Stochastic hybrid models for DNA replication in the fission yeast

John Lygeros
Outline

1. Hybrid and stochastic hybrid systems
2. Reachability & randomized methods
3. DNA replication
 - DNA replication in the cell cycle
 - A stochastic hybrid model
 - Simulation results for the fission yeast
 - Analysis
4. Summary
Hybrid dynamics

Discrete and continuous interactions

Air traffic
- Flight plan
- FMS modes
- Coordination communication

Multi-agent
- Aircraft motion
- Agent motion

Network topology
- Quantization
- Gene activation/inhibition

Networked control
- Network delays
- Controlled state

Biology
- Protein concentration fluctuation
Hybrid dynamics

• Both continuous and discrete state and input
• Interleaving of discrete and continuous
 – Evolve continuously
 – Then take a jump
 – Then evolve continuously again
 – Etc.
• Tight coupling
 – Discrete evolution depends on continuous state
 – Continuous evolution depends on discrete state
Hybrid systems

- Flight plan
- FMS modes
- Network topology
- Quantization
- Coordination
- Communication
- Gene activation/inhibition
- Aircraft motion
- Network delays
- Controlled state
- Agent motion
- Protein concentration fluctuation

Control
- ODE
- Trajectories
- ...

Multi-agent

Computation
- Automata
- Languages
- ...

Hybrid systems = Computation & Control

ETH Zürich
But what about uncertainty?

• Hybrid systems allow uncertainty in
 – Continuous evolution direction
 – Discrete & continuous state destinations
 – Choice between flowing and jumping
• “Traditionally” uncertainty worst case
 – “Non-deterministic”
 – Yes/No type questions
 – Robust control
 – Pursuit evasion game theory
• May be too coarse for some applications
Example: Air traffic safety

Is a fatal accident possible in the current air traffic system? YES!

Is this an interesting question? NO!

What is the probability of a fatal accident? Much more difficult!

How can this probability be reduced?
Stochastic hybrid systems

• Answering (or even asking) these questions requires additional complexity

• Richer models to allow probabilities
 – Continuous evolution (e.g. SDE)
 – Discrete transition timing (Markovian, forced)
 – Discrete transition destination (transition kernel)

• Stochastic hybrid systems

Shameless plug:
Control
- ODE
- Trajectories
- ...

Hybrid systems
- ODE
- Trajectories
- ...

Stochastic Hybrid Systems

Stochastic analysis
- Stochastic DE
- Martingales
- ...

Computation
- Automata
- Languages
- ...

Stochastic analysis
- Stochastic DE
- Martingales
- ...

Stochastic Hybrid Systems
Outline

1. Hybrid and stochastic hybrid systems
2. Reachability & randomized methods
3. DNA replication
 - DNA replication in the cell cycle
 - A stochastic hybrid model
 - Simulation results for the fission yeast
 - Analysis
4. Summary
Reachability: Stochastic HS

State space

Initial states

Terminal states

Estimate "measure" of this set, P
Monte-Carlo simulation

- Exact solutions impossible
- Numerical solutions computationally intensive
- Assume we have a simulator for the system
 - Can generate trajectories of the system
 - With the right probability distribution
- “Algorithm”
 - Simulate the system N times
 - Count number of times terminal states reached (M)
 - Estimate reach probability P by $\hat{P} = \frac{M}{N}$
Convergence

• It can be shown that $\hat{P} \to P$ as $N \to \infty$
• Moreover ...

Probability that $|\hat{P} - P| \geq \varepsilon$ is at most δ as long as

$$N \geq \frac{1}{2\varepsilon^2} \ln \left(\frac{2}{\delta} \right)$$

• Simulating more we get as close as we like
• “Fast” growth with ε slow growth with δ
• No. of simulations independent of state size
• Time needed for each simulation dependent on it
• Have to give up certainty
Not as naïve as it sounds

- Efficient implementations
 - Interacting particle systems, parallelism
- With control inputs
 - Expected value cost
 - Randomized optimization problem
 - Asymptotic convergence
 - Finite sample bounds
- Parameter identification
 - Randomized optimization problem
- Can randomize deterministic problems
Outline

1. Hybrid and stochastic hybrid systems
2. Reachability & randomized methods
3. DNA replication
 - DNA replication in the cell cycle
 - A stochastic hybrid model
 - Simulation results for the fission yeast
 - Analysis
4. Summary
Credits

• ETH Zurich:
 – John Lygeros
 – K. Koutroumpas

• U. of Patras:
 – Zoe Lygerou
 – S. Dimopoulos
 – P. Kouretas
 – I. Legouras

• Rockefeller U.:
 – Paul Nurse
 – C. Heichinger
 – J. Wu

HYGEIA
FP6-NEST-04995

www.hygeiaweb.gr
Systems biology

- Mathematical modeling of biological processes at the molecular level
- Genes, proteins, and their interactions
- Abundance of data
 - Microarray
 - Imaging and microscopy
 - Gene reporter systems, bioinformatics, robotics
Systems biology

- Models based on biologist intuition
- Can “correlate” large data sets
- Model predictions
 - Highlight “gaps” in understanding
 - Motivate new experiments
Cell cycle

- Synthesis
- Replication
- S
- G2
- G1
- M
- "Gap"
- Segregation
- Mitosis
Process needs to be tightly regulated

Normal cell

Metastatic colon cancer
Origins of replication

A

B

C

D

E
Regulatory biochemical network

- CDK activity sets cell cycle pace [Nurse et.al.]
- Complex biochemical network, ~12 proteins, nonlinear dynamics [Novak et.al.]

