
Chapter 1

Hybrid Systems

1.1 Introduction

The research on hybrid systems at Verimag has as a major objective to export some
ideas and insights originating from computer science toward other domains of ap-
plied science and engineering that do not enjoy these insights and for which the
computer is often viewed merely as a tool, rather than a source of inspiration for a
new kind of mathematical models. This research direction is motivated by the con-
viction that concepts developed within various areas of computer science and en-
gineering have a large potential contribution to the emergence of a modernsystem
design disciplinefor complex and heterogeneous systems, embedded or not. The
concepts that we have in mind include the distinction between syntax and semantics
(in logics, programming languages and system description formalisms), relation-
ships between models at different levels of abstraction, verification and controller
synthesis using graph-theoretic techniques, algorithms and complexity, hierarchi-
cal and modular modeling and so forth. To be able to communicate these ideas
to diverse communities, one must invest in understanding their languages, mod-
els (systems over continuous state variables and metric time), and performance
criteria which, more often than not, are quantitative rather than qualitative (“non
functional” in contemporary parlance).

The hybrid systems group at Verimag is one of the founders and world-wide
leaders in hybrid systems, as witnessed by membership in the steering and pro-
gram committee of the major hybrid systems conference [MP03], the founda-
tion of new workshops on timed systems [AMY02] and on verification of analog
circuits [DM05], the coordination of and participating in several top Europeans
projects on the topic (VHS, CC, AMETIST), writing some introductory articles

1

[Mal01, Mal02, Mal04] and, of course, some important contributions to the do-
main in concepts, theory and tools. All these achievements are due to readiness
to invest in understanding topics that cannot be solved by a small modification of
one’s own favorite concepts and tools, an investment that does not always pay in
terms of immediate recognition by a close community (which is a major reason
why so few computer scientists work on the topic).

1.2 Verification and Synthesis of Continuous and Hybrid
Systems

The major innovative contribution of computer science to hybrid systems is the
definition of thehybrid automatonmodel and the adaptation of verification tech-
niques to such automata, where the hard part is, of course, the treatment of the
continuous dynamics. After a short historical survey we explain the contribution
of Verimag to this area during the reporting period.

1.2.1 Historical Survey

The hybrid automaton model was proposed in the early nineties in order extend
verification toward systems that include both discrete and continuous components.
The first papers on the topic advocated a deductive approach for verification but
soon, influenced by decidability results for timed automata, the emphasis moved to
algorithmic verification which means essentially to compute all the reachable states
of a system, starting from an initial set and subject to an admissible set of inputs
(disturbances). The early days of the domain focused on the so-called “linear”
hybrid automata, in which the continuous variables have aconstant derivativein
every discrete state (mode). Like in timed automata, the set of time successors of a
polyhedral set of states can be computed using linear algebra without resorting to
the solution of real differential equations.1

However it turned out soon that except for some very special cases, the reach-
ability problem for such automata is undecidable, a fact that, together with the
expressive limitations on the continuous dynamics, led to a decay in the interest
in this domain, except for some interesting theoretical results. From a tool devel-
opment point of view, the outcome of this period include Kronos, by Sifakis and
Yovine for timed automata and HyTech by Henzinger et al for “linear” hybrid au-
tomata. These tools and related papers have also established the standard form of
reachability computation for timed and hybrid systems by alternating continuous

1This is part of the attractiveness of such automata for computer scientists.

2

dynamics and discrete transitions. Starting from a setP of states the procedure
works as follows:

1. Compute the set of time successors ofP according to continuous dynamics
of the current mode

2. Intersect the result with the staying conditions of the mode to obtain all states
reachable fromP via transition-free trajectories

3. For each transition, intersect the set of time successors with the transition
guard to obtain all “source” states of the transition

4. Compute the “target” set of the transition by applying the reset map to the
set of source states

5. Restart the computation from the obtained set according to the continuous
dynamics of the target mode.

It is important to mention that interest in hybrid systems was (and still is) very
high in the control community, relatively much more than within computer science.
This is partly due to the fact that many of the analytical methods used in control de-
sign are tailored for purely continuous systems and hence are restricted to idealized
subsystems (for example, ignoring saturation or assuming linearity) and do not ex-
tend easily to the hybrid case. However, much of the early work from the academic
control community was either on the fringe (“intelligent control”) or more ortho-
dox mathematical work devoid of significant computational content. Toward the
end of the 90s, together with the reorganization of the hybrid systems community
around the HSCC workshop, the focus moved toward reachability computation for
“real” continuous systems, those that their continuous dynamics are defined by
non-trivial differential equations. Of course, given all the undecidability results for
simpler models, there is no hope forexactcomputation which, when you come to
think of it, is a too strong requirement for physical continuous systems. In fact,
the process of accompanying ideas from finite-state systems to systems with nu-
meric variables involves an ongoing lowering of expectations, starting from exact
computations which are guaranteed to terminate (timed automata), via exact com-
putations that may not terminate (“linear” hybrid automata) to approximate com-
putations (arbitrary differential equations). As we shall see later, the process does
not stop there.

In the next section we describe briefly the techniques underlyingd/dt, the ma-
jor contribution of Verimag to reachability computation for hybrid systems. Al-
though this is not intended to be a scholarly survey, we mention some preceding

3

relevant work such as that of Kurshan and McMillan on using reachability to con-
struct finite-state abstractions of circuits from transistor models, related work by
Greenstreet, various works in numerical analysis usinginterval arithmeticsand the
work of Kurzhanski et al onellipsoids. Other tools that were developed in par-
allel with (and independently of)d/dt are CheckMate by Chutinan and Krogh at
CMU, which used similar ideas, and Hysdel by Bemporad and Morari at ETH,
which employs hybrid optimization to solve verification and synthesis problems
for bounded horizon. Later tool development contributions to the domain include
the work of Mitchell and Tomlin at Stanford on using PDE solvers for reachability
computations and the Verishift tool of Botchkarev and Tripakis (then a post-doc at
Berkeley) which uses ellipsoids.

1.2.2 Linear Systems and the d/dt Tool

The toold/dt [ADM01a, ADM01b, ADM02] has been developed within the the-
sis of Thao Dang, 1996-2000 under the supervision of E. Asarin and O. Maler. It
treats systems that are piecewise-linear or, more generally, piecewise-affine, that is,
hybrid automata where the continuous dynamics in each modeq is defined by an
equation of the forṁx = Aqx + Bqu whereu is an external disturbance bounded
inside some convex set. The basic problem is to compute an over-approximation of
the time successors of a convex polyhedronP under the continuous dynamics. For
constant derivative systems this can be achieved for all times by linear algebra, but
in the general case we need to imitate numerical integration by fixing a time stepr
and computing a sequence of sets{Pi} such that eachPi contains states reachable
from P in the time interval[(i − 1)r, ir]. Note that for discrete-time systems,Pi

consists of points reachable fromP exactlyat timeir. This computation is done
by numerical integration from the vertices ofP , followed by a convex hull and
additional modification to guarantee over-approximation. The approximation error
does not accumulate and can be controlled by makingr smaller. The sequence
{Pi} is stored either as a union of convex polyhedra or over-approximated by a
non-convex orthogonal polyhedron for which we have developed a canonical rep-
resentation. It is typically the intersection with transition guards that makes the
shape of the reachable set more complex and requires additional vertices.

In addition to verification,d/dt also offers a procedure for synthesizing switch-
ing controllers for safety specifications and handles under-specified disturbances
by performing an optimization procedure at every step for finding the inputu that
pushes each face of the polyhedron in “outermost” way. The tool is available pub-
licly and its reachability algorithm has been integrated as the computational engine
behind the Charon modeling and verification tool [ADE+01] developed at the uni-

4

versity of Pennsylvania. Due to the need to manipulate polyhedra whose dimen-
sionality is that of the state space, the tool is currently limited to system of a modest
dimension (around 5). In the sequel we describe extensions tod/dt, mostly due to
the work of Thao Dang and collaborators, as well as some other investigations in
hybrid reachability.

