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Abstract: This paper constitutes a sketch of a unified framework for posing and solving
problems of optimal control in the presence of uncontrolled disturbances. After laying
down the general framework we look closely at a concrete instance where the controller
is a scheduler and the disturbances are related to uncertainties in task durations.

1. INTRODUCTION

I would like to use this opportunity to present
a paper free of any “new original results”, not
pretending to put something new under the sun.
I will describe what I consider to be the essence
of many activities concerned with the design of
systems based on mathematical models, without, I
believe, saying anything that is not known in some
of the many disciplines and communities that
occupy themselves with these issues. Yet, I think
that putting all this together in the present form
has some “synergetic” value that goes beyond
a collection of informal definitions, results and
algorithms.

The paper has two main parts. In the first I lay
down a kind of a “special theory of everything”
where system design is viewed as synthesizing an
optimal strategy in some dynamic game. We start
in Section 2 with a general discussion on how to
define the performance of a system which is sub-
ject to external disturbances. In section 3 we in-
troduce the generic model that we use, a dynamic
“multi-stage” game between a controller and its
environment. The restriction of the problem to be-
haviors of bounded length is the topic of Section 4
where it is reduced (for discrete time systems) to
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standard finite-dimensional constrained optimiza-
tion. The classical solution technique known as
dynamic programming is described in Section 5
followed, in section 6, by the alternative method
of heuristic forward search.

In the second part of the paper I focus on one
concrete instance of this scheme, the problem of
scheduling under bounded uncertainty which is
modeled as a discrete game on continuous time
using the timed automaton model. Section 7 at-
tempts to convince the reader that scheduling falls
into the class of problems described in the first
part. The job shop problem is described in Sec-
tion 8 along with its traditional solution scheme
based on non-convex “combinatorial” optimiza-
tion. In Section 9 we show how this problem can
be solved using shortest path algorithms on timed
automata. Section 10 extends the problem by con-
sidering bounded uncertainty in task durations,
while Section 11 sketches a dynamic programming
algorithm that can find adaptive strategies that
are better than worst-case strategies.

The topics discussed in this paper are treated
by different disciplines and under diverse titles
such as System Verification, Controller Synthe-
sis, Sequential Decision Making, Game Theory,
Markov Decision Processes, AI Planning, Optimal
and Model Predictive Control, Shortest Path Al-
gorithms, Dynamic Programming, Optimization,
Differential Games and more, each with its own
terminology. For example, what is called in one



context a strategy, can be called elsewhere a pol-
icy, a feed-back law, a controller or a dispatching
rule. Even worse, the same term can mean differ-
ent things to different audiences. I did my best to
pick each time the term (or terms) that I felt are
the most appropriate for the discussion and tried
not to switch between terms too often. In any
case I apologize for the potential inconvenience
for those who are accustomed to their own specific
terminology. I also tried not to bias the description
toward my own automata-theoretic background.

2. STATIC OPTIMIZATION

Throughout this paper we will be concerned
with situations that resemble two player games.
One player, henceforth the controller, represents
the system that we want to design while the
other player, the environment, represents external
disturbances beyond our control. The controller
chooses actions u ∈ U , the environment picks
v ∈ V and these choices determine the outcome
of the game. The controller wants the outcome
to be as good as possible, according to some pre-
defined criterion, while the environment, unless
one is paranoid, is indifferent to the results. To il-
lustrate the problematics of optimizing something
that depends not only on one’s own actions we
start with a simple one-shot game of the type
introduced in the seminal work of von Neumann
and Morgenstern.

Let U = {u1, u2}, V = {v1, v2} and let the
outcome be defined as a function c : U × V → R

which can be given as a table

c v1 v2

u1 c11 c12

u2 c21 c22

We want to choose among u1 and u2 the one
that minimizes c but since different choices of v
may lead to different values we need to specify
how to take these values into account. There are
basically three generic approaches for evaluating
our decisions:

• Worst-case: each action of the controller is
evaluated according to the worst outcome
that may result from taking the action:

u = argmin max{c(u, v1), c(u, v2)}.
• Average case: the environment is modeled as

a stochastic agent acting randomly according
to a probability function p : V → [0, 1] and
the controller actions are evaluated according
to the expected value of c:

u = argmin p(v1) · c(u, v1) + p(v2) · c(u, v2).

