Outline

1. Basics
 • Hybrid Modeling
 • Controller Computation

2. Low Complexity Controllers
 • The Three Levers of Complexity
 • Minimum-Time Controller
 • N-Step Controller

3. Industrial Applications
 • Control of a DC-DC Converter
 • Vibration Damping

4. Conclusions
Outline

1. Basics
 • Hybrid Modeling
 • Controller Computation

2. Low Complexity Controllers
 • The Three Levers of Complexity
 • Minimum-Time Controller
 • N-Step Controller

3. Industrial Applications
 • Control of a DC-DC Converter
 • Vibration Damping

4. Conclusions

PWA Hybrid Models

• Piecewise affine (PWA) systems.
• Polyhedral partition of the state space.
• Affine dynamics in each region.

\[
C_r \triangleq \{ [x \ u]^T \in \mathbb{R}^n \mid H_r [x \ u]^T \leq K_r \}
\]

\[
x(t + 1) = A_r x(t) + B_r u(t) + f_r \quad \text{if} \ [x(t) \ u(t)] \in C_r
\]
Equivalence of Hybrid Models

Equivalent classes of discrete-time hybrid models:

- Mixed Logical Dynamical (MLD)
- Piecewise affine (PWA)
- Linear Complementarity (LC)
- Extended Linear Complementarity (ELC)
- Max-Min-Plus-Scaling (MMPS)

The above discrete-time hybrid models can be proven to be equivalent (under some mild assumptions). Equivalence implies that for all feasible initial states and for all feasible input trajectories, the models yield the same state and output trajectories.

[Heemels, De Schutter, Bemporad, 2001]

Outline

1. Basics
 - Hybrid Modeling
 - Controller Computation

2. Low Complexity Controllers
 - The Three Levers of Complexity
 - Minimum-Time Controller
 - N-Step Controller

3. Industrial Applications
 - Control of a DC-DC Converter
 - Vibration Damping

4. Conclusions
Optimal Control for Constrained PWA Systems

System
- Discrete PWA Dynamics
 \[x(k + 1) = f_{PWA}(x(k), u(k)) \]
- Constraints on the state \(x(k) \in X \)
- Constraints on the input \(u(k) \in U \)

\[C^x x(k) + C^u u(k) \leq C^0 \]

Objectives
- Stability (feedback is stabilizing)
- Feasibility (feedback exists for all time)
- Optimal Performance

Constrained Finite Time Optimal Control of PWA Systems

Linear Performance Index \((p=1, \infty)\)

\[J^*(x) := \min_U \| P x_T \|_p + \sum_{k=0}^{T-1} \| Q x_k \|_p + \| R u_k \|_p \]

Constraints
\[
\begin{cases}
 x_0 = x, \\
 x_{k+1} = f_{PWA}(x_k, u_k), \\
 C^x x_k + C^u u_k \leq C^0
\end{cases}
\]

Algebraic manipulation \(\rightarrow \) Mixed Integer Linear Program (MILP)

\[U^*(x) = \{ u_0, u_1, \ldots, u_{T-1} \} \]
Constrained Finite Time Optimal Control of PWA Systems

Linear Performance Index ($p=1,\infty$)

$$J^*(x) := \min_u \|P x_T\|_p + \sum_{k=0}^{T-1} \|Q x_k\|_p + \|R u_k\|_p$$

Constraints

$$\begin{cases} x_0 = x, \\ x_{k+1} = f_{PWA}(x_k, u_k), \\ C^x x_k + C^u u_k \leq C^o \end{cases}$$

Algebraic manipulation \rightarrow Mixed Integer Linear Program (MILP)

Obtain $U^*(x) = \{u_0^*, u_1^*, \ldots, u_{T-1}^*\}$

Receding Horizon Control

Receding Horizon Control

On-Line Optimization

$U^*(x) = \{u_0^*, u_1^*, \ldots, u_{T-1}^*\}$

Obtain $U^*(x)$

Optimization Problem (MILP)

Plant state x -> output y

PLANT

Apply u_0^*
Optimization Problem (mpMILP)

\[u^* = f(x) \]

PLANT output

Characteristics of mp-MILP Solution

- The optimizer \(z'(x) \) is piecewise affine.
- The feasible set \(X^* \) is partitioned into critical regions (CR).
- The value function \(J(x) \) is piecewise affine.

