Stochastic hybrid models for DNA replication in the fission yeast

JOHN LYGEROS

Automatic Control Laboratory, ETH Zürich

WWW.CONTROL.ETHZ.CH

Outline

- 1. Hybrid and stochastic hybrid systems
- 2. Reachability & randomized methods
- 3. DNA replication
 - DNA replication in the cell cycle
 - A stochastic hybrid model
 - Simulation results for the fission yeast
 - Analysis
- 4. Summary

Hybrid dynamics

Discrete and continuous interactions

Flight plan FMS modes

Coordination

communication

Network topology Quantization

Aircraft motion

Network delays Controlled state

Agent motion

Protein concentration fluctuation

Hybrid dynamics

- Both continuous and discrete state and input
- Interleaving of discrete and continuous
 - Evolve continuously
 - Then take a jump
 - Then evolve continuously again
 - Etc.
- Tight coupling
 - Discrete evolution depends on continuous state
 - Continuous evolution depends on discrete state

Hybrid systems

But what about uncertainty?

- Hybrid systems allow uncertainty in
 - Continuous evolution direction
 - Discrete & continuous state destinations
 - Choice between flowing and jumping
- "Traditionally" uncertainty worst case
 - "Non-deterministic"
 - Yes/No type questions
 - Robust control
 - Pursuit evasion game theory
- May be too coarse for some applications

Example: Air traffic safety

Is a fatal accident possible in the current air traffic system?

Is this an interesting question?

What it is the probability of a fatal accident?

How can this probability be reduced?

Stochastic hybrid systems

- Answering (or even asking) these questions requires additional complexity
- Richer models to allow probabilities
 - Continuous evolution (e.g. SDE)
 - Discrete transition timing (Markovian, forced)
 - Discrete transition destination (transition kernel)
- Stochastic hybrid systems

Shameless plug:

H.A.P. Blom and J. Lygeros (eds.), "Stochastic hybrid systems: Theory and safety critical applications", Springer-Verlag, 2006

C.G. Cassandras and J. Lygeros (eds.), "Stochastic hybrid systems", CRC Press, 2006

Outline

- 1. Hybrid and stochastic hybrid systems
- 2. Reachability & randomized methods
- 3. DNA replication
 - DNA replication in the cell cycle
 - A stochastic hybrid model
 - Simulation results for the fission yeast
 - Analysis
- 4. Summary

Reachability: Stochastic HS

Monte-Carlo simulation

- Exact solutions impossible
- Numerical solutions computationally intensive
- Assume we have a simulator for the system
 - Can generate trajectories of the system
 - With the right probability distribution
- "Algorithm"
 - Simulate the system *N* times
 - Count number of times terminal states reached (*M*)
 - Estimate reach probability P by $\hat{P} = \frac{M}{N}$

Convergence

- It can be shown that $\hat{P} \to P$ as $N \to \infty$
- Moreover ...

Probability that $|\hat{P} - P| \ge \varepsilon$ is at most δ as long as

$$N \ge \frac{1}{2\varepsilon^2} \ln\left(\frac{2}{\delta}\right)$$

- Simulating more we get as close as we like
- "Fast" growth with ε slow growth with δ
- No. of simulations independent of state size
- Time needed for each simulation dependent on it
- Have to give up certainty

Not as naïve as it sounds

- Efficient implementations
 - Interacting particle systems, parallelism
- With control inputs
 - Expected value cost
 - Randomized optimization problem
 - Asymptotic convergence
 - Finite sample bounds
- Parameter identification
 - Randomized optimization problem
- Can randomize deterministic problems

Outline

- 1. Hybrid and stochastic hybrid systems
- 2. Reachability & randomized methods
- 3. DNA replication
 - DNA replication in the cell cycle
 - A stochastic hybrid model
 - Simulation results for the fission yeast
 - Analysis
- 4. Summary

Credits

- ETH Zurich:
 - John Lygeros
 - K. Koutroumpas
- U. of Patras:
 - Zoe Lygerou
 - S. Dimopoulos
 - P. Kouretas
 - I. Legouras
- Rockefeller U.:
 - Paul Nurse
 - C. Heichinger
 - J. Wu

HYGEIA FP6-NEST-04995

www.hygeiaweb.gr

Systems biology

- Mathematical modeling of biological processes at the molecular level
- Genes proteins and their interactions
- Abundance of data
 - Micoarray
 - Imaging and microscopy
 - Gene reporter systems, bioinformatics, robotics

Systems biology

- Models based on biologist intuition
- Can "correlate" large data sets
- Model predictions
 - Highlight "gaps" in understanding

- Motivate new experiments

Process needs to be tightly regulated

Normal cell

Metastatic colon cancer

Origins of replication

ORC

Regulatory biochemical network

- CDK activity sets cell cycle pace [Nurse et.al.]
- Complex biochemical network, ~12 proteins, nonlinear dynamics [Novak et.al.]

Process "mechanics"

- Discrete
 - Firing of origins
 - Passive replication by adjacent origin
- Continuous
 - Forking: replication movement along genome
 - Speed depends on location along genome
- Stochastic
 - Location of origins (where?)
 - Firing of origins (when?)

