A Discrete Approach to Model Gene Regulatory Networks and the Use of Formal Logic to Propose New Wet Experiments Gilles Bernot

University of Nice Sophia antipolis, I3S laboratory

Acknowledgments:

Observability Group of the Epigenomics Project

Menu

- 1. Simulation vs. Validation
- 2. Formal Methods for the Modelling Activity
- 3. Gene Regulatory Networks & Temporal Logic
- 4. Pedagogical example: Pseudomonas aeruginosa

Mathematical Models and Simulation

- 1. Rigorously encode sensible knowledge into mathematical formulae
- 2. Some parameters are well defined, e.g. from biochemical knowledge
 - Some parameters are limited to some intervals
 - Some parameters are *a priori* unknown
- 3. Perform lot of simulations, compare results with known behaviours, and propose some credible values of the unknown parameters which produce acceptable behaviours
- 4. Perform additional simulations reflecting novel situations
- 5. If they predict interesting behaviours, propose new biological experiments
- 6. Simplify the model and try to go further

Mathematical Models and Validation

"Brute force" simulations are not the only way to use a computer. We can offer computer aided environments which help:

- to avoid models that can be "tuned" *ad libitum*
- to validate models with a reasonable number of experiments
- to define only models that could be experimentally refuted
- to prove refutability w.r.t. experimental capabilities

Observability issues:

Observability Group, Epigenomics Project.

Menu

- 1. Simulation vs. Validation
- 2. Formal Methods for the Modelling Activity
- 3. Gene Regulatory Networks & Temporal Logic
- 4. Pedagogical example: Pseudomonas aeruginosa

Formal Logic: syntax/semantics/deduction

Computer Aided Elaboration of Models

From biological knowledge and/or biological hypotheses, it comes:

• properties:

"Without stimulus, if gene x has its basal expression level, then it remains at this level."

• model schemas:

Formal logic and formal models allow us to:

- verify hypotheses and check consistency
- elaborate more precise models incrementally
- suggest new biological experiments to efficiently reduce the number of potential models

The Two Questions

 $\Phi = \{ \varphi_1, \varphi_2, \cdots, \varphi_n \}$ and $\mathcal{M} =$

1. Is it possible that Φ and \mathcal{M} ?

Consistency of knowledge and hypotheses. Means to select models belonging to the schemas that satisfy Φ . $(\exists ? M \in \mathcal{M} \mid M \models \varphi)$

- If so, is it true *in vivo* that Φ and M?
 Compatibility of one of the selected models with the biological object. Require to propose experiments to validate (or refute) the selected model(s).
- \rightarrow Computer aided *proofs* and *validations*

Menu

- 1. Simulation vs. Validation
- 2. Formal Methods for the Modelling Activity
- 3. Gene Regulatory Networks & Temporal Logic
- 4. Pedagogical example: Pseudomonas aeruginosa

Multivalued Regulatory Graphs

Regulatory Networks (R. Thomas)

(x,y)	Image
$(0,\!0)$	$(K_{x,\overline{y}},K_y)$
(0,1)	(K_x, K_y)
$(1,\!0)$	$(K_{x,x\overline{y}},K_y)$
(1,1)	$(K_{x,x},K_y)$
(2,0)	$(K_{x,x\overline{y}}, K_{y,x})$
(2,1)	$(K_{x,x},K_{y,x})$

State Graphs

Time has a tree structure:

CTL = **Computation Tree Logic**

Atoms $= comparaisons : (x=2) (y>0) \dots$

Logical connectives: $(\varphi_1 \land \varphi_2) \quad (\varphi_1 \implies \varphi_2) \quad \cdots$

Temporal connectives: made of 2 characters

first character	second character	
A = for A ll path choices	$X = ne\mathbf{X}t$ state	
	F = for some F uture state	
E = there E xist a choice	G = for all future states (G lobally)	
	$U = \mathbf{U}$ ntil	

AX(y = 1): the concentration level of y belongs to the interval 1 in all states directly following the considered initial state.

EG(x = 0): there exists at least one path from the considered initial state where x always belongs to its lower interval.

Question 1 =Consistency

- 1. Draw all the sensible regulatory graphs with all the sensible threshold allocations. It defines \mathcal{M} .
- 2. Express in CTL the known behavioural properties as well as the considered biological hypotheses. It defines Φ .
- 3. Automatically generate all the possible regulatory networks derived from *M* according to all possible parameters K_{...}.
 Our software plateform SMBioNet handles this automatically.
- 4. Check each of these models against Φ . SMBioNet uses model checking to perform this step.
- 5. If no model survive to the previous step, then reconsider the hypotheses and perhaps extend model schemas...
- 6. If at least one model survives, then the biological hypotheses are consistent. Possible parameters K_{\dots} have been indirectly established. Now Question 2 has to be addressed.

