5th Asian-Pacific Summer School'on Formal Methods
August 5-10, 2013, Tsinghua University, Beijing, China

Inductive predicates

Jean-Francois Monin
2013-08-08

http://sts.thss.tsinghua.edu.cn/Cogschool2013

EI
- S

Predicates

Given a type T, how to select elements of T satisfying some
property p 7
Let us consider a predicate

p: T — Prop
Let u be an inhabitant of T.

We say that v is selected when
> we can prove p u
> there is a proof tree in p u
» p u is inhabited

Otherwise u is not selected

Predicates, relations

Given a type T, how to select elements of T satisfying some
property ?
General type to be considered: T — Prop

Sometimes, the answer can be computed
Then we can also use: T — bool
Note that T — color works as well

More generally: inductive relations

Given types Ty, To, ... T,, how to simultaneously select elements
of Ty, Ty, ... T,, satisfying some property ?

General type to be considered: T;1 — To — ... T, — Prop

To some extent, we can also use:
T1 — T>— ... T, — bool

What does it mean, not to be selected 7

We say that v is selected when
> there is no proof tree in p u

» p u is not inhabited

So, what we need here is a special type (a proposition) which is
empty
How to make it?

Take any inductive type with zero constructor

Inductive False : Prop :=

This makes sense because of strong normalization

Strong normalization Using a data type (bool, color,...)

Take a decision function generally written p.b : T — bool

Let T be an inductive type
such that

Let v an inhabitant of T
Then forall x : T, p_b x = true is equivalent to p x

» u can be reduced by computation to a unique normal form ug No magic in bool

> (in the empty environment), Take a decision function p_c : T — color

the normal form wug starts with a constructor of T such that
Therefore, there is no inhabitant at all in False forall x : T, p_b x = white is equivalent to p x
Inductive predicates on days Even numbers

Inductive even : nat -> Prop :=
| EO : even O
| E2: forall n:nat, even n -> even (S (S n)).

How to select elements of day 7

We expect the following induction principle:

PO Vn,evenn — Pn— P(S(Sn))
Vn,evenn — P n

Lists of consecutive even numbers

Inductive natlist: Set :=
| E : natlist
| C : nat -> natlist -> natlist.

PE Vnv¥l,PI— P(Cnl)
VI,PI

Inductive evl : nat -> Set :=
| EO : evl O

| E2: forall n:nat, evl n -> evl (S (S n)).

PEO VnvI,Pl— P(E2nl)
VI, PI

POEO VnVl,Pnl— P(S5(Sn))(E2nl)

Vnl,Pnl

Functional interpretation

Inductive list : Set :=
| E : list
| C : nat -> list -> list.
PE VnV/,PI—>P(CnI)
VI, P

Lists of consecutive even numbers
typed according to the value of the expected next head

Inductive evl : nat -> Set :=
| EO : evl O

| E2: forall n:nat, evl n -> evl (S (S n)).

PEO VnVI,Pl— P(E2nl)
VI, P

PO EO VvV, Pnl— P(S(Sn))(E2nl)
Vnl,Pnl

Lists of consecutive even numbers (cont'd)

Inductive evl : nat -> Set :=
| EO : evl O

| E2: forall n:nat, evl n -> evl (S (S n)).

POEO VvV, Pnl— P(S(S5n))(E2nl)

Vnl,Pnl

Take for P a predicate which does not depend on its second

argument: Pn/ def Qn

Q0 Vn¥(l:evin),Qn— Q(S(Sn))

Vn(l:evin),@n

Q0 Vnevin— Qn— Q(S(Sn))
Vn,evin— Qn

Now, evl reads just even

Booleans and inductively defined predicates

Fixpoint evenb (n:nat) : bool :=
match n with

| O => true

| SO => false

| S (S8 n’) => evenb n’
end.

Inductive even : nat -> Prop :=
| EO : even O
| E2 : Vn, even n -> even (S (S n)).

Theorem even_evenb : V n, even n -> evenb n

By induction on the structure of the proof of even n

true.

Theorem evenb_even : V n, evenb n = true -> even n.

By induction on n

Booleans and inductively defined predicates

Theorem even_evenb :

v

n, even n -> evenb n = true.

By induction on the structure of the proof of even n
Don't have to bother about odd numbers

Theorem evenb_even :
V n, evenb n = true -> even n.

By induction on n: need for strengthening and discrimination.

Inversion
Issue: getting the possible ways of constructing a hypothesis
Easier for evenb than for even

This issue cannot be avoided for non-deterministic relations

Inductive definitions / function to bool

Inductive definitions are more flexible, easier to define
With inductive definitions, we only care with the positive cases
Inductive hypotheses may require heavy steps called inversions

Functional definitions allow reasoning steps by computation,
which is powerful and convenient

In particular, “inversion is for free” with functional definitions

Important: a functional definition can be used for tests in a
program

if e then A else B is a shorthand for

match e with
| true => A
| false => B

end

Inductive relation: less or equal on nat

From standard library

Inductive le (n : nat)

le_n :
: forall m :

le_S

n <=n

: nat -> Prop :=

nat, n <=m ->n <=Sm

