Ellipsoidal Toolbox

TCC Workshop Alex A. Kurzhanskiy and Pravin Varaiya (UC Berkeley)

March 27, 2006

Outline

- Problem setting and basic definitions
- Overview of existing methods and tools
- Ellipsoidal approach
- Systems with disturbances
- Hybrid systems
- Summary and outlook

System Equations

The controlled system: $\dot{x} = f(t,x,u), \ t \geq t_0$

state variable: $\pmb{x} \in \mathbb{R}^{\mathrm{n}}$

Control:

- Open-loop: $u(t) \in \mathcal{P}(t), t \ge t_0$
- $\blacksquare \text{ Closed-loop: } u(t,x) \in \mathcal{P}(t) \text{ (} u(t,x) \in \mathcal{P}(t,x)\text{), } t \geq t_0$
- $\mathcal{P}(t)$ compact subset of \mathbb{R}^{m}

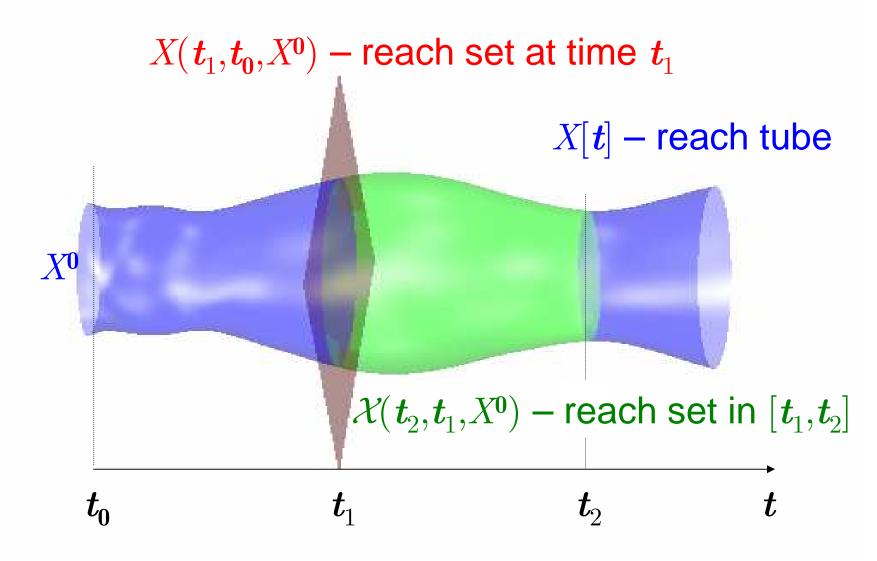
Reachability (definitions)

Reach set $X(t, t_0, X^0)$ at $t > t_0$ from $\{t_0, X^0\}$: $X(t, t_0, X^0) = \bigcup_{\substack{u(\cdot) \in \mathcal{P}(\cdot), x^0 \in X^0}} \{x(t, t_0, x^0 | u(\cdot))\}$

Reach tube: map $t \rightarrow X[t] = X(t, t_0, X^0)$

Reach set at some time within $[t_1, t_2]$: $\mathcal{X}(t_2, t_1, X^0) = \bigcup_{\substack{t_1 \le \tau \le t_2}} X(\tau, t_0, X^0)$

Reachability (illustrations)



Reachability (properties)

- The reach sets are the same for open-loop and closed-loop controls
- Reach set X(t,t₀,X⁰) satisfies the semigroup property:

 $X(\boldsymbol{t},\boldsymbol{t_0},X^{\boldsymbol{0}}) = X(\boldsymbol{t},\boldsymbol{\tau},X(\boldsymbol{\tau},\boldsymbol{t_0},X^{\boldsymbol{0}}))$ Also true for the reach tube $X[\boldsymbol{t}]$

Backward Reach Set

Given: Target set Y^1 Terminating time t_1 Backward reach set $Y(t, t_1, Y^1)$ at time t – set of all states y for each of which there exists control $u(\tau)$, $t_0 \le \tau < t$, such that y(t) = y and $y(t_1) \in Y^1$

Linear Systems

Continuous-time:

$$\dot{\boldsymbol{x}}(\boldsymbol{t}) = A(\boldsymbol{t})\boldsymbol{x}(\boldsymbol{t}) + B(\boldsymbol{t})\boldsymbol{u}(\boldsymbol{t})$$

Discrete-time:

$$\boldsymbol{x}(\boldsymbol{t}+1) = A(\boldsymbol{t})\boldsymbol{x}(\boldsymbol{t}) + B(\boldsymbol{t})\boldsymbol{u}(\boldsymbol{t})$$

 $\boldsymbol{x}(\boldsymbol{t_0}) {\in} X^{\mathbf{0}}, \ \boldsymbol{u}(\boldsymbol{t}) {\in} \mathcal{P}(\boldsymbol{t})$

Outline

- L Problem setting and basic definitions
- Overview of existing methods and tools
- Ellipsoidal approach
- Systems with disturbances
- Hybrid systems
- Summary and outlook

Algorithmic Methods

<u>Polytopes</u>	linear systems	ETHZ
(MPT)	exact reach set	
<u>Zonotopes</u>	linear systems	UPenn/
(MATISSE)	external apprx.	Verimag
<u>Hyperrectangles</u>	linear systems	Verimag
(<i>d/dt</i>)	external apprx.	
<u>Oriented</u>	autonomous systems	
Rectangles	external apprx.	CMU
(CheckMate)		

