK!

b b

- a” is irrational. Then let ¢ = a°.
Then c? = (a%)P = ab*P = 22 = 2. Done!

QED

* Coq is constructive logic

Propositions always exist with their (witness) proofs.

h: P in environment means h is witness proof of P.
V —

L

L

constructive logic

&

» Coq is constructive logic

Propositions always exist with their (witness) proofs.
h: P in environment means h is witness proof of P.
L —

-notation

NTRE DE RECHERCHE
COMMUN
INRIA
MICROSOFT RESEARCH

Functional calculus (1/4)

(Ax.x+1)3—>34+1—4
(M.2%xx+2)d —>2x4+2 —>8+2 —> 10
(AF.F3)(Ax.x+2) = (Ax.x+2)3—>3+2—>5
(A Ay x+y)32=

((AxAyx+y)3)2 = (Ay3+y)2 —>3+2—>5

(M2 (F x))(Ax.x+2) — ..

Functional calculus (2/4)

(AF A F(Fx)(Ax. x +2) — ...

Functional calculus (2/4)

(AP XA(F X)) (A x +2) — ..

(\x.f(fx))(\x.x + 2)
X. (\X.X + 2)(\X.X + 2)x)
X.(\X.X +2)x + 2 \X.(\X.X + 2)(x+2)

N/

X.(x+2)+2

Functional calculus (3/4)

(A F(F X)) (Axx+2)3 —> .. (AiMdi)axx + 23
(AX.(AX.X + 2)(Ax.X + 2)x))3
(AX.(AX.X + 2)x + 2)3 (AX.X + 2)(AX.X + 2)3) (AX.(AX.X + 2)(x+2))3
\ <
AX.X +2)3+2 M.(x+2)+2)3 (AxX.X + 2)(3+2)
I
(3+2)+2 (M.x +2)5

Ve
%

(M2 F(F x))(Ay.-Ax.x +y)2)3 — ...

(LAXHBOAY-Ax.X + y)2)3

EAXA) X + 2)3 (X ALAXX £ Y2(A.AXX 4 Y)2K))3

(AX.Ay.Ax.X + Y)2((Ax.X + 2)x))3

“//,,///,,/” l ",,—::::>*<:;:”’i;:://// \\\\\\\ pr -
(AX.(Ay.Ax.X + y)2(x+2))3 Ay.Ax.x + y)2(Ax.x + 2)3) (Ax.(Ax.x + 2)((Ax.x + 2)x))3 (Ax.x + 2)((Ay.Ax.x + y)23) (AX.(Ay.Ax.X + y)2x + 2)3 : o A C a I C u | u S

Ay.AX.X + ¥)2((Ay.Ax.x + y)23) (AX.(AX.X + 2)(Ay.Ax.X + y)2x))3

(Ay.AXX +Y)2(3+2) (XXX + 2)(x+2))3 (x + 2)((x +2)3) (XXX + 2)x + 2)3 (Ay.AXX +Y)23+ 2
\ > <
(Ay.Axx +)25 (Ax.x +2)(3+2) Mx(x+2)+2)3 (xx+2)3+2
N
(xx +2)5 (3+2)+2
/
5+2

NTRE DE RECHERCHE
COMMUN
INRIA
MICROSOFT RESEARCH

Functional calculus (4/4) Thought of Tuesday 2013-8-6

e computer science = programs = texts in ASCII
e computing with functions may be long and complex #define _ -F<00 || --F-00--;

int F=00,00=00;
main(){F_000) ;printf("%1.3f\n", 4.%-F/00/00);}F_000)
{

* mathematics
= greek letters
+ symbols

e but yield a unique result
(Church-Rosser property)

AnoprafyosA-

+/CNkE
4
> be

A

aX
4 x¢

Pure lambda-calculus

¢ lambda-terms

M N P = X, Y Z, ... (variables)
| Ax.M (M as function of x)
| M(N) (M applied to N)

e Computations “reductions”
(Ax.M)(N) — M{x := N}
> ¢
” A

A

Examples of reductions (1/2)

e Examples
(Axx)N — N
(Af.f N)(Ax.x) = (Axx)N — N

(Ox.x NYAy.y) = (Ay.y)N — N (name of bound variable is meaningless)
(Ax. xx)(Ax.xN) = (Ax.xN)(Ax.xN) —> (Ax.xN)N —> NN
(Ax.x)(Ax.x) —> Ax.x
Let / = Ax.x, we have /(x) = x for all x. *

_ ¥
Therefore (/) = /. [Church 41] > £

EhS

Examples of reductions (2/2)

e Examples
(Ax. x x)(Ax.xN) = (Ax.xN)(Ax.xN) —> (Ax.xN)N —> NN

(Ax. xx)(Ax. x x) = (Ax. xx)(Ax. xx) =—> - -+

* Possible to loop inside applications of functions ...

Yr = (Ax.f(xx))(Ax.f(xx)) = F((Ax.f(xx))(Ax.f(xx))) = F(Y¥)

F(YR) = FF(YR)) = - = (¥r) = -

e Every computable function can be computed by a A-term
=== Church’s thesis. [Church 41]

Fathers of computability

Stephen Kleene

CENTRE DE RECHERCHE
COMMUN
INRIA
MICROSOFT RESEARCH

The Giants of computability Typed lambda-calculus (1/5)

¢ In Coq, all A-terms are typed

Hilbert Godel Church Turing

¢ In Coq, following A-terms are typable
Kleene

(Mx.x+1)3—>3+1—4
(AX.2%x+2)4 —> 2x4+2 — 8+2 —> 10
(M.F3)(Ax.x+2) = (Ax.x+2)3 —>3+2—>5
(A Ay x+y)32=
((AxAyx+y)3)2 = (Ay3+y)2 —> (\y3+y)2—>3+2—5

b

Post Curry

von Neumann

(M 2xF(F x))(Axx +2) —>

these terms are allowed

¥

Typed lambda-calculus (2/5)

¢ In Coq, all A-terms have only finite reductions
(strong normalization property)

¢ In Coq, all A-terms have a (unique) normal form.

