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Summary of previous lectures

I We manipulate tree-like data structures called terms
I All trees have a type, which are themselves trees
I Notation: term : type
I Basic way to have new types: Inductive definitions

declaring the complete set of its constructors
example: enumerated types

I Constructors may have arguments → hence trees
I Case analysis on an enumerated type (match)
I Definitions can be written directly or interactively
I In general, things are defined within an environment

made of declarations variable : type
I pluging: works for all terms having the expected type
I functions of type ∀x1 : t1, . . .∀xn : tn, tresult

where tresult may depend on x1 . . . xn
example: funny : ∀r : rgb, Set of r
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Computation on trees

The whole point of computer science is computation

On trees, it means successive transformations

tree0 −→ tree1 −→ tree2 −→ . . . treen −→ . . .

I all treei have the same type
I delimited transformations (neighboring nodes involved)

called reductions
I reduction order irrelevant ****
I computation always terminates ****
I therefore, all treei have the same value

We get stateless programming
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Reduction of a case

Example

co
Set

Gf
rgb

R
co

G
co

B
co

case
co

reduces to the “second” branch : G
co

Called ι-reduction
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Reduction of a case

3 ι-reductions for rgb

A
Set

Rf
rgb

==t1
A

==t2
A

==t3
A

case −→
A

== t1
A

A
Set

Gf
rgb

==t1
A

==t2
A

==t3
A

case −→
A

== t2
A

A
Set

Bf
rgb

==t1
A

==t2
A

==t3
A

case −→
A

== t3
A
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Reduction of a case
3 ι-reductions for rgb

match Rf with
| Rf => t1
| Gf => t2
| Bf => t3
end.

 Reduces to t1

match Gf with
| Rf => t1
| Gf => t2
| Bf => t3
end.

 Reduces to t2

match Bf with
| Rf => t1
| Gf => t2
| Bf => t3
end.

 Reduces to t3
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Functions: example

Definition color_of : forall (r: rgb), color :=
fun (r: rgb) =>
match r with
| Rf => Red
| Gf => Green
| Bf => Blue
end.

Application: by juxtaposition

color_of Bf
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Products and functions

Consider an environment containing x : t (and may be other
types variables) where we define a term Ux : u

More generally, u may depend on x .
Consider an environment containing x : t (and may be other
types variables) where we define

I a type ux
I a term Ux : ux

Then fun x ⇒ Ux is a function defined for all x , and
returning Ux each time it applied to some argument for x .

fun x : t ⇒ Ux : ∀x : t, ux

Application
If f : ∀x : t, ux and A : t
then f can be applied to A and the type of the result is uA
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Rules (general)

····
f

∀x : t, ux

····
A

t
apply

uA

[x : t]
·····
U

ux
fun[x]

∀x : t, ux

Warning: this x makes sense only in U,
i.e. is available only from x : t to ux
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When the type of the result does not depend on x

····
f

∀x : t, u

····
A

t
apply

u

[x : t]
·····
U

u
fun[x]

∀x : t, u

Warning: this x makes sense only in U,
i.e. is available only from x : t to u
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Other syntax: t → u instead of ∀x : t, u

····
f

t → u

····
A

t
apply

u

[x : t]
·····
U

u
fun[x]

t → u

Warning: this x makes sense only in U,
i.e. is available only from x : t to u
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Example 1

Definition color_of : forall (r: rgb), color :=
fun (r: rgb) =>
match r with
| Rf => Red
| Gf => Green
| Bf => Blue
end.

Definition color_of : rgb -> color :=
fun (r: rgb) =>
match r with
| Rf => Red
| Gf => Green
| Bf => Blue
end.

Question: where r is available?
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Example 2

Definition Set_of : forall (r: rgb), Set :=
fun (r: rgb) =>
match r with
| Rf => rgb
| Gf => color
| Bf => tuple4
end.

Definition Set_of : rgb -> Set :=
fun (r: rgb) =>
match r with
| Rf => rgb
| Gf => color
| Bf => tuple4
end.

Question: where r is available?
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Example 3

Definition Set_of : rgb -> Set :=
fun (r: rgb) =>
match r with
| Rf => rgb
| Gf => color
| Bf => tuple4
end.

Definition funny : forall (r: rgb), Set_of r :=
fun (r: rgb) =>
match r with
| Rf => Gf
| Gf => Yellow
| Bf => t1
end.

Remark: Yellow : Set of Gf
because Set of Gf reduces to color
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Reduction of function = application to an argumt

[x : t]
·····
U

ux
fun[x]

∀x : t, ux

····
A

t
apply

uA

(fun x => U) A

····
A

t
·····
U

uA

U [x := A]

Substitution: U [x := A] is U where
all free occurrences of x are replaced by A.