Analytic Methods

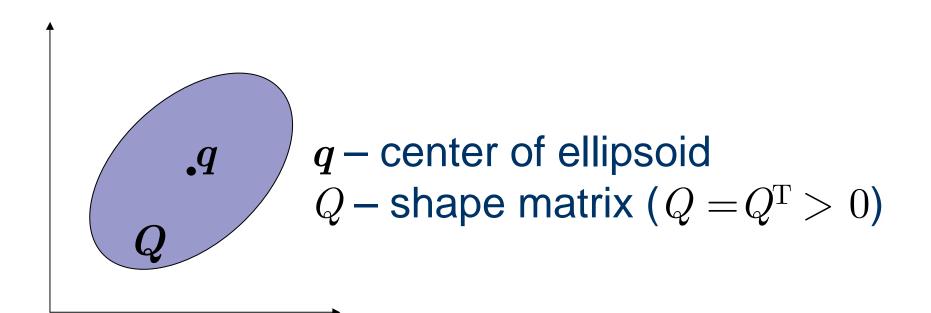
<u>Quantifier</u>	linear nilpotent systems	UPenn
Elimination	exact reach set	
(Requiem)		
Parallelotopes	linear systems	IMM
	external/internal apprx.	
Level Sets	any systems	UBC
(Level Set	exact reach set	
Toolbox)		
Barrier	polynomial systems	Caltech
<u>Certificates</u>	no reach set computation	

Outline

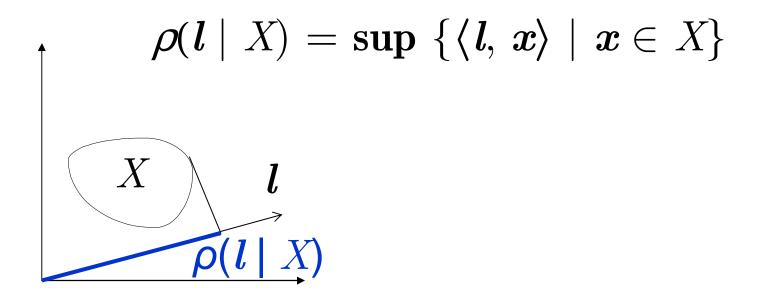
- L Problem setting and basic definitions
- L Overview of existing methods and tools
- Ellipsoidal approach
- Systems with disturbances
- Hybrid systems
- Summary and outlook

Ellipsoid

$$\mathcal{E}(\boldsymbol{q}, Q) = \{ \boldsymbol{x} \in \mathbb{R}^{\mathrm{n}} \mid \langle (\boldsymbol{x} - \boldsymbol{q}), \ Q^{-1}(\boldsymbol{x} - \boldsymbol{q}) \rangle \leq 1 \}$$



Support Function



Support function of ellipsoid:

$$\rho(l \mid \mathcal{E}(q,Q)) = \langle l, q \rangle + \langle l, Ql \rangle^{1/2}$$

Linear Systems

Continuous-time:

$$\dot{\boldsymbol{x}}(\boldsymbol{t}) = A(\boldsymbol{t})\boldsymbol{x}(\boldsymbol{t}) + B(\boldsymbol{t})\boldsymbol{u}(\boldsymbol{t})$$

Discrete-time:

$$x(t+1) = A(t)x(t) + B(t)u(t)$$

 $x(t_0) \in \mathcal{E}(x_0, X_0), u(t) \in \mathcal{E}(p(t), P(t))$

Reach Set of Linear System

Symmetric convex compact set in \mathbb{R}^n evolving in time

Tight Approximations

- External ellipsoidal approximation \mathcal{E}_+ of symmetric convex set X is tight if
 - $\Box X \subseteq \mathcal{E}_+$

 $\Box \text{ There exists } l \text{ such that } \rho(\pm l \mid \mathcal{E}_+) = \rho(\pm l \mid X)$

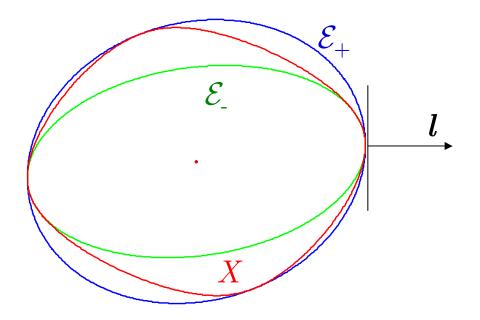
- Internal ellipsoidal approximation *E* of symmetric convex set *X* is tight if
 - $\Box \mathcal{E} \subseteq X$

 $\Box \text{ There exists } l \text{ such that } \rho(\pm l \mid \mathcal{E}) = \rho(\pm l \mid X)$

Reach Set Approximation

For any l there exist \mathcal{E}_+ and \mathcal{E}_- :

• $\mathcal{E} \subseteq X \subseteq \mathcal{E}_+$ • $\rho(\pm l \mid \mathcal{E}) = \rho(\pm l \mid X) = \rho(\pm l \mid \mathcal{E}_+)$

