
http://sts.thss.tsinghua.edu.cn/Coqschool2013

5th Asian-Pacific Summer School on Formal Methods
August 5-10, 2013, Tsinghua University, Beijing, China

Inductive predicates

Jean-François Monin

2013-08-08

Predicates, relations

Given a type T , how to select elements of T satisfying some
property ?

General type to be considered: T → Prop

Sometimes, the answer can be computed
Then we can also use: T → bool
Note that T → color works as well

More generally: inductive relations

Given types T1, T2, . . .Tn, how to simultaneously select elements
of T1, T2, . . .Tn, satisfying some property ?

General type to be considered: T1 → T2 → . . .Tn → Prop

To some extent, we can also use:
T1 → T2 → . . .Tn → bool

Predicates

Given a type T , how to select elements of T satisfying some
property p ?

Let us consider a predicate

p : T → Prop

Let u be an inhabitant of T .

We say that u is selected when

I we can prove p u

I there is a proof tree in p u

I p u is inhabited

Otherwise u is not selected

What does it mean, not to be selected ?

We say that u is selected when

I there is no proof tree in p u

I p u is not inhabited

So, what we need here is a special type (a proposition) which is
empty

How to make it?

Take any inductive type with zero constructor

Inductive False : Prop :=

.

This makes sense because of strong normalization



Strong normalization

Let T be an inductive type

Let u an inhabitant of T

Then

I u can be reduced by computation to a unique normal form u0
I (in the empty environment),

the normal form u0 starts with a constructor of T

Therefore, there is no inhabitant at all in False

Using a data type (bool, color,...)

Take a decision function generally written p b : T → bool

such that

forall x : T , p b x = true is equivalent to p x

No magic in bool

Take a decision function p c : T → color

such that

forall x : T , p b x = white is equivalent to p x

Inductive predicates on days

How to select elements of day ?

Even numbers

Inductive even : nat -> Prop :=

| E0 : even 0

| E2: forall n:nat, even n -> even (S (S n)).

We expect the following induction principle:

P 0 ∀n, even n → P n → P (S (S n))

∀n, even n → P n



Lists of consecutive even numbers

Inductive natlist: Set :=

| E : natlist

| C : nat -> natlist -> natlist.

P E ∀n∀l ,P l → P (C n l)

∀l ,P l

Inductive evl : nat -> Set :=

| E0 : evl 0

| E2: forall n:nat, evl n -> evl (S (S n)).

P E0 ∀n∀l ,P l → P (E2 n l)

∀l ,P l

P 0 E0 ∀n∀l ,P n l → P (S (S n)) (E2 n l)

∀nl ,P n l

Lists of consecutive even numbers (cont’d)

Inductive evl : nat -> Set :=

| E0 : evl 0

| E2: forall n:nat, evl n -> evl (S (S n)).

P 0 E0 ∀n∀l ,P n l → P (S (S n)) (E2 n l)

∀nl ,P n l

Take for P a predicate which does not depend on its second
argument: P n l def

== Q n

Q 0 ∀n ∀(l : evl n),Q n → Q (S (S n))

∀n(l : evl n),Q n

Q 0 ∀n, evl n → Q n → Q (S (S n))

∀n, evl n → Q n

Now, evl reads just even

Functional interpretation

Inductive list : Set :=

| E : list

| C : nat -> list -> list.

P E ∀n∀l ,P l → P(C n l)

∀l ,P l

Lists of consecutive even numbers
typed according to the value of the expected next head

Inductive evl : nat -> Set :=

| E0 : evl 0

| E2: forall n:nat, evl n -> evl (S (S n)).

P E0 ∀n∀l ,P l → P(E2 n l)

∀l ,P l

P 0 E0 ∀n∀l ,P n l → P (S (S n)) (E2 n l)

∀nl ,P n l

Booleans and inductively defined predicates

Fixpoint evenb (n:nat) : bool :=

match n with

| O => true

| S O => false

| S (S n’) => evenb n’

end.

Inductive even : nat -> Prop :=

| E0 : even O

| E2 : ∀ n, even n -> even (S (S n)).

Theorem even_evenb : ∀ n, even n -> evenb n = true.

By induction on the structure of the proof of even n

Theorem evenb_even : ∀ n, evenb n = true -> even n.

By induction on n



Booleans and inductively defined predicates

Theorem even_evenb :

∀ n, even n -> evenb n = true.

By induction on the structure of the proof of even n
Don’t have to bother about odd numbers

Theorem evenb_even :

∀ n, evenb n = true -> even n.

By induction on n: need for strengthening and discrimination.

Inversion
Issue: getting the possible ways of constructing a hypothesis
Easier for evenb than for even

This issue cannot be avoided for non-deterministic relations

Inductive relation: less or equal on nat

From standard library

Inductive le (n : nat) : nat -> Prop :=

| le_n : n <= n

| le_S : forall m : nat, n <= m -> n <= S m

Inductive definitions / function to bool

I Inductive definitions are more flexible, easier to define

I With inductive definitions, we only care with the positive cases

I Inductive hypotheses may require heavy steps called inversions

I Functional definitions allow reasoning steps by computation,
which is powerful and convenient

I In particular, “inversion is for free” with functional definitions

I Important: a functional definition can be used for tests in a
program

if e then A else B is a shorthand for

match e with

| true => A

| false => B

end