• Typical case: the evaluation is done with re-
spect to a fixed element of V , say v1, which

represents the most “typical” behavior of the
adversary. This amounts to denying the ex-
istence of uncontrolled disturbances and the
problem is reduced to ordinary optimization:

u = argmin c(u, v1).

Before moving to dynamic games let us note what
happens when c is a continuous function over
continuous U and V . The average case analysis
stays within the standard framework of continu-
ous optimization, that is, optimization of a real-
valued function, while the worst-case min-max
analysis does not. This may partially explain why
in domains such as continuous control stochastic
disturbances are much more popular.

3. DYNAMIC GAMES

A dynamic game is a game where the players are
engaged in an ongoing interaction extended over
time. In the computer science context, the term
reactive systems, coined by Harel and Pnueli, is
used to denote such objects. A game is character-
ized by a state-space X and a dynamic rule of the
form

x′ = f(x, u, v)

stating that at each time instant the “next” value
of x is a function of its current value and of
the actions of both players. In this part of the
paper we focus on discrete time “synchronous”
games where such a dynamics is often written as
a recurrence equation of the form

xi = f(xi−1, ui, vi)

but we keep in mind the existence of other models
such as differential games on dense time defined
via

ẋ = f(x, u, v)

or games with a more “asynchronous” flavor
where actions may occur on a non-periodic time
set (event-triggered rather then time-triggered)
and where actions of both players need not occur
simultaneously. Such asynchronous games will be
used later to model scheduling problems.

We assume all games to start from an initial state
x0 and use the notation x̄ for a state-sequence
x[0], x[1], . . . , x[k]. Likewise, we will use ū and v̄
for sequences of players actions. The predicate
(constraint) B(x̄, ū, v̄) denotes the fact that x̄ is
the behavior of the system when the two players
apply the action sequences ū and v̄, respectively:

B(x̄, ū, v̄) iff x[0] = x0

x[t] = f(x[t − 1], u[t], v[t]) ∀t

It is sometimes useful to view the game as a labeled
directed graph whose nodes are the elements of
X and its edges are all the pairs (x, x′) such
that f(x, u, v) = x′ for some u and v. The



reachable part of this transition graph is the sub-
graph obtained by restriction to elements of X for
which a path from x0 exists. An alternative useful
notation for B(x̄, ū, v̄) is:

x[0]
u[1],v[1]−→ x[1] · · · u[k],v[k]−→ x[k].

There are many ways to assign performance mea-
sures to such behaviors in order to compare them
and find the optimal one. For example, any cost
function c : X → R on states can be lifted to a
cost function on sequences by letting

c(x̄) =
k∑

t=1

c(x[t])

or
c(x̄) = max{c(x[t]) : t ∈ 1..k}.

Another useful measure is the minimal time to
reach a goal set F ⊆ X:

c(x̄) = min{t : x[t] ∈ F )}.
In the more general case the cost function may
also take into account the costs associated with
the controller actions ū. The nature of cost func-
tions depends on the application domain. In dis-
crete verification c(x) is typically a {0, 1}-valued
function indicating bad states, and checking in-
variance properties (whether the system always
avoids those bad states) reduces to checking
whether c(x̄) = 0 for the max-extension of c to
sequences. In continuous domains some quadratic
functions on x̄ or other “norms” are often used to
indicate the distance of the sequence (trajectory)
from a reference. Sometimes the choice of the
cost function is influenced less by its adequacy
for the problem and more by the existence of
a corresponding optimization method, especially
when the optimum is to be computed analytically.

4. BOUNDED HORIZON PROBLEMS

We will now restrict ourselves to situations where
we compare only behaviors of a fixed finite length.
There are several reasons to focus on bounded de-
cision horizons. The first is that there are certain
problems of the “control to target” or “shortest
path” type, where all reasonable behaviors con-
verge to a goal state in a bounded number of steps
(but via paths of different costs). Another reason
is the common sense intuition that as we look
further into the future, our models becomes less
reliable, and hence it is better to plan for a shorter
horizon and revise the plan during execution (this
is the basis of model-predictive control). Finally,
bounded horizon problems in discrete time can be
reduced to finite dimensional optimization prob-
lems.