1.2.3 Extension to Non-Linear Systems

The extension ofd/dt to deal with non-linear systems [ADG03], was one of the
major developments during this period. This work was to a large extent a result of
a successful collaboration between Verimag (E. Asarin., S. Yovine, T. Dang) with
the applied mathematics MOSAIC team (J. Della Dora) within the IMAG Mash
project [DMMRY01, DY01], culminating in the thesis of Antoine Girard [Gir04] .
Underlying this extension is a new method of “hybridization”, that is, transforming
any reasonable non-linear systemẋ = f(x) into a piecewise-affinesystem that
approximates its behavior. This transformation is achieved by first triangulating
the continuous state space into simplices, and then for each simplex, computing by
interpolation the linear operatorA that agrees withf on the vertices of that simplex.
The maximal error betweenf andA is estimated and represented in the piecewise-
affine dynamics as an additive disturbance. This way the system is modeled as a
hybrid automaton where each state corresponds to a simplex and the transitions
correspond to boundary crossings. Other good properties of the transformation
include its continuity along the boundaries and its good error convergence. These
results, which demonstrate also how hybrid system ideas can sometime breathe
life into old disciplines like numerical analysis, have been integrated intod/dt and
tested on several examples.

1.2.4 Treating Parameters

In the analysis of a continuous systemẋ = f(x, u) we make a distinction between
state variablesx and input variablesu. The former need to be stored at each step
because they determine the future evolution of the system. Hence each of them
increases the dimensionality of the stored polyhedra. Inputs, on the other hand, are
not part of the state space and need not be stored because at every step they can
“choose” a value taken from a bounded set, independently of their previous value.
Parameters allow to define systems of the formẋ = f(x, u, p) wherep is chosen at
time zero and does not change during the lifetime of a trajectory. Hence parameters
are like state variables in the sense that they need to be stored, but different from
them in the sense that they do not undergo any dynamics. A specialized procedure

5

that treats parameters properly and hence reduces the dimensionality of matrix
computation has been developed and integrated.

1.2.5 Differential Algebraic Equations

The dynamics of electrical circuits, a new application domain for hybrid systems, is
typically described usingdifferential algebraic equationswhose numerical integra-
tion is a crucial part in circuit simulation. When those equations are of index one,
their numerical solution can be performed as a combination of standard integration
and projection on the constraint surface. This technique has been implemented and
tested on small analog circuits [DDM04].

1.2.6 Experience with d/dt

Most of the few dozens ofd/dt users are academic (we have some downloads
from industry but without feedback). These users come from all over the world
including France (INRIA, IRISA, Supelec), USA (Notre Dame, Vanderbilt, Penn,
SRI, Honeywell), Germany (Oldenburg, Aachen, Karlsruhe, Hannover), as well
as Netherland, Italy, Russia, China and Brazil. We currently have no resources to
maintain an interactive user group, but we are aware that some use it for educational
purposes. At Verimag we have appliedd/dt to various case studies originating from
diverse domains, including:
Automotive: Two case studies were treated by the predicate abstration tool build
on top ofd/dt within the DARPA-funded MoBies project. The first was an automa-
tive coordination system, with4 continous variable and a dozen of modes which
was proved to be collision free. The second was an electronic throttle control sys-
tem, with7 continous variables and8 modes. Within the CC projectd/dt has been
used to synthesize an idle-speed controller on a model with6 real variables and3
modes [Dan05].
Computational biology: The non-linear extension ofd/dt was used to analyze a
model of the genetic regulatory network of Vibrio fisheri with3 variables, non-
linear dynamics and several modes [AD04].
Analog circuits: A model of a biquad low-pass filter with3 continuous variables,
and dynamics defined by differential algebraic equations with some non-linearity
has been verified in [DDM04]. On the other hand, to illustrate the current limi-
tations, we have not succeeded so far in verifying a sigma-delta A-to-D convertor
with 3 state variables and two modes due to the frequent mode switching that may
happen at every moment, and had to resort to bounded horizon techniques.

6

1.2.7 Abstraction of Hybrid Systems

Abstraction techniques fight state explosion by replacing a complex systemS by
a simpler systemS′ which over-approximatesS in the sense that every behavior
exhibited byS can be exhibited byS′. We have focused on two commonly-used
approaches to abstraction, one is the reduction to a finite-state system bypartition-
ing the state-space (“predicate abstraction”), and the other is byprojection.

Predicate abstraction works by partitioning the continuous state space into re-
gions, each of which is viewed as a discrete state ofS′. Then the transition relation
of S′ consists of all pairs(R,R′) of regions such that there exists a direct trajectory
(a trajectory that does not visit any intermediate region) between somex ∈ R to
somex′ ∈ R′. The computation of this relation using reachability techniques is
much simpler than standard reachability because the complexity of the sets does
not accumulate. In fact, one can avoid explicit reachability computation altogether
by analyzing the vector field along the boundary betweenR andR′ and establish-
ing the existence of a boundary point in which it has a positive normal component.

However the artificial “transitivity” in the transition relation ofS′ may create
many false counter examples, that is, abstract behaviors that do not correspond to
any concrete trajectory. When such a counter example is encountered, one can
refine the partition hoping to create eventually an abstraction fine enough, either
for proving the property or for finding a counter example that can indeed be con-
cretized. This methodology, popular for verification of software and infinite-state
systems in general, has a lot of heuristic ingredients such as the choice of the ini-
tial partition (based sometimes on the properties to be proved) and its refinement
procedure. In a series of works [ADI02, ADI03a, ADI03b, ADI04, ADI05] the
applicability of counter-examples based abstraction refinement for hybrid systems
has been explored.

The other natural abstraction technique is to reduce the state-space of the sys-
tem by projecting away certain variables. A variable thus projected moves from the
category of state variables to that of under-specified inputs, resulting in a more non-
deterministic system. In other words, we over-approximate a system of (nonlinear)
differential equations by a hybrid system with differentialinclusionsin lower di-
mension. The technique developed in [AD04] is based on this principle, augmented
with ideas coming from qualitative physics and with a method for error control.
While this abstraction approach can be used for dimension reduction, its effec-
tive application requires the ability to deal with nonlinear differential inclusions.
We developed a reachability analysis method for uncertain bilinear systems which,
in combination with the abstraction by projection, allows us to treat multi-affine
systems. An experimental implementation of this technique enabled us to study

7

a bacteria model in bioregulator networks, but more experimentation is needed to
assess its scope and limits.

1.2.8 Analysis of Polygonal Hybrid Systems

In parallel with approximate computations, the limits of exact reachability have
been explored. Polygonal hybrid systems are a subclass of planar hybrid automata
which can be represented by piecewise-constant differential inclusions. We have
studied qualitative properties of such systems and established several decidability
and undecidability results within the thesis of Gerardo Schneider (supervised by
S. Yovine and E. Asarin).

In [ASY01], we have developed an algorithm for solving the reachability prob-
lem. Our procedure is not based on the computation of the reach-set but rather on
the computation of the limit of individual trajectories. A key idea is the use of one-
dimensional affine Poincaré maps for which we can easily compute the fixpoints.
We have shown that between any two points linked by an arbitrary trajectory there
always exists a trajectory without self-crossings. Thus, solving the reachability
problem requires considering only those. We proved that, indeed, there are only
finitely many qualitative types of those trajectories. For each type, we constructed
a decision procedure based on the analysis of the limits of extreme trajectories.

In [ASY02] we have studied phase portraits. We analyzed the qualitative be-
havior of sets of trajectories having the same cyclic pattern. Using the classification
of cyclic behaviors of [ASY01], we have given a classification of cyclic behaviors,
we have shown how to compute theviability kernel of a cycle, that is, the set of
points which can keep rotating in the cycle forever. We have shown that this ker-
nel is a non-convex polygon and give a non-iterative algorithm for computing the
coordinates of its vertices and edges. Furthermore, have defined and computed
the controllability kernel, a cyclic polygonal stripe within which a trajectory can
reach any point from any point, analog of the notion of limit cycle. Indeed, we
have proven that the distance between any infinite trajectory performing forever
the same cyclic pattern and the controllability kernel always converges to zero.
These results are the analog of Poincaré-Bendixson for polygonal differential in-
clusions. A tool for qualitative analysis of such systems and based on these results
has been developed by Gordon Pace [APSY02].