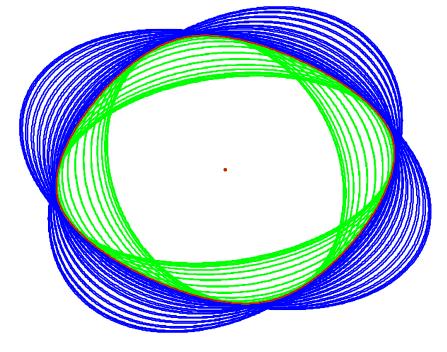


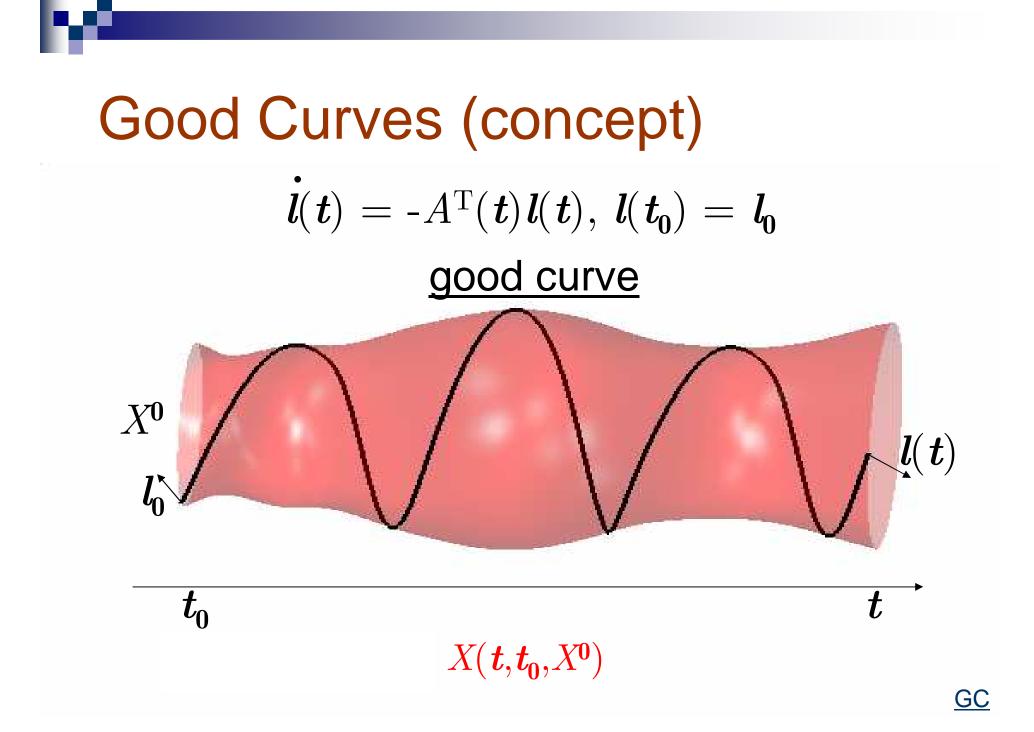
Reach Set Approximation

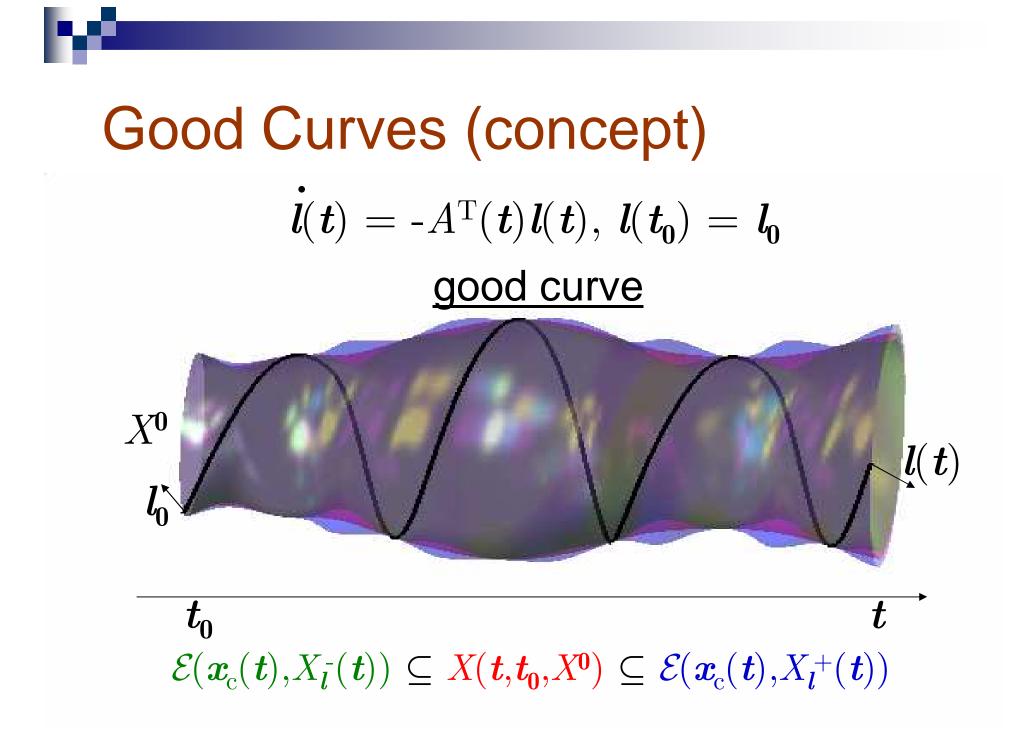
For any l there exist \mathcal{E}_+ and \mathcal{E}_- :

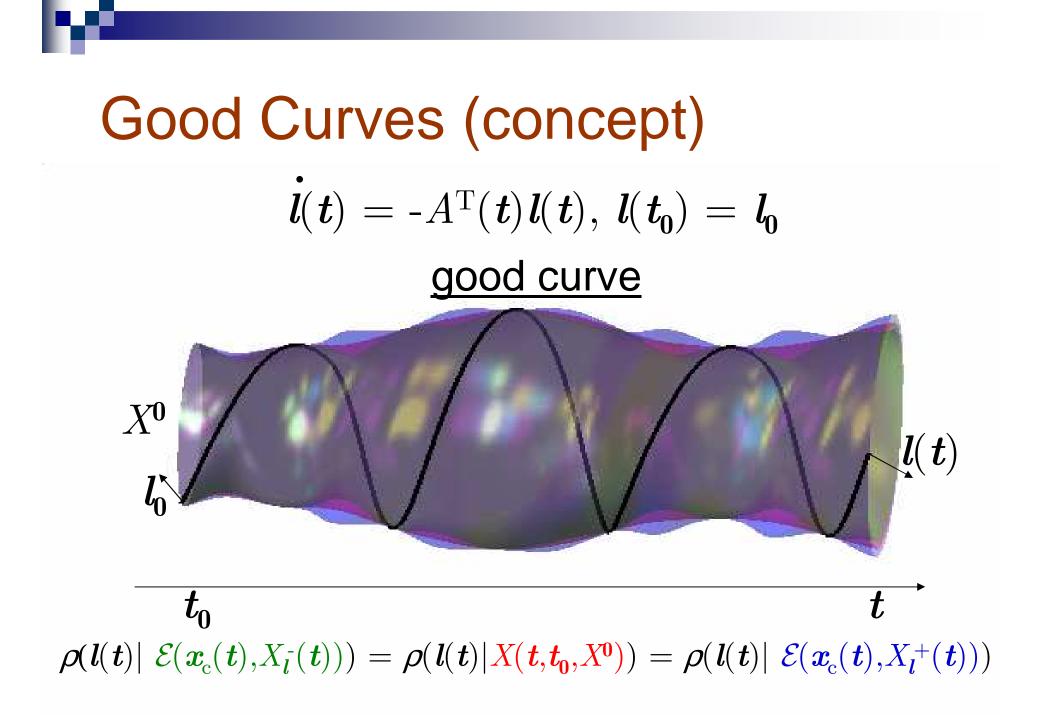
• $\mathcal{E}_{\underline{}} \subseteq X \subseteq \mathcal{E}_{\underline{}}$ • $\rho(\pm l \mid \mathcal{E}_{\underline{}}) = \rho(\pm l \mid X) = \rho(\pm l \mid \mathcal{E}_{\underline{}})$

