
Random Access List
Chris Okasaki

I Interface:
I cons: T -> ralist -> ralist O(1)
I head: ralist -> option T O(1)
I tail: ralist -> ralist O(1)
I get : ralist -> nat -> option T O(log n)
I set : ralist -> nat -> T -> ralist O(log n)

I Representation:
I List of balanced trees with nodes labeled by elements of T.
I Trees of the list are of strictly increasing height.

Exception: the first two trees may have the same height.
I The older the elements, the farther in the list of trees they are.

Elements in a tree are stored with a depth-first pre-order
traversal.



Random Access List
Adding an element to a list

I If the first two trees have different heights,

1

2

· · · −→ x
1

2

· · ·

I If the first two trees have the same height,

1 2

3

· · · −→

x

1 2 3

· · ·



Coq Types

Variable T : Type.

Inductive tree :=
| Leaf : T -> tree
| Node : T -> tree -> tree -> tree.

Inductive ralist :=
| raNil : ralist
| raCons : tree -> nat -> ralist -> ralist.



Definition of Head

Definition head l :=
match l with
| raNil => None
| raCons t _ _ =>

match t with
| Leaf x => Some x
| Node x _ _ => Some x
end

end.



Definition of Cons

Definition cons x l :=
match l with
| raNil => raCons (Leaf x) 0 l
| raCons t s raNil => raCons (Leaf x) 0 l
| raCons t1 h1 (raCons t2 h2 q) =>

if h1 == h2 then raCons (Node x t1 t2) (1 + h1) q
else raCons (Leaf x) 0 l

end.



Definition of Tail

Definition tail l :=
match l with
| raNil => raNil
| raCons t h q =>

match t with
| Leaf _ => q
| Node _ t1 t2 =>

raCons t1 (h - 1) (raCons t2 (h - 1) q)
end

end.



RA Lists are Lists

Lemma head_cons :
forall l x,
head (cons x l) = Some x.

Lemma tail_cons :
forall l x,
tail (cons x l) = l.



Data Invariant

Fixpoint height t :=
match t with
| Leaf _ => O
| Node _ t1 _ => 1 + height t1
end.

Fixpoint balanced t :=
match t with
| Leaf _ => True
| Node _ t1 t2 =>

height t1 = height t2 /\ balanced t1 /\ balanced
t2

end.



Data Invariant

Fixpoint structured_aux l h :=
match l with
| raNil => True
| raCons t h’ q =>

balanced t /\ height t = h’ /\ h <= h’ /\
structured_aux q (1 + h’)

end.

Definition structured l :=
match l with
| raNil => True
| raCons t h q =>

balanced t /\ height t = h /\
structured_aux q h

end.



Preservation of Invariant

Lemma structured_cons :
forall l x,
structured l ->
structured (cons x l).

Lemma structured_tail :
forall l,
structured l ->
structured (tail l).