\/ . ed)\._CaIC u I u S ¢ In Coq, the following A-terms are not typable

(Ax. x x)(Ax. x x) 2+ (Ax.x+1) 2(3)

(AFact .Fact(3))
((AY.Y(Af.Ax. ifz x then 1 else x x f(x — 1)))

(M. F () (Ox.F(3xx)))) |:<

>
these terms are not allowed 4'

CENTRE DE RECHERCHE
COMMUN
INRIA
MICROSOFT RESEARCH

Typed lambda-calculus (2/5) Typed lambda-calculus (4/5)

e In Coq, all A-terms have only finite reductions

(strong normalization property) Example x :nat I~ x : nat

¢ In Coq, all A-terms have a (unique) normal form. X :nat F x : nat F1:nat
X :nat - x+1:nat

x:nat x4+ 1:nat
F (Ax.x + 1) : nat — nat

F (Ax.x + 1) : nat — nat F 3 :nat
F (Ax.x+1)3 : nat

|' Exercise Write it as a proof tree [aka Monin’s lectures]. k
< <

¥

¥

Typed lambda-calculus (3/5) Typed lambda-calculus (5/5)

* The Coq laws for typing terms are quite complex Example with currying and function as result
[Coquand-Huet 1985] X :nat - x : nat y inat - y :nat
X :nat,y :nat bk x:nat X :nat,y :natt y:nat

* They are almost the following (1st-order) rules:
X :nat,y :nat F x : nat X :nat,y :nat F y :nat
Basic types: A (nat), B (bool), Z (int), ... X :nat,y :nat k- x + y : nat
If M has type 8 when x has type «, then (Ax.M) has type o — 3 X :nat,y :nat - x +y : nat
If M has type o — f3 and if N has type a, then M(N) has type 3 x :nat - (Ay.x +y) : nat — nat >, |:<
x :nat - (Ay.x + y) : nat — nat 4
Example 1:nat F (Ax.\y.x + y) : nat — nat — nat
x:nat implies x+1:nat F (Ax.A\y.x + y) : nat — nat — nat F2:nat
(Ax.x+1) :nat — nat k F ((Ax.A\y.x + y)2) : nat — nat
3 :mat ﬁ < F ((Ax.Ay.x + y)2) : nat — nat -3 :nat

(Ax.x+1)3 : nat F((Ax.Ay.x +y)23) :nat

Enumeratives types (2/5)

Enumerated types are types which list and name exhaustively their
inhabitants.

m erated types A new enumerated type:

Inductive day : Type :=
| monday | tuesday | wednesday |
| thursday | friday | saturday | sunday : day.

ENTRE DE RECHERCHE
COMMUN
INRIA
MICROSOFT RESEARCH

Enumeratives types (1/5) Enumeratives types (2/5)

. . . . Enumerated types are types which list and name exhaustively their
Enumerated types are types which list and name exhaustively their P yp y

. . inhabitants.
inhabitants.
A new enumerated type:
Inductive bool : Set := true : bool | false : bool.
Inductive day : Type :=
| monday | tuesday | wednesday |
_Set is deprecated. Now use Type. | thursday | friday | saturday | sunday : day.
Check tuesday.
Inductive color : Type := black : color | white : color.

tuesday : day

Labels refer to distinct elements.

Enumeratives types (3/5)

Inspect the enumerated type inhabitants and assign values:

Definition negb (b : bool) :=
match b with true => false | false => true end.

Enumeratives types (3/5)

Inspect the enumerated type inhabitants and assign values:

Definition negb (b : bool) :=
match b with true => false | false => true end.

Definition next_weekday (d:day) : day :=
match d with
| monday => tuesday | tuesday => wednesday
| wednesday => thursday | thursday => friday
| friday | saturday | sunday => monday end.

Enumeratives types (3/5)

Inspect the enumerated type inhabitants and assign values:

Definition negb (b : bool) :=
match b with true => false | false => true end.

Definition next_weekday (d:day) : day :=
match d with
| monday => tuesday | tuesday => wednesday
| wednesday => thursday | thursday => friday
| friday | saturday | sunday => monday end.

Eval compute in (next_weekday friday).
= monday
: day

Recap
e Coq commands / keywords:

— Definition for functions definitions
— Check to show types
— Compute to show values
— Eval compute in to show values
— Inductive to define a new data type
— Type set of all types

— match ... with for case analysis on constructors

Enumeratives types (4/5) Recap

¢ Coq commands / keywords:

Definition andb (bl:bool) (b2:bool) : bool := — Definition for functions definitions
match bl with true => b2 | false => false end. — Check to show types
Definition orb (bl:bool) (b2:bool) : bool := — Compute i to SEOW va:ues
match bl with true => true | false => b2 end. - Eval compute in fos O.W values
— Inductive to define a new data type
— match ... with for case analysis on constructors
- Type set of all types
— simpl to compute normal form
— reflexivity to conclude with trivial equality
Enumeratives types (4/5) Enumeratives types (5/5)
Definition andb (bl:bool) (b2:bool) : bool := Exercise Give definitions of predicates work_day and
match bl with true => b2 | false => false end. weekend_day.

Definition orb (bl:bool) (b2:bool) : bool :=) . L)
match bl with true => true | false => b2 end. Exercise Give definitions of function black if workday and

white for weekends.
Example test_orbl: (orb true false) = true.
orb true false = true

Proof.
simpl.

true = true
reflexivity.
Qed.

test_orbl is defined

