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System Equations
The controlled system:

x = f(t,x,u),  t ≥ t0
state variable: x ∈ Rn

Control:
� Open-loop: u(t) ∈ P(t), t ≥ t0
� Closed-loop: u(t,x) ∈ P(t) (u(t,x) ∈ P(t,x)), t ≥ t0
� P(t) compact subset of Rm

.



Reachability (definitions)
� Reach set X(t,t0,X0) at t >t0 from {t0,X

0}:

� Reach tube: map t→X[t] =X(t,t0,X0)

� Reach set at some time within [t1,t2]:



Reachability (illustrations)

tt0

X0

X[t] – reach tube

t1

X(t1,t0,X
0) – reach set at time t1

t2

X(t2,t1,X
0) – reach set in [t1,t2]



Reachability (properties)

� The reach sets are the same for open-loop 
and closed-loop controls

� Reach set X(t,t0,X0) satisfies the 
semigroup property:

X(t,t0,X
0) = X(t,τ,X(τ,t0,X0))

Also true for the reach tube X[t]



Backward Reach Set

Given:
�Target set Y1

�Terminating time t1
Backward reach set Y(t,t1,Y1) at time t – set 

of all states y for each of which there 
exists control u(τ), t0�τ<t, such that 
y(t)=y and y(t1)∈Y1



Linear Systems

� Continuous-time:

x(t) = A(t)x(t) + B(t)u(t)

� Discrete-time:

x(t+1) = A(t)x(t) + B(t)u(t)

x(t0)∈X
0, u(t)∈P(t)

.
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Algorithmic Methods

CMU
autonomous systems

external apprx.
Oriented 

Rectangles
(CheckMate)

Verimaglinear systems
external apprx.

Hyperrectangles
(d/dt)

UPenn/ 
Verimag

linear systems
external apprx.

Zonotopes
(MATISSE)

ETHZlinear systems
exact reach set

Polytopes
(MPT)



Analytic Methods

Caltechpolynomial systems
no reach set computation

Barrier 
Certificates

UBCany systems
exact reach set

Level Sets
(Level Set 
Toolbox)

IMMlinear systems
external/internal apprx.

Parallelotopes

UPennlinear nilpotent systems
exact reach set

Quantifier 
Elimination
(Requiem)
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Ellipsoid

q

Q

E(q,Q) = {x ∈ Rn | 〈(x -q), Q-1(x -q)〉 � 1}

q – center of ellipsoid
Q – shape matrix (Q =QT > 0)



Support Function

X

ρ(l | X)

l

ρ(l | X) = sup {〈l, x〉 | x ∈ X}

Support function of ellipsoid:

ρ(l | E(q,Q)) = 〈l, q〉 + 〈l, Ql〉1/2



Linear Systems

� Continuous-time:

x(t) = A(t)x(t) + B(t)u(t)

� Discrete-time:

x(t+1) = A(t)x(t) + B(t)u(t)

x(t0) ∈ E(x0,X0), u(t) ∈ E(p(t),P(t))

.



Reach Set of Linear System

Symmetric convex compact set in Rn

evolving in time



Tight Approximations

� External ellipsoidal approximation E+ of 
symmetric convex set X is tight if
�X ⊆ E+

�There exists l such that ρ(±l | E+) = ρ(±l | X)
� Internal ellipsoidal approximation E- of 

symmetric convex set X is tight if
�E-⊆ X

�There exists l such that ρ(±l | E-) = ρ(±l | X)



Reach Set Approximation

X

E-

E+

l

For any l there exist E+ and E-:
• E- ⊆ X ⊆ E+
• ρ(±l | E-) = ρ(±l | X) = ρ(±l | E+)



Reach Set Approximation
For any l there exist E+ and E-:

• E- ⊆ X ⊆ E+
• ρ(±l | E-) = ρ(±l | X) = ρ(±l | E+)

∪ E- = X = ∩ E+
l l



Good Curves (concept)

t0 t

X0

l(t) = -AT(t)l(t), l(t0) = l0
.

good curve

l(t)
l0

E(xc(t),Xl
-(t)) ⊆ X(t,t0,X

0)
GC
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l0
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Good Curves (concept)

t0 t

X0

l(t) = -AT(t)l(t), l(t0) = l0
.

good curve

l(t)
l0

ρ(l(t)| E(xc(t),Xl-(t))) = ρ(l(t)|X(t,t0,X0)) = ρ(l(t)| E(xc(t),Xl+(t)))



Good Curves (summary)

If l(t) satisfies l(t) = -AT(t)l(t), l(t0) = l0, then

�

�

where xc(t)=A(t)xc(t)+B(t)p(t), xc(t0)=x0,
and the shape matrices Xl+(t), Xl-(t) are 

governed by single ODEs

� On ellipsoidal techniques for reachability analysis
by A.B.Kurzhanski, P.Varaiya (2000)

ρ(l(t)|E(xc(t),Xl-(t)))=ρ(l(t)|X(t,t0,X0))=ρ(l(t)|E(xc(t),Xl+(t)))

E(xc(t),Xl
-(t)) ⊆ X(t,t0,X

0) ⊆ E(xc(t),Xl
+(t))

.