In [AS02] we have revisited the decidability of the reachability problem for
hybrid systems of a low dimension. We have characterized several classes of two-
dimensional hybrid systems for which the problem is undecidable, and found other
classes for which reachability is as hard as reachability for piece-wise affine maps,
which is a very well known open problem.

8

1.2.9 Symbolic Reachability Computation

In [LPY01] we have presented the first known families of linear differential equa-
tions with a decidable reachability problem. This is achieved by posing the reach-
ability computation as a quantifier elimination problem in the decidable theory of
the reals. We have characterized families of linear control systems of the form
ẋ = Ax + Bu, whereu belongs to a setU of possible inputs, for which the set
of reachable states is definable in the theory of real numbers. Indeed, we have
identified fragments of the real field extended with exponential and trigonometric
functions that admit quantifier elimination by applying an appropriate change of
variables. A quantifier-free representation of the reachable sets can then be ob-
tained by quantifier elimination using tools such as REDLOG and QEPCAD. This
result is the basis of the REQUIEM tool later developed at the University of Penn-
sylvania.

1.2.10 Perspectives

Computing trajectory tubes for continuous and hybrid systems subject to distur-
bances and parameter variations is a novel contribution to control and to the anal-
ysis of dynamical systems. It can replace analytic methods when those fail, and
complement simulation for small critical subsystems. These techniques suffer,
however, from severestate explosionthat limits their applicability. Like discrete
formal verification, they are not easy to explain to engineers who are accustomed
to reasoning aboutindividual trajectories. Our current thinking is that progress
should be made along two complementary directions, algorithmic improvements
and further relaxations of completeness criteria.

The first direction is to improve the performance and usability aspects ofd/dt
and change its nature from a proof-of-concept to a more mature tool. A lot can be
done in improving the “main loop” of reachability analysis by using alternative ge-
ometric objects and data structures (we are currently exploring the applicability of
zonotopes, a special class of polyhedra, whose usefulness for reachability compu-
tation has been recently demonstrated by Antoine Girard), employing variable-step
time discretization which can be coarser in uninteresting parts of the state space,
using more sophisticated froms of abstraction or by exploiting analytic information
extracted from the system dynamics.

Such an effort should aim at increasing the capabilities of the tool by one order
of magnitude, say, few dozens of modes and few dozens of state variables. Such an
improvement together with a more flexible user interface will increase the user base
of d/dt and provide the necessary feedback for future developments and eventual

9

industrial transfer. To achieve this ambitious goal anadditional researcherand an
engineerare badly needed.

The second direction consists in seeking alternatives to the “classical” approach
for analyzing hybrid (and timed) systems by exhaustive computation of reachable
sets of states, and develop methods based on adaptive search in the space of (sim-
ulated) trajectories. Such methods can be more intuitive for the engineer and will
offer different tradeoffs between computational complexity and coverage, much in
the spirit of testing for discrete system. These ideas will be discussed in the next
Section.

1.3 A Unified Approach to Controller Synthesis

Working with discrete and continuous systems, being exposed to conrol, verifica-
tion, scheduling and other domains, one cannot but observe that many problems
treated under different names within different disciplines, have more resemblence
if we look at them through an appropriate abstraction that filters their domain-
specific details. Among these problems and techniques we mention the algorithmic
approach to discrete systems verification by forward or backward fixpoint com-
putation, the derived reachability algorithms for continuous and hybrid systems,
bounded model checking (using satisfiability solvers to verify correctness for a
bounded horizon), computational techniques for optimal control such as dynamic
programming and model-predictive control, simulation, search methods in AI and
Markov decision processes. Much of our effort during the reporting period was
concerned with building a general unifying game-theoretic scheme, for which var-
ious system design and validation problems are concrete instances. We have also
invested a significant effort in attacking several concrete instances of this scheme,
most notably scheduling under uncertainty and hybrid optimal control. We have
also investigated controller synthesis for distributed systems and some practical
aspects related to

1.3.1 The Game-Theoretic Approach to Design

The paper [Mal04] lays down aunifiedanddomain-independentmodel for control
in the presence of adversaries. The model uses the metaphor of a two-player game
between the controller to be synthesized and the environment it is supposed to
control. Control synthesis is viewed as finding an optimal (or satisfactory) strategy
for the controller, where optimality is parameterized by two factors:

1. The cost function associated withindividual trajectories

10

2. The way the costs of all possible adversary-induced trajectories under a given
strategy are combined to compute the overall value of the strategy (worst
case, average case).

Verification, and open-loop control (“ballistic” control, planning) are obtained as
special cases where either one of the players is suppressed, i.e. is assumed to be
deterministic with no choice. On this model we identify three generic approaches
for solving controller synthesis problems:

• For bounded timed horizonthe problem can be posed as a constrained opti-
mization problem as is done in model-predictive control and bounded model-
checking (in the latter, it is often the case thatfeasibilityof the constraints is
emphasized rather than cost optimality).

• The other class of methods, roughly characterized asdynamic programming
(DP), is based on iterative computation of a value function (cost-to-go),
which determines the optimal cost and action at every state of the system.
For discrete systems such techniques are used in backward verification and
synthesis for automata and for Markov decision processes. In continuous
systems the value function is often computed as a solutions of some partial
differential equations due to Hamilton, Jacobi, Bellman and Isaacs (HJBI).

• The third approach is to perform a forward search in the space of strategies
and trajectories, an approach used by game-playing programs. In verifica-
tion, when the search is not exhaustive over all adversarial behaviors, this
activity can be viewed as testing. For control this approach is not main-
stream but it seems to be popular in some related domains such as reinforce-
ment learning and robot motion planning. The advantage of this approach
compared to DP is that the value function needs to be computed only for
the reachable part of the state space, a fact that may moderate the curse of
dimensionality.

The separation between the domain-independent abstract scheme and the specific
computational aspects of each domain, may facilitate the development of a “uni-
versal” controller synthesis tool based on this model. The specifity of each domain
will be manifested by the type of computational engine used, for example a SAT
solver for discrete systems and an LP solver when the dynamics is linear. The study
of solvers for hybrid constrained optimization problems, the basic computational
tool for all verification and synthesis problems, is becoming an important research
issue by itself and our contribution to the domain is described in Section 1.6.1. We

11

started exploring the applicability of the game-theoretic model and its variants to
several domains as described in the sequel.

1.3.2 Scheduling under Uncertainty

One important instance of the game-theoretic scheme is the problem of scheduling
under uncertainty. Here the controller is a scheduler which decides at certain points
in time whether to allocate resources to enabled tasks, and the adversary is used to
model various types of uncontrolled uncertainty such as in task arrivals, duartions,
outcomes or faults. Thanks to the state-space modeling framework for schedul-
ing using timed automata, developed within the the thesis of Yasmina Abdeddaı̈m
(1999-2002) [Abd02], we can pose such problems very naturally as finding a strat-
egy for a timed game automaton and solve them rather efficiently (recall that all the
problems we deal with are NP-hard at best). All this work had been done within the
European projects VHS (Verification of Hybrid Systems) and Ametist (Advanced
Methods for Timed Systems).

In [AAM05] the problem of scheduling under temporal uncertainty, where task
durations are bounded within an interval, has been addressed. Since in this problem
worst-case optimality is somewhat trivialized because the worst-case optimum can
be obtained by astatic scheduler that assumes a maximal duartion for each task,
a more flexible criterion calledd-future optimalityhas been defined, and strategies
optimal with respect to this criterion have been computed using dynamic program-
ming on timed automata. On randomly-generated instances the average perfor-
mance of schedules thus obtained was within 1.5% from the clairvoyant solution
while static schedules deviated from it by more than 12.5%. This result can serve
as a basis for a new approach for handling “soft” real-time systems.

Note that this problem is a special case of the more general controller synthesis
problem for timed automata, for which an algorithm which uses zones but works
on-the-fly in a forward manner, has been developed and implemented in [AT02].