\[\| Qx \|_{1, \infty} \] CR is polyhedral
Receding Horizon Control
Stability Guarantee

Linear Performance Index \((p=1,\infty)\)

\[
J^*(x) := \min_U \|P_{xT}\|_p + \sum_{k=0}^{T-1} \|Q_{xk}\|_p + \|R_{uk}\|_p
\]

Stability Guarantee

- Choose horizon \(T=\infty\)

 \(\Rightarrow\) Constrained Infinite Time Optimal Control

 or

- Choose \(\|P_{xT}\|_p\) to be a (Control) Lyapunov Function

\[\text{Christophersen, 2006}\]
Multi-parametric controllers

Algorithms have been developed for over 5 years:

...Minimization of linear and quadratic objectives
(Baotic, Baric, Bemporad, Borrelli, De Dona, Dua, Goodwin, Grieder,
Johansen, Mayne, Morari, Pistikopoulos, Rakovic, Seron, Toendel)

...Minimum-Time controller computation
(Baotic, Grieder, Kvasnica, Mayne, Morari, Schroeder)

...Infinite horizon controller computation
(Baotic, Borrelli, Christophersen, Grieder, Morari, Torrisi)

...Computation of robust controllers
(Borrelli, Bemporad, Kerrigan, Grieder, Maciejowski, Mayne, Morari, Parrilo,
Sakizlis)

⇒ Advanced computation schemes are available!

Multi-parametric controllers

PROs:
- Easy to implement
- Fast on-line evaluation
- Analysis of closed-loop system possible

CONs:
- Number of controller regions can be large
- Off-line computation time may be prohibitive
- Computation scales badly.

⇒ controller complexity is the crucial issue
Outline

1. Basics
 • Hybrid Modeling
 • Controller Computation

2. Low Complexity Controllers
 • The Three Levers of Complexity
 • Minimum-Time Controller
 • N-Step Controller

3. Industrial Applications
 • Control of a DC-DC Converter
 • Vibration Damping

4. Conclusions

3 Complexity Levers of Receding Horizon Control

Controller Construction
Region Identification
Partition Complexity
PLANT

off-line
on-line

Control \(u^* \) → State \(x \) → Output \(y \)
1st Lever for Complexity Reduction

Objective
Compute controller partition as quickly as possible.

Why is computation time an issue?
- For LTI systems, controller computation time correlates to controller complexity
- For PWA systems, controller computation time may not correlate to controller complexity

However...
- Controller complexity and runtime grows exponentially with problem size

⇒ Controller computation is not a bottleneck

2nd Lever for Complexity Reduction - Region Merging

Optimal merging:
hyperplane arrangement: 34 sec merging (boolean min.): 5 sec

Greedy merging:
merging based on LPs: 17 sec

- 252 polyhedra
- 39 polyhedra
- 189 polyhedra
3rd Lever for Complexity Reduction

Objective
For a given partition, identify controller region as quickly as possible.

Algorithms
Identification of region in time logarithmic in the number of regions is possible \((\text{Bemporad, Grieder, Johansen, Jones, Rakovic, Toendel}) \)

However…
- Pre-processing for most schemes is very expensive
- Usually not applicable to general partitions (e.g. overlapping regions, holes, non-convex partitions, etc.)

Region Identification using Bounding Boxes

Idea
Construct an interval tree based on bounding boxes. The search then reduces to answering stabbing queries in \(O(\log(N)) \) time.

Advantage
- Very cheap pre-processing.
- Applicable to any type of partitions (not nec. polyhedral).

On-line strategy
- The tree selects possible candidate regions.
- Locally search the list of candidates.

\((\text{Christophersen et. al, submitted to CDC 2006}) \)
Control Objective vs. Partition Complexity

Objective
- Compute controller partition with as few regions as possible
- Guarantee stability and constraint satisfaction

Observation
Complex objectives yield complex controllers

Approach
Use simpler objectives to obtain simpler controllers

⇒ Controller complexity is a bottleneck

Outline

1. Basics
 • Hybrid Modeling
 • Controller Computation

2. Low Complexity Controllers
 • The Three Levers of Complexity
 • Minimum-Time Controller
 • N-Step Controller

3. Industrial Applications
 • Control of a DC-DC Converter
 • Vibration Damping

4. Conclusions
Numerical Example

Optimal Control

N-Step Control

• All results and plots were obtained with the MPT toolbox

http://control.ethz.ch/~mpt

• MPT is a MATLAB toolbox that provides efficient code for
 – (Non)-Convex Polytope Manipulation
 – Multi-Parametric Programming
 – Control of PWA and LTI systems
Outline