 $\bigcup_{I} \mathcal{E}_{-} = X = \bigcap_{I} \mathcal{E}_{+}$









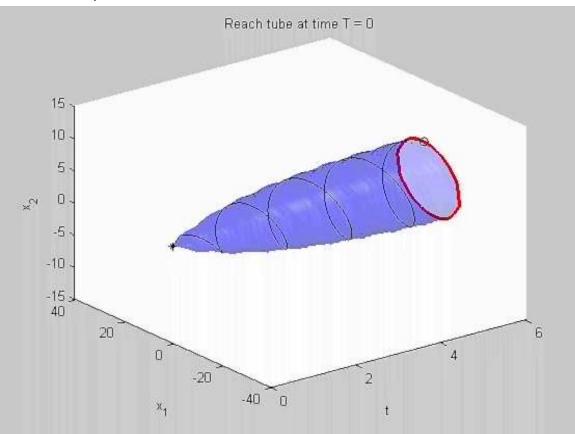
Good Curves (summary)

If l(t) satisfies $\dot{l}(t) = -A^{T}(t) l(t)$, $l(t_{0}) = l_{0}$, then $\mathcal{E}(x_{c}(t), X_{l}(t)) \subseteq X(t, t_{0}, X^{0}) \subseteq \mathcal{E}(x_{c}(t), X_{l}(t))$ $\mathcal{P}(l(t)|\mathcal{E}(x_{c}(t), X_{l}(t))) = \mathcal{P}(l(t)|X(t, t_{0}, X^{0})) = \mathcal{P}(l(t)|\mathcal{E}(x_{c}(t), X_{l}(t)))$ where $\dot{x}_{c}(t) = A(t)x_{c}(t) + B(t)p(t)$, $x_{c}(t_{0}) = x_{0}$, and the shape matrices $X_{l}^{+}(t)$, $X_{l}(t)$ are governed by single ODEs

 On ellipsoidal techniques for reachability analysis by A.B.Kurzhanski, P.Varaiya (2000)

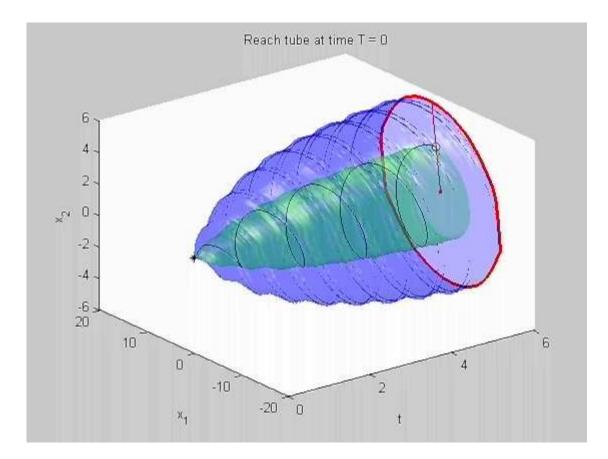
Steering the system to a given target point at given time

Good Curves (control) $u_l(t) = p(t) + \frac{P(t)B^T(t)\Phi(t_0,t)l_0}{\langle l_0, \Phi(t_0,t)B(t)P(t)B^T(t)\Phi(t_0,t)l_0 \rangle^{1/2}}$



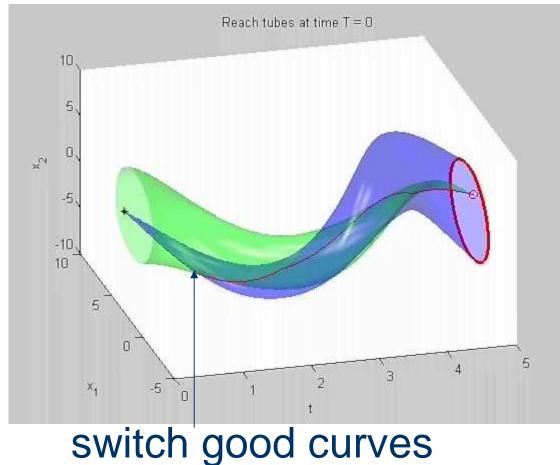
Reaching Internal Point

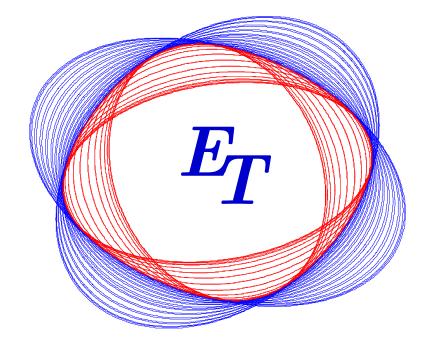
Scale the set of controls: $\mathcal{E}(\mathbf{p}(\mathbf{t}), \boldsymbol{\mu}^2 P(\mathbf{t})), |\boldsymbol{\mu}| \leq 1$