In [BKM04] we tackled the problem of optimal scheduling under discrete un-
certainty. Tasks are related by precedence constraints as in standard scheduling
problems as well as byconditional dependencies, where the outcome of one task
may determine whether another task should be executed. This is a natural model
for scheduling programs withif-then-elsebranches on parallel machines, and can
be very useful for high-level synthesis. The whole situation is modeled as a timed
game automaton where the adversary chooses the task outcomes, that is, values
for certain Boolean variable that may appear in the activation condition of further
tasks. The problem is then reduced to a shortest path problem in discrete weighted
game graphsand solutions are found using a variant of depth-first min-max search.

12

We are currently comparing various heuristics for more efficient exploration of this
game graph. For the moment we can easily find optimal solutions for problems
with 20 tasks and few conditions, and sub-optimal (but good) solutions for prob-
lems with hundreds of tasks and up to 10 conditions. This work is done within the
thesis of Abdelkarim Kerbaa, supervised by O. Maler and M. Bozga.

Note that in this work, due to the discreteness of the adversary, we can easily
apply forward search algorithms, while for the previously-mentioned problem of
duration uncertainty, the adversary is dense and the solution is found by the much
more costly dynamic programming procedure. We are currently exploring a dis-
cretization approach for the duration uncertainty problem by assuming only finitely
many possible durations for each task. Although using this approach the system
may reach states for which a strategy has not been computed, we believe that us-
ing approximate strategies, a significant increase in performance can be acheieved.
Not covering all adversary choices while computing strategies is also an interest-
ing option for more general continuous and hybrid systems as discussed in the next
section.

The behavior of real-time systems with preemptive schedulers can be modelled
by stopwatch automata. Nevertheles, the expressive power of stopwatch automata
discouraged for a long time their use for verification purposes. Indeed , the reach-
ability problem (even for a single stopwatch) has been proven to be undecidable.
There are, however, some decidable sub-classes such as the so-calledintegration
graphs, suspension automataandtimed automata with tasks. In [Zan04] we have
studied sytems with preemptive scheduling (with static, e.g. RMA, or dynamic,
e.g. EDF, priorities), uncertainty (lower and upper bounded execution times), and
precedence dependencies. The behavior of these systems cannot be straightfor-
wardly translated into a decidable extension of timed automata. We showed that
the reach-set can be represented by formulas involving difference constraints on
clocks, and time-invariant equalities capturing the values of stopped clocks. This
result implies decidability and leads to an efficient implementation. Moreover, it
gives a precise symbolic characterization of the state space for the considered class
of systems.

In [MKM02] we developed an abstract model of the problem of control under
limited computational resources, where the controller had to keep the performance
measures of a multi-plant system bounded by mode switching, where each mode
represents a different mix of attention and resources, and hence a different deriva-
tive for the performance vector. We show how controllability for safety can be
reduced to some reachability problem on “linear” hybrid automata whose decid-
ability status is still open.

13

1.3.3 Search-based Verification and Control of Continuous Systems

For a systeṁx = f(x, u), whenu ∈ U is interpreted as an external disturbance,
exahustive verification requires computation with subsets ofRn with all the asso-
ciated difficulties. An alternative approach would be to use discrete time (which
is equivalent to restricting the input space to piecewise-constant signals) and dis-
cretizeU into a finite set̄U . By doing so we reduce the input space into the familiar
and tree-like object̄U∗ that we all love. If the discretization is sufficiently dense,
correctness with respect tōU∗ is a good enough approximation for exhaustive cor-
rectness. Our first work in this direction was [KMSK03] and can be viewed as
an alternative to “classical” reachability where instead of storing all points reach-
able within a time interval in a single geometric object, neighborhoods of sample
trajectories are stored and merged. This approach allows one to export many graph-
searching ideas from discrete to continuous systems.

Whenu is interpreted as a control input, this approach becomes even more
interesting because in synthesis we are sometimes happy to findonecontrol se-
quences which is good enough and do not always care about being exhaustive or
optimal. We started exploring this idea in the control context in [Ali03] and demon-
strated its applicability on a toy problem of guiding a missile inside a tunnel. Is is
clear, however, that search alone, no matter how intelligent, will cause an explo-
sion which, in this approach, is more related to the number of input sequence (|Ū |k
wherek is the decision horizon) rather than to the dimensionality of the state space.
Further progress requires some exploitation of knowledge of the system dynamics
and combination with more traditional techniques for optimal control.

As a test case for search-based controller synthesis we looked at the ABB case
study of the CC project. This is a small-scale model of a power ditribution net-
work where the goal is to restabilize the system after a failure at time zero. The
controller has3 different types of actions (tap ratio, compensating capacitance and
load shedding) to influence the system, each with its cost and effectiveness. A
naive application of this idea would involve searching over all sequences ranging
over all the60 combination of the control variables values, however the monotone
effect of each of them on the dynamics, together with the ordering of their costs,
allowed us to use a segregated search that tries the cheap controls first. The result-
ing algorithm, reported in [SD05], is a variant of model-predictive control where
the optimization for the bounded horizon is performed as a search over a finite set.
The algorithm was tested on various scenarios in which the impedance of the sys-
tem jumps from0.25 p.u. to a higher value. When this value was0.60 or smaller
we could quickly find stabilizing sequences. The quality of the solutions found by
segregated search was as good as exhaustive search for the decision horizons for

14

which the latter could be applied.
The current effort in this direction, conducted within the thesis of Alexandre

Donźe (supervised by O. Maler and T. Dang), is to develop more general-purpose
optimal control algorithms that are based on search, without sacrifising rigorous
analytic properties. Recently a new variant of the temporal-difference algorithm
has been developed [Don05] and performed well on a toy inverted pendulum prob-
lem. The next problems that we intend to tackle are those of finding optimal paths
for mobile robots amidst obstacles, and stabilizing a double pendulum.

1.3.4 Synthesizing Low-Complexity Schedulers

In order to synthesize a scheduler, the basic idea consists in constructing the set
of reachable states and, thus, identify the deadlocks. These are the states where
the application threads are deadlocked, or the states where some thread has missed
its deadline or period. Having obtained the deadlocked states, we do a backwards
traversal of the whole state space starting from the deadlocked states, and eliminat-
ing transitions leading to them, until there are no more deadlocks. Even though the
basic idea is simple, it is evident that in practice it suffers from the state explosion
problem. Therefore, it is imperative that we use techniques to minimize the size of
the state space.

In [KY03] we have developed a method for systems composed of cooperating
threads scheduled on a preemptive real-time operating system running on a mono-
processor hardware architecture. Our method consists of synthesizing schedulers
for successively more detailed models, adding thus complexity to a model only
when we have already calculated how we can constrain the more abstract one. The
scheduler synthesis is performed in five major steps:

• Compositional Synthesis: first, we decompose the system and synthesize
constraints independently for each of the components.We then apply the syn-
thesis algorithm again on the parallel composition of the already constrained
models.

• Abstraction of Time: second, we consider the issue of time. We examine
the untimed model of the system. Searching for deadlocks in the untimed
model allows us to examine a much smaller search space. In order to make
the problem more tractable, we then reduce the timed model modulo the
branching bisimulation equivalence, which eliminates unobservable actions
(in our case time-passing transitions) but only when doing so preserves the
branching structure of processes.

15

• Execution Model: third, we analyze the behavior of the system for two dif-
ferent execution models, namely preemptive and non-preemptive. We first
consider that the application threads cannot be preempted while they are
computing. The non-preemptive execution model hypothesis reduces the
state space, since it removes all the cases where the execution of a thread is
suspended so as to handle an interrupt. Once we can indeed safely schedule
the system under the hypothesis that threads are never preempted, then we
can use the constraints obtained during this step to reduce even further the
state space that we have to construct and analyze when we do allow threads
to be preempted.

• Observability of Clocks: the constraints we produce during the synthesis
use the state of the system to decide what are the safe choices at each point
during the execution and, therefore, also make reference to the values of the
local clocks of the threads. However, these clocks do not really exist in the
application but are introduced as a way to model computations. As using
timers may substantially increase the execution time of the scheduler, we
investigate the possibility of synthesizing a clock-free one. Not observing
clock values, actually defines an equivalence relation that further reduces the
state-space.

• Policies: once we have synthesized a scheduler, which is indeed non-deterministic,
we can compose it with policies to reduce non-determinism (or even to make
the scheduler deterministic).