Called β-reduction



Coq

J.-F. Monin

Introduction
Summary of previous
lectures

Computation

Products and
functions
Rules

Examples

Reduction
Reduction

Introduction, elimination,
reduction

More on functions
Several arguments

Higher order functions

Fixpoints

Pattern matching

Equality and
rewriting

Example

Set of Gf δ-reduces to

(fun (r: rgb) =>
match r with
| Rf => rgb
| Gf => color
| Bf => tuple4
end) Gf

β-reduces to

match Gf with
| Rf => rgb
| Gf => color
| Bf => tuple4
end

ι-reduces to color
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Introduction, elimination, reduction

General statement from Proof Theory
In each type we have corresponding introduction and
elimination rules, as well as reductions

For inductive types
I introduction = constructor
I elimination = case
I reduction = ι-reduction

For functions
I introduction = fun
I elimination = application
I reduction = β-reduction



Coq

J.-F. Monin

Introduction
Summary of previous
lectures

Computation

Products and
functions
Rules

Examples

Reduction
Reduction

Introduction, elimination,
reduction

More on functions
Several arguments

Higher order functions

Fixpoints

Pattern matching

Equality and
rewriting

Introduction, elimination, reduction

Introduction, elimination, reduction work together
I Observation: reducing a tree yields

a constructor at its root
I The latter can be the key argument of a case
I Therefore, case analysis on constructors is exhaustive
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Functions of several arguments
In ∀x , ux , ux can itself be a product type ∀y , vxy
We get ∀x , ∀y , vxy which reads ∀x , (∀y , vxy )

Typing:
I x : t
I Ux : ux
I y : r x (the type of y may depend on x !)

Alltogether : ∀x : t, ∀y : r x , vxy

In particular, ∀x : t, r x → vx reads ∀x : t, (r x → vx )
and t → r → v reads t → (r → v)

Consistently, f A B reads (f A) B,

given f : t → (r → v), A : t and B : r
or f : ∀x : t, ∀y : r x , vxy , A : t and B : rA
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Example: identity function (specific)

Definition id_rgb : forall (r: rgb), rgb :=
fun (r: rgb) =>
match r with
| Rf => Rf
| Gf => Gf
| Bf => Bf
end.

Simpler

Definition id_rgb : forall (x: rgb), rgb :=
fun (x: rgb) => x.

Similarly

Definition id_color : forall (x: color), color :=
fun (x: color) => x.
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Example: identity function (general)

Definition id_rgb : forall (x: rgb), rgb :=
fun (x: rgb) => x.

Definition id_rgb : rgb -> rgb :=
fun (x: rgb) => x.

Generalization

Definition id : forall (X: Set),forall (x: X), X :=
fun (X: Set) (x: X) => x.

Definition id : forall (X: Set), X -> X :=
fun (X: Set) (x: X) => x.

Definition id_rgb : forall (x: rgb), rgb :=
id rgb.
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Application of a function to several arguments

Definition id : forall (X: Set), X -> X :=
fun (X: Set) (x: X) => x.

The term id rgb Gf reads (id rgb) Gf

And similarly for functions expecting 3, 4. . . arguments

Constructors as functions

Mk4rgb : forall x1, x2, x3, x4: rgb, tuple4
Mk4rgb : rgb -> rgb -> rgb -> rgb -> tuple4

Mk4rgb Gf Rf Gf Bf
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Partial application of a function

We have already seen: id rgb

What is meaning and the type of Mk4rgb Gf Rf ?
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Functions as first class objects

We have seen that the result of a function can be a function

Similarly, a function can be passed as an argument of a
function

Example: id (rgb → color) color of

Exercises:
I Reduce the previous expression
I Reduce: id (rgb → color) color of Bf
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Conclusion on functions

Functions are one of the prominent feature of Coq,
where they live in a very general setting.

In particular we will see that proofs are always trees and are
even functions most of the time

Hence the importance of
I defining functions
I using functions (application)
I typing functions

Next important notions
I pattern matching
I application to logic
I recursive functions (fixpoints) and induction
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Definitions in general

Definition some_name : some_type :=
BODY

where BODY is some code depending on
previously defined names
BUT NOT on yet undefined names
including some_name

Equality
some name = BODY

Performing replacement of some name by BODY

I lazily: δ-reductions are mixed with other reductions
I statically, at the begining:

the process terminates in 1 step for each occurrence of
some name
this is the essence of a definition
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Definitions of functions: as before

Definition my_function : forall (x: A), B :=
fun x => BODY

where BODY is some code depending on
x
other previously defined names
but not on my_function and other undefined names

Equalities (δ immediately followed by new β)
my function a = BODY [x replaced by a]

where a is any argument of type A

Performing replacement of my function

I lazily: δ-reductions are mixed with other reductions
I statically: essence of a definition
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Recursive “definitions”

Definition? some_name : some_type :=
BODY

Recursivity: when BODY does contain occurrences of
some_type

Performing replacement of some name

I statically: impossible, this is an endless process
this is not a definition

I lazily: mixing δ-reductions with other reductions
may terminate if sensible parts of the term are deleted
by interleaved reductions

I remember that ι-reductions deletes subterms
I relevant for ι-reductions inside functions

Computationally meaningful, definitionally meaningless
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A mathematical point of view

Definition? some_name : some_type := BODY

Let us consider some name as a parameter of BODY , and
rename it as sn.