Hybrid Process!
Process “mechanics”

• Discrete
 – Firing of origins
 – Passive replication by adjacent origin

• Continuous
 – Forking: replication movement along genome
 – Speed depends on location along genome

• Stochastic
 – Location of origins (where?)
 – Firing of origins (when?)
Different organisms, different strategies

- Bacteria and budding yeast
 - Specific sequences that act as origins
 - With very high efficiency (>95%)
 - Process very deterministic

- Frog and fly embryos
 - Any position along genome can act as an origin
 - Random number of origins fire
 - Random patterns of replication

- Most eukaryots (incl. humans and S. pombe)
 - Origin sequences have certain characteristics
 - Fire randomly with some “efficiency”

Model data

- Split genome into pieces
 - Chromosomes
 - May have to split further

- For each piece need:
 - Length in bases
 - # of potential origins of replication \((n) \)
 - \(p(x) \) p.d.f. of origin positions on genome
 - \(\lambda(x) \) firing rate of origin at position \(x \)
 - \(v(x) \) forking speed at position \(x \)
Stochastic terms

- Extract origin positions $X_i \sim p(x), \ i = 1, \ldots, n$
- Extract firing time, T_i, of origin i

$$P\{T_i > t\} = e^{-\lambda(X_i)t}$$
Different “modes”

PreR
RB
RR
RL
PostR
PassR

Origin i
Discrete dynamics (origin i)

Guards depend on
- T_i, x_i^+, x_i^-
- x_{i-1}^+, x_{i+1}^-
Continuous dynamics (origin i)

- Progress of forking process

\[
\dot{x}_i^+ = \begin{cases}
 v(X_i + x_i^+) & \text{if } q(i) \in \{RB, RR\} \\
 0 & \text{otherwise}
\end{cases}
\]

\[
\dot{x}_i^- = \begin{cases}
 v(X_i - x_i^-) & \text{if } q(i) \in \{RB, RL\} \\
 0 & \text{otherwise}
\end{cases}
\]

Fission yeast model

• Instantiate: *Schizosaccharomyces pombe*
 - Fully sequenced [Bahler et.al.]
 - ~12 Mbases, in 3 chromosomes
 - Exclude
 • Telomeric regions of all chromosomes
 • Centromeres of chromosomes 2 & 3
 - 5 DNA segments to model
• Remaining data from experiments
 - C. Heichinger & P. Nurse

Experimental data input

- 863 origins
- Potential origin locations known, \(p(x) \) trivial
- "Efficiency", \(FP_i \), for each origin, \(i \)
 - Fraction of cells where origin observed to fire
 - Firing probability
 - Assuming 20 minute nominal S-phase

\[
FP_i = \int_0^{20} \lambda_i e^{-\lambda_i t} dt \Rightarrow \lambda_i = -\frac{\ln(1-FP_i)}{20}
\]

- Fork speed constant, \(v(x) = 3 \text{ kbases/minute} \)
Simulation

- Piecewise Deterministic Process [Davis]
- Model size formidable
 - Up to 1726 continuous states
 - Up to 6^{863} discrete states
- Monte-Carlo simulation in Matlab
 - Model probabilistic, each simulation different
 - Run 1000 simulations, collect statistics
- Check statistical model predictions against independent experimental evidence
 - S. phase duration
 - Number of firing origins
Example runs

Replication time(1): 0

Replication time(2): 0

Created by K. Koutroumpas
MC estimate: efficiency

Close to experimental
MC estimate: S-phase duration

Empirical: 19 minutes!
MC estimate: Max inter-origin dist.

Random gap problem
Possible explanations

• Efficiencies used in model are wrong
 – System identification to match efficiencies
 – Not a solution, something will not fit

• Speed approximation inaccurate
 – “Filtering” of raw experimental data
 – Not a solution, something will not fit

• Inefficient origins play important role
 – Motivation for bioinformatic study
 – AT content, asymmetry, inter-gene, ...
 – Also chromatin structure
 – Not a solution
Possible explanations (not!)

Increasing efficiency

Increasing fork speed
Possible explanations

- DNA replication continues into G2 phase
 - Circumstantial evidence S phase may be longer
 - Use model to guide DNA combing experiments
Possible explanations

- Firing propensity redistribution
 - Limiting “factor” binding to potential origins
 - Factor released on firing or passive replication
 - Can bind to pre-replicating origins
 - Propensity to fire increases in time
Firing propensity redistribution

![Histogram of Completion Time of DNA replication in minutes](image1)

![Histogram of Number of Firing Origins Genome-Wide](image2)
Outline

1. Hybrid and stochastic hybrid systems
2. Reachability & randomized methods
3. DNA replication
 - DNA replication in the cell cycle
 - A stochastic hybrid model
 - Simulation results for the fission yeast
 - Analysis
4. Summary
Concluding remarks

- DNA replication in cell cycle
 - Develop SHS model based on biological intuition & experimental data
 - Code model for specific organism and simulate
 - Exposed gaps in intuition
 - Suggested new questions and experiments

- Simple model gave rise to many studies
 - System identification for efficiencies, filtering for fork speed estimation, bioinformatics origin selection criteria
 - DNA combing to detect G2 replication
 - Theoretical analysis
 - Extensions: re-replication

- Promote understanding, e.g.
 - Why do some organisms prefer deterministic origin positions?