This methodology has been successfully used in [KNY03] for generating sched-
ulers for real-time Java applications.

In [Klo04] we have shown how one can adapt data-mining techniques to de-
crease the size of a synthesised scheduler to allow optimizing its implementation.

1.4 Decentralized Observation and Control

This research action aims at studying problems of observation and control in a
distributed setting: instead of a single observer or controller, there are many such
agents which monitor or control a plant at the same time. Each of them has partial
information about the plant, and this is what makes the problem difficult. The prob-
lem is worth studying, however, since it embodies many interesting applications,
including the long-pursued goal of protocol synthesis [PTV01].

16

The two basic properties of most centralized observation and control settings2,
namely, (1) that existence of an observer-controller implies existence of a finite-
state observer-controller, and (2) that checking existence and synthesizing an observer-
controller is undecidable, break down in many decentralized settings. The precise
features of decentralization which result in loss of such properties as decidability
are still only partially understood.

Our work has contributed in the understanding of the computability limits in
decentralized observation and control. In [Tri01,?] we have shown that unde-
cidability occurs even in very basic decentralized observation and control prob-
lem on regular star-languages. This work also revealed how a decentralized ob-
servation problem where decisions are made off-line at a central decision point
(whereas observations are gathered on-line by the decentralized observers) can be
reduced to a decentralized control problem with no direct communication among
controllers: the reduction is possible because communication can be modeled indi-
rectly using an appropriate plant. In [Tri02, Tri04a] we have studied the problems
where communication among observers-controllers is built in the setting: we have
shown that bounded-delay communication makes the problem decidable, although
unbounded-delay communication does not help in this direction. Finally, in [Tri05]
we have established links of the above decentralized observation problem to the
theories of traces and rational relations. These links have permitted to identify a
number of special cases where the problem is decidable.

1.5 Specification Formalisms for Hybrid Behaviors

The added value of “formal methods” to software and hardware engineering is
not restricted to verification procedures. A large part of its contribution to system
design is in puttingproprtiesat the center stage of the validation process. Properties
are syntactic objects that specify in a rigorous manner which traces of I/O behaviors
the system may exhibit while interacting with its external environment. Properties
are typically expressed in some “declarative” formalism such as predicate logic,
temporal logic or regular expressions over the observable alphabet.

The validation of a system with respect to a given property is based on trans-
forming the property into aproperty monitor(observer, tester), a mechanism that
checks whether a given behavior (sequence of I/O events) satisfies the property.
This monitor can be viewed either as an automaton accepting exactly the set of
satisfying behaviors or as a procedure working recursively both on the length of

2Including partial-observation settings

17

the sequence and on the syntactic structure of the property.3

The theoretical aspects of such transformation are related to the theories of
formal languages and logic that deal with the expressive power of various for-
malisms for specifying discrete behaviors. One of the remarkable of this classic
theory is that regular (finite-state) languages admit a variety of logical, algebraic
and operational description formalisms which are all equivalent. We want to extend
such results for timed and hybrid systems, partly for the purpose of exporting the
language-theoretic aspects of formal methods to the continuous domain, and partly
due to interest in fundamental theoretical problems related to timed and hybrid
formal languages. Much of this work is carried out within the European project
PROSYD (Property-based System Design) and some of its aspects are related to
the work on testing timed automata mentioned in Section??.

1.5.1 Timed Regular Expressions

The result in [ACM02] is one of the strongest theoretical results concerning timed
formal languages. It starts by defining decent semantic domains for timed behav-
iors (the monoid oftime-event sequencesand the monoid of discrete-valuedsig-
nals) and then goes on to define timed regular expressions as means for specifying
sets of such timed behavior. This class of expressions extends untimed expres-
sion by adding a time restriction operator, and by using conjunction and renaming
(both are provably necessary to match the power of Alur-Dill timed automata).
The translation from these expressions to timed automata is simple and the hard
part is the proof of the other direction from automata to expressions, which in-
volves the solution of a new type of language equations. This Kleene theorem for
timed automata is part of our effort to elevate the theory of timed languages and
automata to the level of the classical untimed theory. In another recent work in
this direction [MP04] we define a notion of recognizability for timed languages
and show that it coincides with deterministic timed automata. Mininization and
determinization of timed automata have been studied also in [Tri04b] and other
algebraic aspects of the theory of timed languages and expressions were explored
in [Dim01b, Dim01a, Dim02, AD02].

1.5.2 Temporal Logic for Continuous Signals

The PROSYD project is concerned with theproperty specification Language(PSL),
accepted as a standard by the semi-conductor industry. This is essentially Pnueli’s

3It is worth mentioning that some researchers and tool vendors advocate the direct use of moni-
toring procedure without using an external specification formalism.

18

temporal logic augmented with syntactic sugar, regular expressions and additional
features which are needed in order to move from a clean theory to industrial-
strength tools. Our role in this project is to develop an extension of PSL to de-
scribe properties of analog and mixed signals (AMS). This work is related to a new
promising application domain, verification of analog circuits, to be discussed in
Section??, which examplifies the inter-cultural gap between computer science and
more “physical” domains.

As a starting point [MN04] we took a bounded version of the real-time logic
MITL, and augmented it with static predicates on the continuous domain that trans-
fom analog signals into Boolean ones. Using the obtained logic STL (Signal Tem-
poral Logic) one can express “sequential” properties that specify the order of oc-
currence of certain events (threshold crossings of continuous signals) as well as
the temporal distance between them. These properties are quite different from the
“properties” currently and implicitly employed in analog design which are more
of a macroscopic nature (frequency, signal-to-noise ratio, energy). So far we have
demonstrated how control-oriented properties such as stabilization and tracking
can be expressed in STL and are currently working on properties related to flash
memories, as communicated to us by the STM partners in PROSYD.

The development of future versions of STL depends on an ongoing interac-
tion with the potential users of the technology including partners in PROSYD and
other collaborators including the group at CMU with which we have recently col-
laborated on defining and checking oscillation properties [FKRM05]. Among the
extension to STL that we coinsider we mention frequency-domain properties as
well as property that allow continuous values at different times to be related di-
rectly and not only through their Boolean abstractions, for example something in
the spirit oft′ − t < a impliesξ[t]− ξ[t′] < b. Other “properties” to be considered
are those that output numerical values that reflect some quantitative characteristics
of the signal. Other properties such as following a reference signal, require further
investigations in new metrics for signals. This work on STL and its monitoring is
part of the thesis of Dejan Nickovic supervised by O. Maler.

1.5.3 Application: Property Monitors

Large systems with some hundreds of thoushands of transistors will have to wait
for quite some time until exhaustive hybrid verification techniques will be able to
handle them. The semi-formal alternative is to use montiors in conjunction with
numerical simulators so that the monitors observes simulation traces, detects prop-
erty violations and liberates the user from the need to construct monitors by hand or
to inspect long waveforms or large files manually. We have built an offline monitor-

19

ing procedure for STL [MN04] which takes a sampled-time simulation trace, and
marks the truth values of sub-formulae backwards until the truth value of the for-
mula itself is determined for time zero. The monitor has been applied to simulation
traces generated by a Simulink model of a CC project case study, the water-level
controller by EDF.

The disadvantage of offline monitoring is that it can start only after the sim-
ulation terminates, while it is often the case that a property is already satisfied or
violated by a short prefix of a long trace, a fact that an online monitor can de-
tect. This can be very meaningful when simulation is costly as is the case with
certain analog circuits: it may take few weeks to simulate one behavior of an RF
circuit. Another advantage of online monitors is that they can be used to monitor
real systems during execution and not only simulated systems. Online monitoring
requires, however, deterministic (or determinizable) monitor, which is a problem
because MITL can express properties that are not acceptable by a deterministic
timed automaton. We mention several possible remedies to this problem:

1. Use the observation of Tripakis that on-the-fly subset construction with re-
spect to agiventrace is possible, an observation used for testing timed au-
tomata [KT04].