Definition auxFP : some_type → some_type :=
fun sn => BODY’

Assuming the equation some name = BODY we get
auxFP some_name

= BODY’ [sn replaced by some_name]
= BODY
= some_name

The “definition” actually specifies
a solution to a fixpoint equation

Makes sense as a mathematical definition if
existence and unicity of a solution are ensured
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Computationally irrelevant example

Definition? mynat : nat := 2 - mynat

Definition auxFP : nat → nat :=
fun x => 2 - x

Assuming the equation mynat = 2 - mynat we get

auxFP mynat
= (fun x => 2 - x) mynat
= 2 - mynat
= mynat

mynat is specified as a solution of auxFP x = x

In this example, reductions are of no help
for finding the fixpoint : 2 - (2 - (2 - ...))
However a mathematical solution exists : 1
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Can be computationally relevant for functions

Definition? my_function :
forall (x: A), B :=
fun x => BODY

Replacing all occurrences of my function by f in BODY :

Definition auxFP :
(forall (x: A), B) → (forall (x: A), B) :=
fun f => (fun x => BODY’ )

We get: auxFP my function = my function
which states that my function is a fixpoint of auxFP

Makes computational sense if
termination of (necessary) reductions is ensured
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Fixpoints in Coq

In Coq fixpoints make sense because
Recursive calls are allowed only on

structurally smaller argument

Structural recursion
I A term t is structurally smaller than t’ iff t is a strict

subterm of t’
I obtained using pattern matching
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Important application

Induction principles are special cases of fixpoints

To be understood later, when considering proof-trees and
functions over proof-trees
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Pattern matching

I The destruct tactic and the match construct
in the case where constructors have arguments

I More general pattern matching
I See related coq files

I Much better than Lisp or C style
I Important special case: empty inductive type
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Example: lists

Here we consider list of Booleans for simplicity

Inductive list : Set :=
| Nil : list
| Cons : bool -> list -> list.

Scheme of use for pattern matching:

match l with
| Nil => expression_1
| Cons h t => expression_2 of h and t
end.
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Why pattern matching is nice
Definition of the length of a list using pattern matching

Fixpoint length (l: list) : nat :=
match l with
| Nil => O
| Cons h t => S (length t)
end.

Compare with (in Lisp or C-like style)

...if beq_list l Nil then 0 else S (length (tail l))

Here, tail makes sense only if its argument is a non-empty
list, but it is non trivial that the else branch of
beq list l Nil ensures that (the correctness of our
definition of beq list is questionnable).
In contrast, pattern-matching provides a comfortable
environment for expression 2, where h and t are available
with the right type for free.
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Empty inductive type

An inductive may have any number of constructors,
including 0.

Inductive empty : Set := .

Pattern matching: no case (0 branch) to consider:

Variable e: empty.
match e return nat with end.

Note the return clause in the match construct: it aims at
providing the type of expressions on the different branches,
when it cannot be guessed from the context.
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Dependent inductive types

Pattern matching is still more powerful in the case of
dependent inductive types

Dependent type
When a type depends on values or types provided by the
current environment
Example: funny in previous lectures.
Hint: perform Print funny in the coq file.

Inductive dependent type
See more advanced lectures

Very important special case
Equality
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Dependent inductive types

Example without special meaning

Inductive dontcare : bool -> Set :=
| D0 : dontcare true
| D1 : forall (b:bool) (n: nat),

even n -> dontcare b -> dontcare (negb b).

Scheme of use for pattern matching,
assuming d: dontcare b

match d with
| D0 => expression_1
| D1 b’ n e d’ => expression_2 of b’, n, e and d’
end
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Special case: equality

Theory
The notation x = y is a shorthand for eq x y,
where eq is inductively defined.
The precise definition involves some subtelties,
to be introduced later.

For practice it is much simpler
We just need:

I For all type A, and x , y : A,
x = y is something that we can try to prove

I Canonical proofs of equality are by reflexivity
I Destructing (i.e., using) equalities: rewrite
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Equality in practice

Proving an equality
Canonical proofs of equality are by reflexivity,
a shorthand for apply eq refl

eq refl : ∀A, ∀x : A, x = x

Using an equality
If

I the environment contains e : X = Y
I the current goal concludes to P X

Then rewrite e yields P Y

Variants:
I rewrite -> e (same effect)
I rewrite <- e (replaces P Y by P X )
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