Different organisms, different strategies

- Bacteria and budding yeast
 - Specific sequences that act as origins
 - With very high efficiency (>95%)
 - Process very deterministic
- Frog and fly embryos
 - Any position along genome can act as an origin
 - Random number of origins fire
 - Random patterns of replication
- Most eukaryots (incl. humans and *S. pombe*)
 - Origin sequences have certain characteristics
 - Fire randomly with some "efficiency"

N. Rind, "DNA replication timing: random thoughts about origin firing", *Nature cell biology*, 8(12), pp. 1313-1316, December 2006

Model data

- Split genome into pieces
 - Chromosomes
 - May have to split further
- For each piece need:
 - Length in bases
 - # of potential origins of replication (n)
 - -p(x) p.d.f. of origin positions on genome
 - $-\lambda(x)$ firing rate of origin at position x
 - -v(x) forking speed at position x

Stochastic terms

- Extract origin positions $X_i \sim p(x), i = 1, ..., n$
- Extract firing time, T_i, of origin i

$$P\{T_i > t\} = e^{-\lambda(X_i)t}$$

Different "modes"

Discrete dynamics (origin i)

Continuous dynamics (origin i)

Progress of forking process

$$\dot{x}_i^+ = \begin{cases} v(X_i + x_i^+) & \text{if } q(i) \in \{RB, RR\} \\ 0 & \text{otherwise} \end{cases}$$

$$\dot{x}_{i}^{-} = \begin{cases} v(X_{i} - x_{i}^{-}) & \text{if } q(i) \in \{RB, RL\} \\ 0 & \text{otherwise} \end{cases}$$

P. Kouretas, K. Koutroumpas, J. Lygeros, and Z. Lygerou, "Stochastic hybrid modeling of biochemical processes," in *Stochastic Hybrid Systems* (C. Cassandras and J. Lygeros, eds.), no. 24 in Control Engineering, pp. 221–248, Boca Raton: CRC Press, 2006

Fission yeast model

- Instantiate: *Schizzosacharomyces pombe*
 - Fully sequenced [Bahler et.al.]
 - ~12 Mbases, in 3 chromosomes
 - Exclude
 - Telomeric regions of all chromosomes
 - Centromeres of chromosomes 2 & 3
 - 5 DNA segments to model
- Remaining data from experiments
 - C. Heichinger & P. Nurse

C. Heichinger, C.J. Penkett, J. Bahler, P. Nurse, "Genome wide characterization of fission yeast DNA replication origins", *EMBO Journal*, vol. 25, pp. 5171-5179, 2006

Experimental data input

- 863 origins
- Potential origin locations known, p(x) trivial
- "Efficiency", FP_i, for each origin, i
 - Fraction of cells where origin observed to fire
 - Firing probability
 - Assuming 20 minute nominal S-phase

$$FP_i = \int_0^{20} \lambda_i e^{-\lambda_i t} dt \Rightarrow \lambda_i = -\frac{\ln(1 - FP_i)}{20}$$

• Fork speed constant, v(x)=3kbases/minute

Simulation

- Piecewise Deterministic Process [Davis]
- Model size formidable
 - Up to 1726 continuous states
 - Up to 6863 discrete states
- Monte-Carlo simulation in Matlab
 - Model probabilistic, each simulation different
 - Run 1000 simulations, collect statistics
- Check statistical model predictions against independent experimental evidence
 - S. phase duration
 - Number of firing origins

Example runs

MC estimate: efficiency

Close to experimental

MC estimate: S-phase duration

Empirical: 19 minutes!

MC estimate: Max inter-origin dist.

Random gap problem

Possible explanations

- Efficiencies used in model are wrong
 - System identification to match efficiencies
 - Not a solution, something will not fit
- Speed approximation inaccurate
 - "Filtering" of raw experimental data
 - Not a solution, something will not fit
- Inefficient origins play important role
 - Motivation for bioinformatic study
 - AT content, asymmetry, inter-gene, ...
 - Also chromatin structure
 - Not a solution

Possible explanations (not!)

Possible explanations

- DNA replication continues into G2 phase
 - Circumstantial evidence S phase may be longer
 - Use model to guide DNA combing experiments

Possible explanations

- Firing propensity redistribution
 - Limiting "factor" binding to potential origins
 - Factor released on firing or passive replication
 - Can bind to pre-replicating origins
 - Propensity to fire increases in time

Firing propensity redistribution

Re-replication

Created by K. Koutroumpas

Outline

- 1. Hybrid and stochastic hybrid systems
- 2. Reachability & randomized methods
- 3. DNA replication
 - DNA replication in the cell cycle
 - A stochastic hybrid model
 - Simulation results for the fission yeast
 - Analysis
- 4. Summary

Concluding remarks

- DNA replication in cell cycle
 - Develop SHS model based on biological intuition & experimental data
 - Code model for specific organism and simulate
 - Exposed gaps in intuition
 - Suggested new questions and experiments
- Simple model gave rise to many studies
 - System identification for efficiencies, filtering for fork speed estimation, bioinformatics origin selection criteria
 - DNA combing to detect G2 replication
 - Theoretical analysis
 - Extensions: re-replication
- Promote understanding, e.g.
 - Why do some organisms prefer deterministic origin positions?