2. Use specification formalisms that admit deterministic timed automata, for
example thepastfragment of MITL [MNP05].

3. Develop (as we did) a piecewsie-backward procedure that cuts a signalξ
into finitely many piecesξ1, . . . ξn and monitors them, one after the other, in
a backward fashion.

1.6 Fighting the Clock Explosion

Timed automata can be viewed either as a special class of hybrid automata with a
very simple dynamics in each mode (all clocks variables have the same derivative)
and a restricted reset map, or as an extension of automata where the dynmaics takes
into account not only the qualitative input history but also the time elapsed since
certain events have occurred. This requires as many clock variable as there are
events whose occurrence times need to be simultaneously memorized.

The basic verification questions for timed automata are decidable and are solved
by symbolic reachability algorithms like the one sketched in Section??, special-
ized to the dynamics of clocks. The decidability comes from the fact that there are
finitely many “timed polyhedra” encounterd during the reachability computation,

20

but from a complexity point of view this does not help much. The analysis of a
system consisting ofn components each withm states and one clock may generate
as much asmnknn! zones, wherek is the largest constant appearing in transition
guards. The representation size of each zone can ben2 which does not make life
easier.

Although a lot of effort has been invested during the last decade in finding more
efficient ways to represent and manipulate the reachable states of timed automata,
to the best of our knowledge, this problem has not been solved and very few sys-
tems with more than a dozen of clocks has ever been verified using timed automata,
which is a pity given their extremely useful expressive power. By analogy, the cur-
rent status of timed verification is like that of discrete verification before the BDD
revolution. One of the major problems seems to be the lack of an effective symbolic
representation for both the discrete and continuous parts. Since we are interested
in large-scale application like circuit timing analysis and scheduling, we have in-
vested quite a lot in various attempts to solve the problem. In the past we have tried
BDD representation (binary-encoded discrete clocks) and a canonical representa-
tion of non-convex timed polyhedra, while more recently we have focused on the
methods described below.

1.6.1 SAT Solvers for Difference Logic

Bounded model-checking (BMC) for discrete systems profited from the impres-
sive progress in the performance of propositional SAT solvers. Systems that made
reachability computation explode, can now be treated in a satisfactory manner
using such solvers. In a series of works (in collaboration with P. Niebert and
E. Asarin) we have tried to apply these ideas to timed automata. We have first iden-
tified difference logic, propositional logic augmented with difference constraints of
the formx − y < d, as the appropriate logic for expressing the transition relation
of timed automata as well as other timing-related problems such as scheduling.

Our first experience with the art (or more appropriately, the black magic) of
SAT solvers was through the MX-Solver developed within the thesis of Moez Mah-
foudh [NMA+02], during which we have studied different approaches for enhanc-
ing SAT to treat enriched logics. Our approach was based on a dynamic interaction
between the Boolean and numerical parts. Each time a difference constraint was
implied by the current assignment (i.e. became a unit clauses) it was put in a large
difference-bounds matrix (DBM) which was checked for consistency using algo-
rithms for negative cycle detection. Note that the DBMs used for SAT are several
orders of magnitude larger that those used in TA verification. The performance
of this solver on problems coming from BMC for timed automata was still much

21

inferior than that of standard TA verification tools. It was much superior, however,
to several other solvers developed around the same time (the topic was in the air)
on problems dominated by difference constraints such as job-shop scheduling.

The second round of work on the topic started with the masters thesis of Scott
Cotton.4 The first version of his DLSAT solver [CAMN04] employed conflict anal-
ysis and learning as well as a variety of techniques that improved the performance
results significantly. The second (and still unreported) version of DLSAT has al-
ready obtained some impressive results. To begin with, for purely-propostional
formulae it beats a world-class solver such as zChaff on some instances. Sec-
ondly, for some notorious job-shop scheduling problems it found the optimum (!)
while most solvers would explode much before that. Finally the results on bounded
model-checking for TA are much more encouraging than the previous results (for
example is is able to check a formula obtained from a25-unfolding of a64-gate
circuit (264 states and65 clocks) but more work still needs to be done concern-
ing more efficient translations of BMC to SAT. It might be the case that like other
asynchronous systems, TA are not amenable for efficient BMC. Like in untimed
systems, the use of the solver is not restricted to BMC and, it can serve as an
alternative computation engine inside (unbounded) reachability algorithms.

1.6.2 Abstraction Techniques for Timed Systems

Another attack on the clock explosion problem is conducted within the project
Combining Formal Verification and Timing Analysissponsored by Intel. The goal
is to use the expressive power of timed automata to verify circuits at the level
of abstraction of Boolean functions plus bi-bounded delays. Although we have
managed in the past to verify some non-trivial asynchronous circuits in this level
of abstraction [BJMY02], the size of most circuits is orders of magnitude larger
than what TA tools can handle. To tackle this problem we resort to divide-and-
conquer methods that cut circuits into small enough pieces, analyze each piece
separately to construct a small abstract model of its I/O behavior for further use.

In [SBM03] we have applied this idea to combinational circuits whose inputs
change only at time zero and hence their automata are acyclic and every run reaches
a stable state within a finite amount of time. We add an additional clock which is
never reset to zero and hence it measures absolute time. We analyze the circuit
using reachability analysis (which eliminates qualitative behaviors which are im-
possible due to timing constraints) and then, after having used the clocks we throw
them away by projecting guards on the absolute clock, hide transitions in internal

4In Max-Planck Institute after not having been admitted scandalously to the mediocre doctoral
school of UJF.

22

gates and minimize the automaton. This way we obtain an over-approximation of
the circuit which is faithful to its qualitative behavior and to the absolute occur-
rence times of events but is more liberal with respect to their temporal distances.
Using this compositinal approach we could analyze circuits with almost100 gates,
a great step for timed automata, but admittedly, still a far cry from the size of
circuits analyzed by traditional methods.

Targetting more sophisticated asynchronous circuits, we have extended this
technique to deal with open reactive systems whose inputs may changeany time.
This is a necessary step toward “hierarchical” compositional reasoning. Here there
is no absolute clock to projet on because we need to memorize input events that
happen at different times. Our solution is to use dynamic clocks generated at ev-
ery input event. Since we deal with well-formed circuits without auto-generated
oscillations, every input event is propagated within finite time to the output, its oc-
currence time can be forgotten and its clock can be reused, a fact that guarantees
a finite number of clocks. Applying the abstraction technique, this time projecting
on the input clocks, we obtain an abstract model that relates the occuurence times
of input and output events. This work, performed within the thesis of Ramzi Ben
Salah (supervised by O. Maler and M. Bozga), involves a lot of implementation
effort and is currently in its final phase [SBM05]. It could serve as a method for
creating timed abstraction of components in general, not necessarily those made of
hardware.

1.6.3 Getting Rid of Zones

As mentioned in Section 1.2.10, we believe that further progress in hybrid verifi-
cation will require some backtracking from the orthodox approach to reachbility
analysis which is too “breadth-first” and less single-trajectory oriented. Our work
on scheduling illustrates how this can be done. The modeling of acyclic optimal
scheduling problems with timed automata is straightforward, as well as its solvabil-
ity by standard reachability analysis. However trying to solve it using zone-based
reachability we have quickly reached the limits. Upon closer inspection we realized
that the dense temporal uncertainty is, in fact, a result of a choice of a scheduler
which may start a task at any time since it is enabled. It turned out that the opti-
mum is achievable by a special class of “non-lazy” strategies that either grant the
resource upon arrival to a state where the task in question is enabled, or wait until
something else happens. This observation allowed us to analyze a finite number
of runs and store states as clock vectors rather than polyhedra. Using this tech-
nique we could solve scheduling problems much larger than possible by standard
TA tools [AKM03, AAM05]. Moreover, a similar observation let us solve preem-

23

tive scheduling problems [AM02] without the trouble associated with the different
type of zones that correspond to stopwatch automata. Although the optimality of
non-lazy solutions does not extend to all types of scheduling problems, we believe
that restricting the exploration to a discrete subset of the scheduler actions is a
promising idea and its applicability to the actions of the adversary is worth being
investigated.