.



Steering the system 
to a given target point at given time



Good Curves (control)



Reaching Internal Point
Scale the set of controls: E(p(t),µµµµ2P(t)), |µµµµ|� 1



Reaching Internal Point
Colliding forward and backward reach tubes

switch good curves



ET

Ellipsoidal Toolbox©

www.eecs.berkeley.edu/~akurzhan/ellipsoids



Ellipsoidal Toolbox
� Ellipsoidal calculus

�Geometric sums and differences
� Intersections with ellipsoids, hyperplanes, 

polyhedra

� Reachability analysis
�Continuous- and discrete-time linear systems 
�Forward and backward reach sets

� Visualization (2D and 3D)
�Plotting of ellipsoids, hyperplanes, reach sets
�Projections



MATLAB Types

ET implements classes:

� ellipsoid

� hyperplane

� linsys

� reach



Approximation Refinement

ET function: refine



Semigroup Property

ET function: evolve

t2 t3t1t0
t



Switched System

ET function: evolve
3D



Cutting the Reach Tube

tt1 t2

ET function: cut



Verification

� Check if reach set external (internal) 
approximation intersects with given object: 
ellipsoid, hyperplane, polytope

ET function: intersect



Discrete-Time Systems

x[k+1] = A[k]x[k] + B[k]u[k]

x[k0] ∈ E(x0,X0), u[k] ∈ E(p[k],P[k])

Same ellipsoidal theory applies 
with some adjustments



Ellipsoids vs Polytopes
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Linear System with Disturbance

� System equation:
x(t) = A(t)x(t) + B(t)u(t,x(t)) + G(t)v(t)

� Initial state: x(t0) ∈ X0=E(x0,X0)

� Control
�Open-loop: u(t) ∈ P(t)=E(p(t),P(t))
�Closed-loop: u(t,x(t)) ∈ P(t)=E(p(t),P(t))

� Disturbance: v(t) ∈ Q(t)=E(q(t),Q(t))

.



Reach Sets

Open-loop reach set (OLRS) and 
closed-loop reach set (CLRS) of a 

system with disturbance are different



OLRS of MAXMIN Type

� Given initial set X0, time t > t0,
X-(t,t0,X

0) is the set of all x, such that for 
any v(ττττ) ∈ Q(ττττ) there exists x0 ∈ X0 and
u(ττττ) ∈ P(ττττ), t0�ττττ<t, which steer the 
system from x(t0)=x0 to x(t)=x

� X-(t,t0,X
0) is subzero level set of

V-(t,x) = maxvminu{dist(x(t0),X
0) | x(t)=x}



OLRS of MINMAX Type

� Given initial set X0, time t > t0,
X+(t,t0,X

0) is the set of all x, for which there 
exists u(ττττ) ∈ P(ττττ), that for all v(ττττ) ∈ Q(ττττ)
assigns x0 ∈ X0 such that trajectory x(ττττ),
t0�ττττ<t, leads from x(t0)=x0 to x(t)=x

� X+(t,t0,X
0) is subzero level set of

V+(t,x) = minumaxv{dist(x(t0),X
0) | x(t)=x}



OLRS Properties
� MAXMIN reach set:

� MINMAX reach set:

� X+(t,t0,X
0) ⊆ X-(t,t0,X

0)

geometric difference



Sequential MAXMIN

� Correction at t1: [t0, t] = [t0, t1] ∪ [t1, t]

X-
1(t,t0,X

0) = X-(t,t1,X
-(t1,t0,X

0))

X1
-(t,t0,X

0) ⊆ X-(t,t0,X
0)

� k corrections: t0� t1 � … � tk � t

X-
k(t,t0,X

0) = X-(t,tk,X
-
k-1(t1,t0,X

0))

Xk
-(t,t0,X

0) ⊆ … ⊆ X1
-(t,t0,X

0) ⊆ X-(t,t0,X
0)