1. Basics
 • Hybrid Modeling
 • Controller Computation

2. Low Complexity Controllers
 • The Three Levers of Complexity
 • Minimum-Time Controller
 • N-Step Controller

3. Industrial Applications
 • Control of a DC-DC Converter
 • Vibration Damping

4. Conclusions

Furuta Pendulum

- Rotating inverted pendulum
- Explicit controller with 5 regions
- Results equivalent to [Åkesson and Aström, 2001]

\[
\frac{d}{dt} \begin{bmatrix} \dot{\theta} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \alpha & 0 \end{bmatrix} \begin{bmatrix} \theta \\ \phi \end{bmatrix} + \begin{bmatrix} 0 \\ \beta \end{bmatrix} u(t)
\]

\[|u(t)| < 0.3\]

[Åkesson and Aström, 2001]
Switch-mode DC-DC Converter

Switched circuit: supplies power to load with constant DC voltage

Illustrating example: synchronous step-down DC-DC converter

![Switch-mode DC-DC Converter Diagram]

Operation Principle

- **Length of switching period** T_s constant (fixed switching frequency)
- **Switch-on** transition at kT_s, $k \in N$
- **Switch-off** transition at $(k+d(k))T_s$ (variable pulse width)
- **Duty cycle** $d(k)$ is real variable bounded by 0 and 1
Mode 1 and 2

\[S_1 = 1 \quad S_2 = 0 \]
\[S_1 = 0 \quad S_2 = 1 \]

\[kT_s \quad (k+d(k))T_s \quad T_s \]

Mode 1:

Mode 2:

Control Objective

Regulate DC output voltage by appropriate choice of duty cycle

- **duty cycle** manipulated variable
- **inductor current** state
- **capacitor voltage** state
- unregulated DC input voltage disturbance
- regulated DC output voltage controlled variable
State-feedback Controller: Polyhedral Partition

PWA state-feedback control law:

computed in 100s using the MPT toolbox

121 polyhedra after simplification with optimal merging

Colors correspond to the 121 polyhedra

Outline

1. Basics
 • Hybrid Modeling
 • Controller Computation

2. Low Complexity Controllers
 • The Three Levers of Complexity
 • Minimum-Time Controller
 • N-Step Controller

3. Industrial Applications
 • Control of a DC-DC Converter
 • Vibration Damping

4. Conclusions
Smart Damping Materials

- **Demands**
 - Device suppresses vibration
 - External power source for operation is not required
 - Weight and size of the device have to be kept to a minimum

- **Idea**
 - Switched Piezoelectric (PZT) Patches

- **Problem**
 - What is the optimal switching law for optimal vibration suppression?

Application: Brake Squeal Reduction

- **Friction induced vibration in brakes**
 - Strong vibration radiates unwanted noise
 - One frequency, small bandwidth
 - Frequency can vary
Brake Squeal Reduction using Shunt Control

- **Vibration reduction**
 - Piezoelectric actuator between brake pad and calliper
 - Switching shunt control

- **Advantages**
 - Tracks resonance frequency
 - Cheap solution
 - No electrical power required
Other Applications of Hybrid Systems Control Tools

- Control / Scheduling of Cogeneration Power Plants
- Control / Scheduling of Cement Kilns and Mills
- Electronic Throttle Control / Traction Control
- Control of Thermal Print Heads
- Control of Voltage Stability for Electric Power Networks
- Direct Torque Control of 3 phase Induction Motors
- Control of Anaesthesia (Inselspital Bern)
- Adaptive Cruise Control

All results and plots were obtained with the MPT toolbox

http://control.ethz.ch/~mpt

MPT is a MATLAB toolbox that provides efficient code for
- (Non)-Convex Polytope Manipulation
- Multi-Parametric Programming
- Control of PWA and LTI systems
Conclusions

- Foundations of a theoretical framework for practical controller design for PWA system have been established
- Complexity reduction and robustness are main research issues
- Applications in industry are beginning