Theoretical Models \leftrightarrow **Experiments**

CTL formulae are satisfied (or refuted) w.r.t. a set of paths from a given initial state

- They can be tested against the possible paths of the theoretical models $(M \models_{Model \ Checking} \varphi)$
- They can be tested against the biological experiments $(Biological_Object \models_{Experiment} \varphi)$

CTL formulae link theoretical models and biological objects together

Question 2 =Validation

- Among all possible formulae, some are "observable" i.e., they express a possible result of a possible biological experiment. Let Obs be the set of all observable formulae.
- 2. Let Λ be the set of theorems of Φ and \mathcal{M} . $\Lambda \cap Obs$ is the set of experiments able to validate the survivors of Question 1. Unfortunately it is infinite in general.
- 3. Testing frameworks from computer science aim at selecting a finite subsets of these observable formulae, which maximize the chance to refute the survivors.
- 4. These subsets are often too big, nevertheless these testing frameworks can be suitably applied to regulatory networks.

Menu

- 1. Simulation vs. Validation
- 2. Formal Methods for the Modelling Activity
- 3. Gene Regulatory Networks & Temporal Logic
- 4. Pedagogical example: Pseudomonas aeruginosa

Example : cytotoxicity (*P.aeruginosa*)

Terminology about phenotype modification:

Genetic modification: inheritable and not reversible (mutation)Epigenetic switch: inheritable and reversibleAdaptation: not inheritable and reversible

The biological questions (Janine Guespin): is **cytotoxicity** in *Pseudomonas aeruginosa* due to an epigenetic switch ?

 $[\rightarrow \text{cystic fibrosis}]$

Cytotoxicity in P. aeruginosa

(Janine Guespin and Marceline Kaufman)

Epigenetic hypothesis =

 \rightarrow The positive feedback circuit is functional, with a cytotoxic stable state and the other one is not cytotoxic.

 \rightarrow An external signal (in the cystic fibrosis' lungs) could switch ExsA from its lower stable state to the higher one.

Consistency of the Hypothesis

One CTL formula for each stable state:

$$(ExsA = 2) \Longrightarrow AXAF(ExsA = 2)$$
$$(ExsA = 0) \Longrightarrow AG(\neg(ExsA = 2))$$

Question 1, consistency: proved by *Model Checking* \rightarrow 10 models among the 712 models are extracted by SMBioNet

Question 2: and in vivo ? ...

Validation of the epigenetic hypothesis

Question 2 = to validate bistationnarity in vivo

Non cytotoxic state: $(ExsA = 0) \Longrightarrow AG(\neg(ExsA = 2))$ P. aeruginosa, with a basal level for ExsA does not become spontaneously cytotoxic: actually validated

Cytotoxic state: $(ExsA = 2) \implies AXAF(ExsA = 2)$

Experimental limitation:

ExsA can be saturated but it cannot be measured Experiment:

to pulse ExsA and then to test if toxin production remains $(\iff \text{to verify a hysteresis})$

This experiment can be **automatically generated**

To test $(ExsA=2) \Longrightarrow AXAF(ExsA=2)$

ExsA = 2 cannot be directly verified but toxicity = 1 can be verified.

Lemma: $AXAF(ExsA = 2) \iff AXAF(toxicity = 1)$ (... formal proof by computer ...)

 \rightarrow To test: (ExsA = 2) $\implies AXAF(toxicity = 1)$

$(ExsA = 2) \Longrightarrow AXAF(toxicity = 1)$

Karl Popper:

$A \Longrightarrow B$	true	false
true	true	false
false	true	true

to validate = to try to refute $thus \ A=false \ is \ useless$ experiments must begin with a pulse

The pulse forces the bacteria to reach the initial state ExsA = 2. If the state were not directly controlable we had to prove lemmas:

 $(ExsA = 2) \iff (something \ reachable)$

General form of a test:

 $(something \underline{reachable}) \Longrightarrow (something \underline{observable})$

Concluding Comments

Behavioural properties (Φ) are as much important as models (\mathcal{M}) Modelling is significant only with respect to the considered experimental reachability and observability (Obs)

Formal proofs can suggest wet experiments

Current state of the art / promising proof oriented approaches:

- Timed Hybrid Petri Nets [Sylvie Troncale, Gilles Bernot & Jean-Paul Comet (Product of automaton)]
- Hybrid models with delays [Olivier Roux &al (HyTech), Heike Siebert & Alexander Bockmayr (product of automaton)]
- Constraint programming [Laurent Trilling & Eric Fanchon]
- Towards structural hypotheses [Hans Geiselmann & Hidde de Jong]