Sequential MINMAX

� Correction at t1: [t0, t] = [t0, t1] ∪ [t1, t]

X+
1(t,t0,X

0) = X+(t,t1,X
+(t1,t0,X

0))

X+(t,t0,X
0) ⊆ X1

+(t,t0,X
0)

� k corrections: t0� t1 � … � tk � t

X+
k(t,t0,X

0) = X+(t,tk,X
+
k-1(t1,t0,X

0))

X+(t,t0,X
0) ⊆ X1

+(t,t0,X
0) ⊆ … ⊆ Xk

+(t,t0,X
0)



Piecewise Open-Loop

X+(t,t0,X
0) ⊆ X+

k(t,t0,X
0)  ⊆ X-

k(t,t0,X
0) ⊆ X-(t,t0,X

0)

MAXMINMINMAX

X+
k(t,t0,X

0)

X-
k(t,t0,X

0) k = 0



Piecewise Open-Loop

X+(t,t0,X
0) ⊆ X+

k(t,t0,X
0)  ⊆ X-

k(t,t0,X
0) ⊆ X-(t,t0,X

0)

MAXMINMINMAX

X+
k(t,t0,X

0)

X-
k(t,t0,X

0) k = 1



Piecewise Open-Loop

X+(t,t0,X
0) ⊆ X+

k(t,t0,X
0)  ⊆ X-

k(t,t0,X
0) ⊆ X-(t,t0,X

0)

MAXMINMINMAX

X+
k(t,t0,X

0)

X-
k(t,t0,X

0) k = 50



Piecewise Open-Loop

X+(t,t0,X
0) ⊆ X+

k(t,t0,X
0)  ⊆ X-

k(t,t0,X
0) ⊆ X-(t,t0,X

0)

MAXMINMINMAX

k→∞

X+
∞
(t,t0,X

0)  = X-
∞
(t,t0,X

0) = X(t,t0,X
0) 

� On reachability under uncertainty
by A.B.Kurzhanskiy, P.Varaiya

CLRS



Closed-Loop Reach Set (CLRS)

Given initial set X0, time t > t0, 
X(t,t0,X

0) is the set of all x, for each of which 
there exist x0 ∈ X0 and u(ττττ,x(ττττ)) ∈ P(ττττ) that 
for every v(ττττ) ∈ Q(ττττ) assigns trajectory x(ττττ):

x(ττττ) ∈ A(ττττ)x(ττττ) + B(ττττ)u(ττττ,x(ττττ)) + G(ττττ)v(ττττ)

where t0 �ττττ <t , such that x(t0)=x0 and x(t)=x

.



CLRS Computation

� Tight ellipsoidal approximations for X(t,t0,X0):
X(t,t0,X

0) = ∩E(xc(t),Xl
+(t)) = ∪E(xc(t),Xl

-(t))

where xc(t) satisfies
xc(t) = A(t)x(t) + B(t)p(t) + G(t)q(t)

and Xl+(t), Xl-(t) are obtained from ODEs

� Implemented in ET

.



Example



Steering the System to a Target

SPRING-MASS SYSTEM

� Reachability approaches and ellipsoidal techniques for 
closed-loop control of oscillating systems under uncertainty
by A.N.Daryin, A.B.Kurzhanski, I.V.Vostrikov
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Hybrid Setting

� Discrete states (modes)
� Continuous dynamics – affine
� Enabling zones (guards) – hyperplanes, 

ellipsoids, polyhedra
� Resets – affine

� No Zeno



Hybrid System Example

� Mode 1:
x(t) = A1x(t)+B1u(t), u(t)∈P1(t)

� Mode 2:
x(t) = A2x(t)+B2u(t)+G2v(t), u(t)∈P2(t), v(t)∈ Q2(t)

� Guard: hyperplane H

� Reset: identity

.

.

Mode 1 Mode 2H



Hybrid Reach Set Computation

� Initial conditions: Mode 1, t0, X0

� Compute reach set for Mode 1: X1(t,t0,X
0)

� Detect when X1(ττττ,t0,X0) ∩ H ≠ ∅, t0 � ττττ � t
� For each such ττττ, compute reach set for 

Mode 2: X2(t,ττττ,(X1(ττττ,t0,X0) ∩ H))
� Reach set of the whole system: 
X1(t,t0,X

0) ∪ X2(t,ττττ,(X1(ττττ,t0,X0) ∩ H))ττττ



Reach Set Trace Projection
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Road Ahead

� State estimation

� Discrete-time systems with disturbance

� Obstacle problems

� Stochastic systems