Reaching Internal Point

Colliding forward and backward reach tubes





Ellipsoidal Toolbox[©]

www.eecs.berkeley.edu/~akurzhan/ellipsoids

Ellipsoidal Toolbox

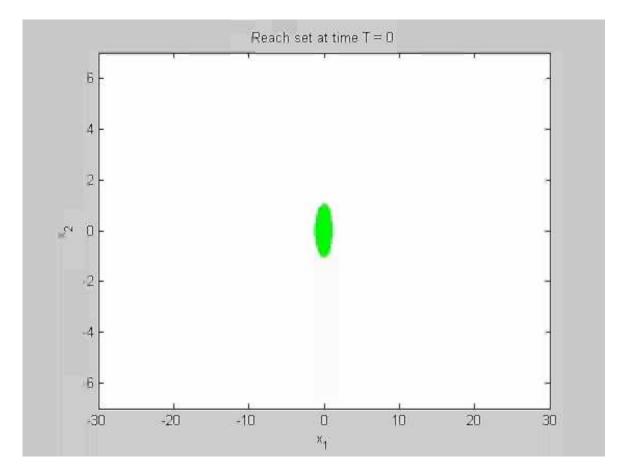
- Ellipsoidal calculus
 - □ Geometric sums and differences
 - Intersections with ellipsoids, hyperplanes, polyhedra
- Reachability analysis
 - Continuous- and discrete-time linear systems
 - Forward and backward reach sets
- Visualization (2D and 3D)
 Plotting of ellipsoids, hyperplanes, reach sets
 Projections

MATLAB Types

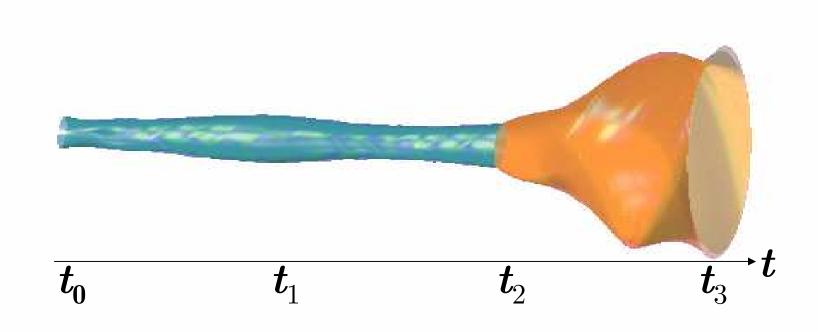
ET implements classes:

- ellipsoid
- hyperplane
- linsys
- reach

Approximation Refinement

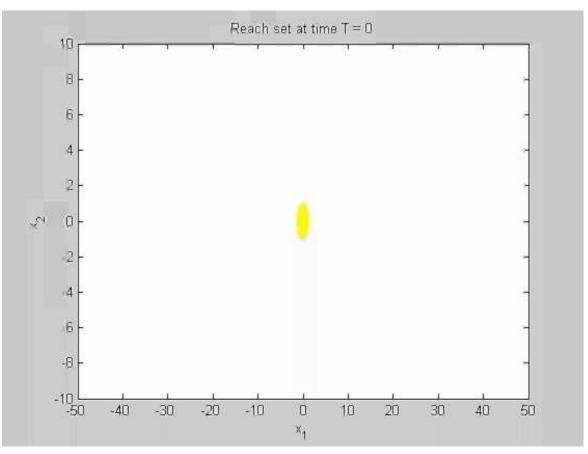


ET function: refine



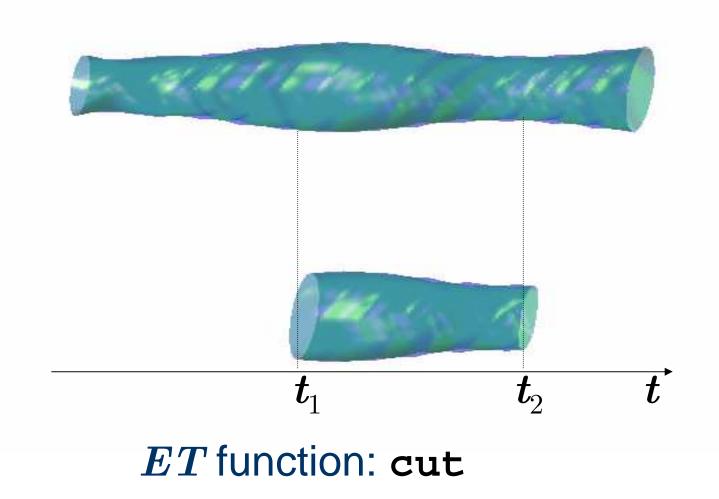
ET function: evolve

Switched System



ET function: evolve

Cutting the Reach Tube



Verification

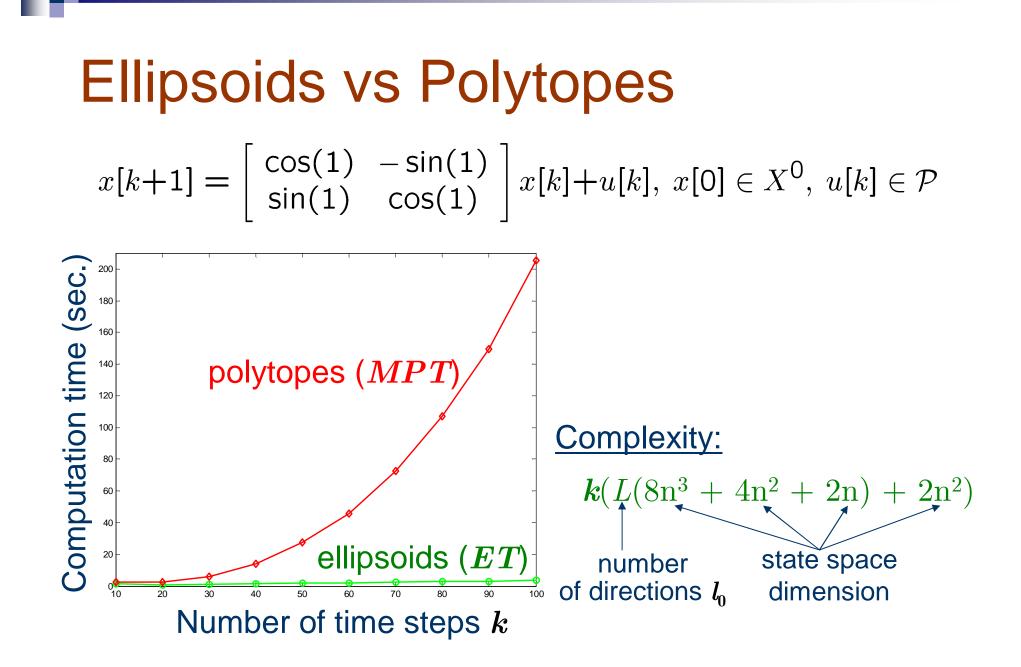
Check if reach set external (internal) approximation intersects with given object: ellipsoid, hyperplane, polytope