1.7 From Control Loops to Real-Time Programs

Hybrid systems research, being situated is one of the intersections of computation
and control, helps also in understanding topics related to the computer realization
of control loops. Issues such as sampling, numerical integration, code generation,
schedluing, robustness or power consumption are better understood when equipped
with the conceptual tools of both disciplines. In this sense, the hybrid research at
Verimag has been privilleged to enjoy the presence of Paul Caspi as a never-ending
source of practical and theoretical knowledge. His collaboration with Stavros Tri-
pakis on transforming control loops written in Simulink/Stateflow into scheduled
Lustre programs, described elsewhere in Section?? is a prime example of this
synergy. It is part of the theses of Adrian Curic and Christos Sofronis, with a
contribution of Norman Scaife. On the pedagogical side, the introductory survey
[CM05] attempts to classify and explain the various implementation strategies for
control-oriented embedded systems.

1.8 Analog Verification

Digital circuits have been one of the driving forces behind discrete verification, due
to their mass pruduction, which justifies large investments in exhaustive validation
prior to irreversible fabrication, as well as their complexity which demanded per-
formant verification techniques. There are some reasons to believe that analog and
mixed-signals circuits will play a similar role in the development and acceptance
of validation techniques based on hybrid models. It is commonly-accepted that the
analog parts of systems-on-a-chip risk becoming a bottleneck in the design flow
due to the lack of system-level EDA tools in general and validation tools in par-
ticular. We are actively involved in perliminary exploration in this domain which
includes the verification of some small circuits [DDM04, FKRM05], the genera-
tion of monitors for signal temporal logic [MN04], the organization of a workshop
on analog verification [DM05] and interaction with academic collaborator and in-
dustrial partners of the PROSYD project. Hopefully these activities will bear fruits

24

in the future.

1.9 Concluding Remarks

Inter-disciplinary research is a double-edged sword. On one hand it can serve as a
fertile ground for new ideas, sometimes much more interesting that those encoun-
tered in “standard” disciplines which very often degenerate into a boring repetition.
On the other hand, inter-disciplinarity can be used to hide mediocre and even bad
work that could not be accepted within any established serious community. It could
also be an opportunity to re-cycle old results and find imaginary nails for one’s own
hammer. We hope that the work described in this chapter does not fall completely
withn the latter category. We believe to have exported some useful computer sci-
ence ideas to hybrid systems research and learned few things in the process. A
large part of the research described here represents a conscious choice concern-
ing the niche in the theory-to-application spectrum that we want explore, which
is closer to the theoretical side than other approaches to embedded systems. This
choice is based on the belief that when developing new models for new phenomena
it is important to focus on a few new aspects as possible rather than go directly and
try to solve practical problems with all their dirty details, which often take more
than 80% of the effort. We believe that the possibility to opt for long-term goals and
not produce complete solutions to industrial problems (or pretend to produce such)
is a privilege of the researcher, compared to the engineer, and when not abused, it
can eventually contribute to technological progress, sooner or later.

We close this chapter with a final remark ontimed systems. While hybrid sys-
tems have their natural niche in the intersection of control and computer science,
and are easy to explain to the relative layman, this is unfortunately not the case for
timed systems whose understanding requires some sensitivity to subtle issues con-
cerning levels of abstraction. The application of timed automata are spread all over
the place (scheduling at various scales, timing analysis of hardware and software,
time management and planning) and their treatment is often domain-specific and
community-specific. Timed automata may give all these phenomena a state-space
based model as do automata for the discrete case and differential equations for the
continuous case. However, much of the theoretical work on timed automata only
pays a lip service to applications, and then goes on to prove theorems, some of
which are interesting. We believe that this unhealthy situation will change when
the scalability barrier will be broken, and we keep on directing our efforts toward
this goal.

25

Bibliography

[AAM05] Y. Abdeddäım, E. Asarin, and O. Maler. Scheduling with timed
automata.Theoretical Computer Science, 2005.

[Abd02] Yasmina Abdeddaı̈m. Scheduling with Timed Automata. PhD thesis,
INPG Grenoble, November 2002.

[ACM02] E. Asarin, P. Caspi, and O. Maler. Timed regualr expressions.Jour-
nal of the ACM, 49:172–205, 2002.

[AD02] E. Asarin and C. Dima. Balanced timed regular expressions. In
MTCS’2002, volume 68 ofENTCS, Brno, Czech Republic, August
2002. issue 5.

[AD04] E. Asarin and T. Dang. Abstraction by projection. In Rajeev Alur
and George J. Pappas, editors,Hybrid Systems: Computation and
Control, LNCS 2993, pages 32–47. Springer-Verlag, 2004.

[ADE+01] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivancic, V. Ku-
mar, I. Lee, P. Mishra, G. Pappas, and O. Sokolsky. Hierarchi-
cal hybrid modeling of embedded systems. In T.A. Henzinger and
C.M. Kirsch, editors,Embedded Software, LNCS 2211, pages 14–
31. Springer, 2001.

[ADG03] E. Asarin, T. Dang, and A. Girard. Reachability analysis of nonlin-
ear systems using conservative approximation. In Oded Maler and
Amir Pnueli, editors,Hybrid Systems: Computation and Control,
LNCS 2623, pages 20–35. Springer-Verlag, 2003.

[ADI02] R. Alur, T. Dang, and F. Ivancic. Reachability analysis of hybrid
systems via predicate abstraction. In M. Greenstreet and C. Tomlin,
editors,Hybrid Systems: Computation and Control. Springer, 2002.
to appear.

26

[ADI03a] R. Alur, T. Dang, and F. Ivancic. Counter-example guided predi-
cate abstraction of hybrid systems. InTools and Algorithms for the
Construction and Analysis of System. Springer-Verlag, 2003.

[ADI03b] R. Alur, T. Dang, and F. Ivancic. Progress on reachability anal-
ysis of hybrid systems using predicate abstraction. In O. Maler
and A. Pnueli, editors,Hybrid Systems: Computation and Control,
LNCS 2623. Springer-Verlag, 2003.

[ADI04] R. Alur, T. Dang, and F. Ivancic. Reachability analysis of hybrid
systems via predicate abstraction.ACM transactions on embedded
computing systems (TECS), 2004.

[ADI05] R. Alur, T. Dang, and F. Ivancic. Counter-example guided predicate
abstraction of hybrid systems.Theoretical Computer Science, 2005.
to appear.

[ADM01a] E. Asarin, T. Dang, and O. Maler. d/dt: A tool for reachability anal-
ysis of continuous and hybrid systems. InProc. IFAC Symposium
on Non-linear Control. IFAC, 2001.

[ADM01b] E. Asarin, T. Dang, and O. Maler. d/dt: A verification tool for hybrid
systems. InProc. of the 40th IEEE CDC, Orlando, Florida, 2001.

[ADM02] E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of
hybrid systems. InProc. CAV’02, number 2404 in LNCS, pages
365–370. Springer, 2002.

[AKM03] Y. Abdeddäım, A. Kerbaa, and O. Maler. Task graph scheduling
using timed automata. InFMPPTA, 2003.

[Ali03] Olfa Ben Sik Ali. Simulation des systèmes continus ouverts. Mas-
ter’s thesis, DEA Informatique: Système et Communication, Uni-
versit́e Joseph Fourier, Grenoble, June 2003.

[AM02] Y. Abdeddäım and O. Maler. Preemptive job-shop scheduling using
stopwatch automata. In J.-P. Katoen and P. Stevens, editors,Proc.
TACAS’02, number 2280 in LNCS, pages 113–126. Springer, 2002.

[AMY02] E. Asarin, O. Maler, and S. Yovine, editors.Theory and Practice of
Timed Systems, TPTS’02, April 2002.

27

[APSY02] E. Asarin, G. Pace, G. Schneider, and S. Yovine. Speedi – a verifi-
cation tool for polygonal hybrid systems. InProceedings of “Com-
puter Aided Verification, CAV’02”, Lecture Notes in Computer Sci-
ence, Denmark, July 2002. Springer.

[AS02] E. Asarin and G. Schneider. Widening the boundary between de-
cidable and undecidable hybrid systems. InCONCUR’2002, num-
ber 2421 in LNCS, pages 193–208, Brno, Czech Republic, August
2002. Springer.