ET function: intersect

Discrete-Time Systems

$$\begin{aligned} \boldsymbol{x}[\boldsymbol{k}+1] &= A[\boldsymbol{k}]\boldsymbol{x}[\boldsymbol{k}] + B[\boldsymbol{k}]\boldsymbol{u}[\boldsymbol{k}] \\ \boldsymbol{x}[\boldsymbol{k}_0] \in \mathcal{E}(\boldsymbol{x}_0, X_0), \ \boldsymbol{u}[\boldsymbol{k}] \in \mathcal{E}(\boldsymbol{p}[\boldsymbol{k}], P[\boldsymbol{k}]) \end{aligned}$$

Same ellipsoidal theory applies with some adjustments



Outline

- L Problem setting and basic definitions
- L Overview of existing methods and tools
- L Ellipsoidal approach
- Systems with disturbances
- Hybrid systems
- Summary and outlook

Linear System with Disturbance

System equation: $\dot{x}(t) = A(t)x(t) + B(t)u(t,x(t)) + G(t)v(t)$ Initial state: $x(t_0) \in X^0 = \mathcal{E}(x_0, X_0)$ Control

Open-loop: $u(t) \in \mathcal{P}(t) = \mathcal{E}(p(t), P(t))$ Closed-loop: $u(t,x(t)) \in \mathcal{P}(t) = \mathcal{E}(p(t), P(t))$

Disturbance:
$$v(t) \in Q(t) = \mathcal{E}(q(t), Q(t))$$

Open-loop reach set (OLRS) and closed-loop reach set (CLRS) of a system with disturbance are different

OLRS of <u>MAXMIN</u> Type

Given initial set X^0 , time $t > t_0$, $X^{-}(t, t_0, X^0)$ is the set of all x, such that for any $v(\tau) \in Q(\tau)$ there exists $x^0 \in X^0$ and $u(\tau) \in \mathcal{P}(\tau), t_0 \leq \tau < t$, which steer the system from $x(t_0) = x^0$ to x(t) = x

• $X^{-}(t, t_0, X^0)$ is subzero level set of $V^{-}(t, x) = \max_{v} \min_{u} \{ \operatorname{dist}(x(t_0), X^0) \mid x(t) = x \}$

OLRS of <u>MINMAX</u> Type

Given initial set X^0 , time $t > t_0$, $X^+(t, t_0, X^0)$ is the set of all x, for which there exists $u(\tau) \in \mathcal{P}(\tau)$, that for all $v(\tau) \in \mathcal{Q}(\tau)$ assigns $x^0 \in X^0$ such that trajectory $x(\tau)$, $t_0 \leq \tau < t$, leads from $x(t_0) = x^0$ to x(t) = x

• $X^+(t, t_0, X^0)$ is subzero level set of $V^+(t, x) = \min_u \max_v \{ \operatorname{dist}(x(t_0), X^0) \mid x(t) = x \}$ **OLRS** Properties MAXMIN reach set: $X^{-}(t, t_0, X^0) =$ $\left(\Phi(t,t_0)X^0 \oplus \int_{t_0}^t \Phi(t,\tau)B(\tau)\mathcal{P}(\tau)d\tau\right) \stackrel{\cdot}{\longrightarrow} \int_{t_0}^t \Phi(t,\tau)(-G(\tau))\mathcal{Q}(\tau)d\tau$ geometric difference MINMAX reach set: $X^+(t, t_0, X^0) =$ $\left(\Phi(t,t_0)X^{0} - \int_{t_0}^t \Phi(t,\tau)(-G(\tau))\mathcal{Q}(\tau)d\tau\right) \oplus \int_{t_0}^t \Phi(t,\tau)B(\tau)\mathcal{P}(\tau)d\tau$

 $\bullet X^+(\boldsymbol{t}, \boldsymbol{t_0}, X^{\boldsymbol{0}}) \subseteq X^-(\boldsymbol{t}, \boldsymbol{t_0}, X^{\boldsymbol{0}})$

Sequential MAXMIN

• Correction at
$$t_1$$
: $[t_0, t] = [t_0, t_1] \cup [t_1, t]$
 $X_1(t, t_0, X^0) = X(t, t_1, X(t_1, t_0, X^0))$
 $X_1(t, t_0, X^0) \subseteq X(t, t_0, X^0)$