[ASY01] E. Asarin, G. Schneider, and S. Yovine. On the decidability
of the reachability problem for planar differential inclusions. In
A. Sangiovani-Vincentelli and M. di Bendetto, editors,Hybrid Sys-
tems: Computation and Control, number 2034 in LNCS, pages 89–
104. Springer, 2001.

[ASY02] E. Asarin, G. Schneider, and S. Yovine. Towards computing phase
portraits of polygonal differential inclusions. In M. Greenstreet
and C. Tomlin, editors,Hybrid Systems: Computation and Control.
Springer, 2002. to appear.

[AT02] K. Altisen and S. Tripakis. Tools for controller synthesis of timed
systems. InRT-TOOLS, 2002.

[BJMY02] M. Bozga, H. Jianmin, O. Maler, and S. Yovine. Verification of
asynchronous circuits using timed automata. InProc. TPTS 2002,
number 65 in ENTCS, 2002.

[BKM04] M. Bozga, A. Kerbaa, and O. Maler. Scheduling acyclic branch-
ing programs on parallel machines. InProc. RTSS’04. IEEE Press,
2004.

[CAMN04] S. Cotton, E. Asarin, O. Maler, and P. Niebert. Some progress
in satisfiability checking for difference logic. InProc. FOR-
MATS/FTRTFT’04. Springer, 2004.

[CM05] P. Caspi and O. Maler. From control loops to real-time programs.
In Handbook of Networked and Embedded Control Systems. CRC
Press, 2005.

[Dan05] T. Dang. Application of reachability analysis to idle speed con-
trol synthesis. International Journal of Software Engineering &

28

Knowledge Engineering IJSEKE, Special issue of selected papers
from the International Embedded and Hybrid Systems Conference
IEHSC’05:to appear, 2005.

[DDM04] T. Dang, A. Donze, and O. Maler. Verification of analog and mixed-
signal circuits using hybrid systems techniques. InFMCAD’04.
Springer, 2004.

[Dim01a] C. Dima. Real-time automata.Journal of Automata, Languages and
Combinatorics, 6:3–23, 2001.

[Dim01b] C. Dima.Théorie alǵebrique des langages formels temps réel. PhD
thesis, Universit́e Joseph Fourier, Grenoble, 2001.

[Dim02] Catalin Dima. Computing reachability relations in timed automata.
In LICS, 2002.

[DM05] T. Dang and O. Maler, editors.Workshop on Formal Verification of
Analog Circuits, FAC’05, Edinburgh, apr 2005. LFCS, University
of Edinburgh.

[DMMRY01] J. Della Dora, A. Maignan, M. Mirica-Ruse, and S. Yovine. Hybrid
computation. InISSAC’01, July 2001.

[Don05] Alexandre Donźe. On temporal differences algorithms for continu-
ous systems. Technical Report TR-2005-8, Verimag Technical Re-
port, 2005.

[DY01] J. Della Dora and S. Yovine. A methodology for analyzing the
dynamics of hybrid systems. InEuropean Control Conference,
ECC’01, September 2001.

[FKRM05] G. Frehse, B. Krogh, R. Rutenbar, and O. Maler. Time domain veri-
fication of oscillator circuit properties. In T. Dang and O. Maler, ed-
itors,Workshop on Formal Verification of Analog Circuits, FAC’05,
pages 1–13, 2005.

[Gir04] A. Girard. Analyse algorithmique des systèmes hybrides. PhD the-
sis, Institut National Polytechnique de Grenoble, 2004.

[Klo04] Ch. Kloukinas. Data-mining synthesised schedulers for hard real-
time systems. InProceedings of the 19th IEEE Conference on Auto-
mated Software Engineering (ASE 2004), Linz, Austria, September
2004. IEEE Computer Society Press.

29

[KMSK03] J. Kapinski, O. Maler, O. Stursberg, and B. Krogh. On systematic
simulation of open continuous systems. In O. Maler and A. Pnueli,
editors,Hybrid Systems: Computation and Control. Springer, 2003.

[KNY03] Ch. Kloukinas, Ch. Nakhli, and S. Yovine. A methodology and
tool support for generating scheduled native code for real-time Java
applications. InEMSOFT 2003, volume 2855 ofLNCS, 2003.

[KT04] M. Krichen and S. Tripakis. Black-box conformance testing for
real-time systems. In11th International SPIN Workshop on Model
Checking of Software (SPIN’ 04), volume 2989 ofLNCS. Springer,
2004.

[KY03] Ch. Kloukinas and S. Yovine. Synthesis of safe, QoS extendible,
application specific schedulers for heterogeneous real-time systems.
In Proceedings of the 15th Euromicro Conference on Real-Time Sys-
tems (ECRTS’03), ISBN 0-7695-1936-9, 2003.

[LPY01] G. Lafferriere, G. Pappas, and S. Yovine. Symbolic reachability
computation of families of linear vector fields.Journal of Symbolic
Computation, 32(3):231–253, September 2001.

[Mal01] O. Maler. Guest editorial: Verification of hybrid systems.European
Journal of Control, 7:357–365, 2001.

[Mal02] O. Maler. Control from computer science.Annual Reviews in Con-
trol, 2002.

[Mal04] O. Maler. On optimal and sub-optimal control in the presence of
adversaries. InProc. Wodes’04, 2004.

[MKM02] O. Maler, B. Krogh, and M. Mahfoudh. On control with bounded
computational resources. InFTRTFT’02, number 2469 in LNCS,
pages 147–164, 2002.

[MN04] O. Maler and D. Nickovic. Monitoring temporal properties of con-
tinuous signals. InProc. FORMATS/FTRTFT’04. Springer, 2004.

[MNP05] O. Maler, D. Nickovic, and A. Pnueli. Real-time temporal logic:
past, present, future. submitted for publication, 2005.

[MP03] O. Maler and A. Pnueli, editors.Hybrid Systems: Computation and
control, HSCC’03, volume 2326 ofLNCS, April 2003.

30

[MP04] O. Maler and A. Pnueli. On recognizable timed languages. In
I. Walukiewich, editor,FOSSACS. Springer, 2004.

[NMA +02] P. Niebert, M. Mahfoudh, E. Asarin, M. Bozga, N. Jain, and
O. Maler. Verification of timed automata via satisfiability check-
ing. In W. Damm and E-R Olderog, editors,FTRTFT, volume 2469
of LNCS, pages 225–244. Springer, 2002.

[PTV01] A. Puri, S. Tripakis, and P. Varaiya. Problems and examples of
decentralized observation and control for discrete event systems.
In Workshop on Supervisory Control for Discrete Event Systems,
SCODES, 2001.

[SBM03] R. Ben Salah, M. Bozga, and O. Maler. On timing analysis of com-
binational circuits. InFORMATS’03, 2003.

[SBM05] R. Ben Salah, M. Bozga, and O. Maler. Automatic abstraction of
real-time components. submitted for publication, 2005.

[SD05] S. Shapero and A. Donzé. Search-based control of the simplified
model of the abb case study. Technical Report 2005-6, Verimag,
February 2005.

[Tri01] S. Tripakis. Undecidable problems of decentralized observation and
control. InIEEE Conference on Decision and Control, 2001.

[Tri02] S. Tripakis. Decentralized control of discrete event systems with
bounded or unbounded delay communication. In6th International
Workshop on Discrete Event Systems (WODES’02). IEEE CS Press,
2002.

[Tri04a] S. Tripakis. Decentralized control of discrete event systems with
bounded or unbounded delay communication.IEEE Transactions
on Automatic Control, 49(9), September 2004.

[Tri04b] S. Tripakis. Folk theorems on the determinization and minimiza-
tion of timed automata. InFormal Modeling and Analysis of Timed
Systems (FORMATS’03), volume 2791 ofLNCS. Springer, 2004.

[Tri05] S. Tripakis. Two-phase distributed observation problems. In
5th Intl. Conf. on Application of Concurrency to System Design
(ACSD’05). IEEE CS Press, 2005. to appear.

31

[Zan04] Marcelo Zanconi.Modélisation et analyse de systèmes temps-réel
avec pŕeemption, incertitude et dépendences. PhD thesis, Université
Joseph Fourier, Juin 2004.

32