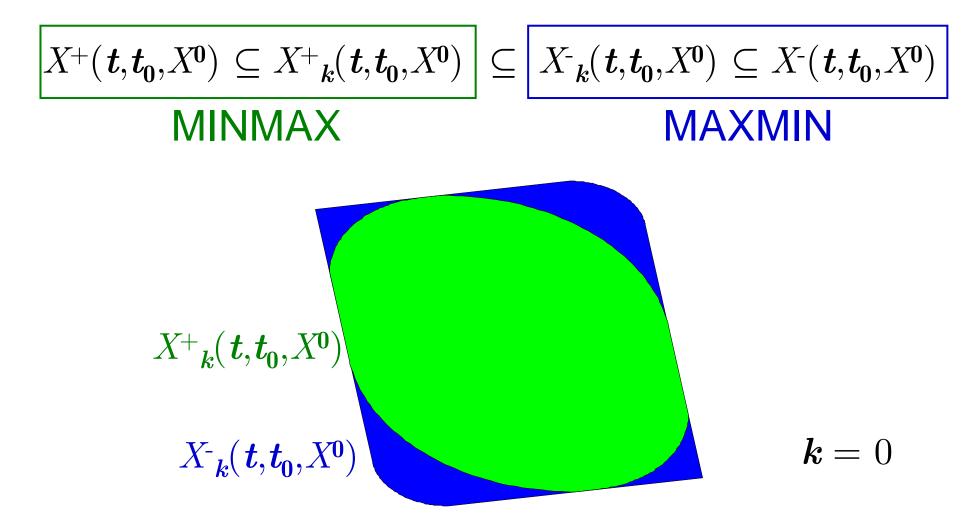
• k corrections: $t_0 \leq t_1 \leq ... \leq t_k \leq t$ $X_k^-(t, t_0, X^0) = X^-(t, t_k, X_{k-1}^-(t_1, t_0, X^0))$ $X_k^-(t, t_0, X^0) \subseteq ... \subseteq X_1^-(t, t_0, X^0) \subseteq X^-(t, t_0, X^0)$

Sequential MINMAX

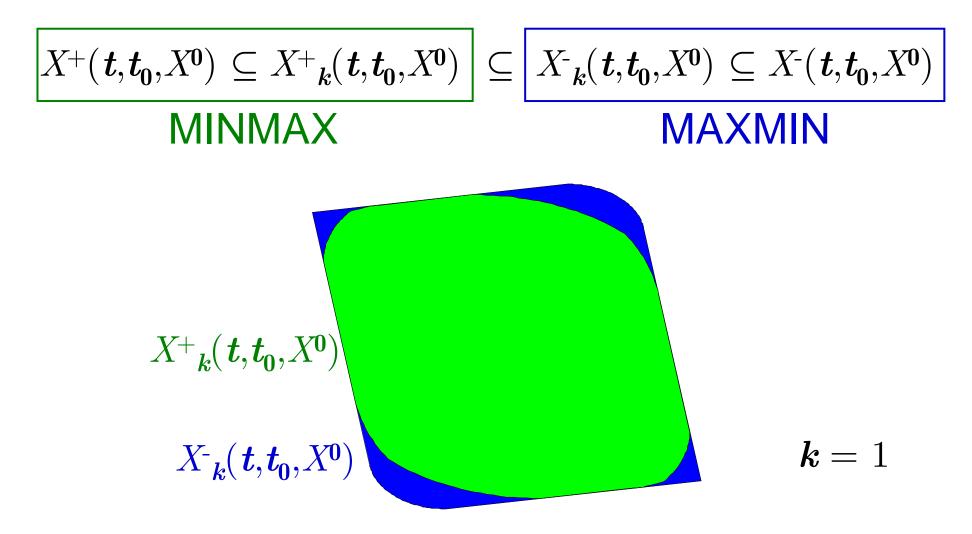
• Correction at
$$t_1$$
: $[t_0, t] = [t_0, t_1] \cup [t_1, t]$
 $X^+_1(t, t_0, X^0) = X^+(t, t_1, X^+(t_1, t_0, X^0))$
 $X^+(t, t_0, X^0) \subseteq X_1^+(t, t_0, X^0)$

• k corrections: $t_0 \leq t_1 \leq \ldots \leq t_k \leq t$ $X^+_k(t, t_0, X^0) = X^+(t, t_k, X^+_{k-1}(t_1, t_0, X^0))$ $X^+(t, t_0, X^0) \subseteq X_1^+(t, t_0, X^0) \subseteq \ldots \subseteq X_k^+(t, t_0, X^0)$

Piecewise Open-Loop



Piecewise Open-Loop



Piecewise Open-Loop

$$\begin{array}{c} X^+(t,t_0,X^0) \subseteq X^+{}_k(t,t_0,X^0) \\ \hline \\ \text{MINMAX} \\ X^+{}_k(t,t_0,X^0) \\ \hline \\ X^-{}_k(t,t_0,X^0) \\ \hline \\ \end{array} \\ k=50 \end{array}$$

$$\begin{array}{l} X^+(\textbf{\textit{t}},\textbf{\textit{t}}_0,X^{\textbf{0}}) \subseteq X^+{}_k(\textbf{\textit{t}},\textbf{\textit{t}}_0,X^{\textbf{0}}) \\ \\ \mathsf{MINMAX} \end{array} \\ \begin{array}{l} X^-{}_k(\textbf{\textit{t}},\textbf{\textit{t}}_0,X^{\textbf{0}}) \subseteq X^-(\textbf{\textit{t}},\textbf{\textit{t}}_0,X^{\textbf{0}}) \\ \\ \mathsf{MAXMIN} \end{array}$$

$$\begin{array}{ll} & & & & \\ & & & \\ X^+{}_{\infty}(\textbf{\textit{t}},\textbf{\textit{t}}_{0},X^{\textbf{0}}) & = & X^{-}{}_{\infty}(\textbf{\textit{t}},\textbf{\textit{t}}_{0},X^{\textbf{0}}) = & X(\textbf{\textit{t}},\textbf{\textit{t}}_{0},X^{\textbf{0}}) \\ & & & \\ &$$

 On reachability under uncertainty by A.B.Kurzhanskiy, P.Varaiya

Closed-Loop Reach Set (CLRS)

Given initial set X^0 , time $t > t_0$,

 $X(t, t_0, X^0)$ is the set of all x, for each of which there exist $x^0 \in X^0$ and $u(\tau, x(\tau)) \in \mathcal{P}(\tau)$ that for every $v(\tau) \in \mathcal{Q}(\tau)$ assigns trajectory $x(\tau)$:

 $\dot{\boldsymbol{x}}(\boldsymbol{\tau}) \in A(\boldsymbol{\tau})\boldsymbol{x}(\boldsymbol{\tau}) + B(\boldsymbol{\tau})\boldsymbol{u}(\boldsymbol{\tau},\boldsymbol{x}(\boldsymbol{\tau})) + G(\boldsymbol{\tau})\boldsymbol{v}(\boldsymbol{\tau})$

where $t_0 \leq \! au \! < \! t$, such that $x(t_0) \! = \! x_0$ and $x(t) \! = \! x$

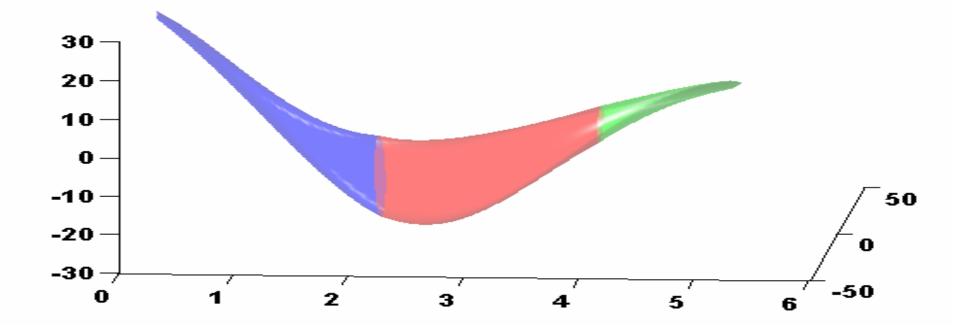
CLRS Computation

• Tight ellipsoidal approximations for $X(t, t_0, X^0)$: $X(t, t_0, X^0) = \bigcap \mathcal{E}(x_c(t), X_l^+(t)) = \bigcup \mathcal{E}(x_c(t), X_{\bar{l}}(t))$ where $x_c(t)$ satisfies $\dot{x}_c(t) = A(t)x(t) + B(t)p(t) + G(t)q(t)$ and $X_l^+(t), X_{\bar{l}}(t)$ are obtained from <u>ODEs</u>

• Implemented in ET

Example

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -0.2 & 1 \\ -1 & -0.2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} v(t)$$



Steering the System to a Target

SPRING-MASS SYSTEM

 <u>Reachability approaches and ellipsoidal techniques for</u> <u>closed-loop control of oscillating systems under uncertainty</u> by A.N.Daryin, A.B.Kurzhanski, I.V.Vostrikov

Outline

- L Problem setting and basic definitions
- L Overview of existing methods and tools
- L Ellipsoidal approach
- L Systems with disturbances
- Hybrid systems
- Summary and outlook

Hybrid Setting

- Discrete states (modes)
- Continuous dynamics affine
- Enabling zones (guards) hyperplanes, ellipsoids, polyhedra
- Resets affine

Hybrid System Example

$\begin{array}{l} \textbf{Mode 1}: \\ \dot{\textbf{x}}(t) = A_1 \textbf{x}(t) + B_1 \textbf{u}(t), \ \textbf{u}(t) \in \mathcal{P}_1(t) \\ \hline \textbf{Mode 2}: \\ \dot{\textbf{x}}(t) = A_2 \textbf{x}(t) + B_2 \textbf{u}(t) + G_2 \textbf{v}(t), \ \textbf{u}(t) \in \mathcal{P}_2(t), \ \textbf{v}(t) \in \mathcal{Q}_2(t) \\ \hline \textbf{Mode 1} \\ \hline \textbf{Mode 2} \end{array}$

Guard: hyperplane *H*

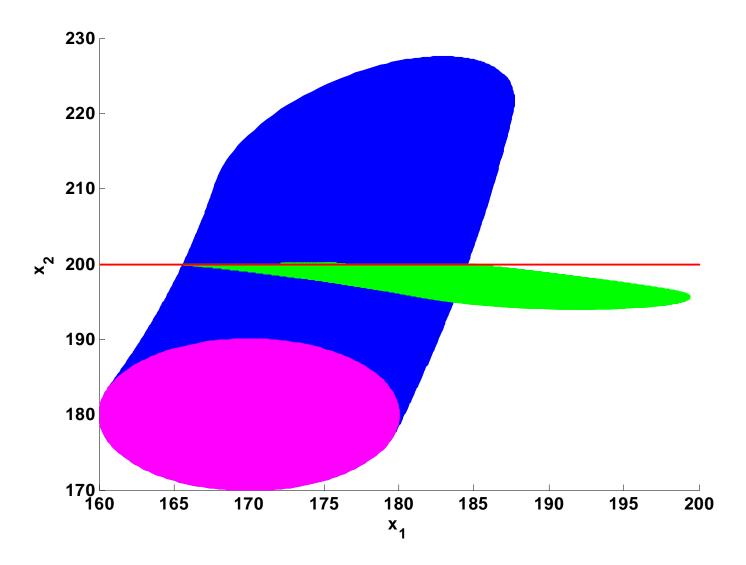
Reset: identity

Hybrid Reach Set Computation

- Initial conditions: <u>Mode 1</u>, t_0 , X^0
- Compute reach set for <u>Mode 1</u>: $X_1(t, t_0, X^0)$
- Detect when $X_1(\tau, t_0, X^0) \cap H \neq \emptyset, t_0 \leq \tau \leq t$
- For each such τ , compute reach set for <u>Mode 2</u>: $X_2(t, \tau, (X_1(\tau, t_0, X^0) \cap H))$

Reach set of the whole system: $X_1(t, t_0, X^0) \bigcup_{\tau} X_2(t, \tau, (X_1(\tau, t_0, X^0) \cap H))$

Reach Set Trace Projection



Outline

- L Problem setting and basic definitions
- L Overview of existing methods and tools
- L Ellipsoidal approach
- L Systems with disturbances
- L Hybrid systems
- Summary and outlook

- State estimation
- Discrete-time systems with disturbance
- Obstacle problems
- Stochastic systems