We first illustrate the formulation of the problem
for adversary-free situations with dynamics of the

form x′ = f(x, u). In this case we look for a
sequence ū = u[1], . . . , u[k] which is the solution
of the constrained optimization problem

min
ū

c(x̄) subject to B(x̄, ū).

Here we used a cost function based only on x̄
while the fact that x̄ is the result of following
the dynamics f under control ū is part of the
constraints. For linear dynamics, specified by x′ =
Ax + Bu, and a linear cost function, the problem
reduces to standard linear programming. In dis-
crete verification where the dynamics and cost are
defined logically, the problem reduces to Boolean
satisfiability (this is the essence of bounded model
checking).

If we dispose of a constrained optimization proce-
dure for the domain in question, we can compute
the desired ū. Note that in the absence of external
disturbances ū completely determines x̄ and no
feed-back from x is needed. The control “strategy”
reduces to an open-loop “plan”: at each time in-
stant t apply the element u[t] of ū. We could have
rephrased it as a feed-back function (strategy) s
defined over all x[t] in x̄ as s(x[t]) = u[t + 1] but
this would be an overkill.

Let us re-introduce the adversary and use, without
loss of generality, the worst-case criterion. We now
need to find ū which is the solution of

min
ū

max
v̄

c(x̄) subject to B(x̄, ū, v̄).

Consider the case where U = {u1, u2} and V =
{v1, v2} which is captured, for horizon 2, by the
game tree of Figure 1. We assume, for simplicity,
that the cost of each behavior is determined by its
terminal state. In this case we can enumerate all
the 4 possible control sequences and compute the
cost they induce as:

u1u1 : max{c(x5), c(x6), c(x9), c(x10)}
u1u2 : max{c(x7), c(x8), c(x11), c(x12)}
u2u1 : max{c(x13), c(x14), c(x17), c(x18)}
u2u2 : max{c(x15), c(x16), c(x19), c(x20)}

The sequence which minimizes these values is the
optimal open-loop control that can be achieved.
Using feed-back, however, one can do better.
While the choice of u[1] is done without any
knowledge of the adversary’s action, the choice
of u[2] is done after the effect of v[1], that is, the
value of x[1], is known. Consider the case where
u[1] = u1 and we need to choose u[2]. If, for exam-
ple, max{c(x5), c(x6)} < max{c(x7), c(x8)} but
max{c(x9), c(x10)} > max{c(x11), c(x12)} then
the optimal thing to do is to apply u1 when
x[1] = x1 and u2 when x[1] = x2.

A control strategy is thus a function s : X → U
telling the controller what to do at any reach-
able state of the game. The following predicate
indicates the fact that x̄ is the behavior of the
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Fig. 1. A game tree of depth 2.

system in the presence of disturbance v̄ when the
controller employs strategy s:

B(x̄, s, v̄) iff x[0] = x0

u[t] = s(x[t − 1]) ∀t
x[t] = f(x[t − 1], u[t], v[t]) ∀t

Finding the best (worst-case) strategy s becomes
the following second-order optimization problem:

min
s

max
v̄

c(x̄) subject to B(x̄, s, v̄).

Finding an optimal strategy is usually much more
difficult than finding an optimal sequence. Dis-
crete finite-state systems admit |U ||X| potential
strategies and each of them induces |V |k be-
haviors of length k. In continuous domains (on
continuous time), where the enumeration of all
strategies is not an option, such a strategy is the
solution of a partial differential equation known
as the Hamilton-Jacobi-Bellman-Isaacs equation.
Note that a strategy need not be defined all over
X, only for elements reachable from x0 when the
controller employs that strategy.

5. DYNAMIC PROGRAMMING

Dynamic programming, or backward value iter-
ation, is a technique, advocated by Bellman, for
computing optimal strategies in an incremental
way. For discrete systems the algorithm is poly-
nomial in the size of the transition graph, which
is better than the exponential enumeration of
strategies. However, as we will see later, this is
not of much comfort in many situations where the
transition graph itself is exponential in the number
of system variables.

We will illustrate dynamic programming on the
following shortest path problem. A subset F of X
is designated as a target set, and a cost c(x, u, v)
is associated with each transition. The cost of a
path

x[0]
u[1],v[1]−→ x[1] · · · u[k],v[k]−→ x[k]

from the initial state to a target state is

c(x̄, ū, v̄) =
k∑

t=1

c(x[t − 1], u[t], v[t]),

and our goal is to find the strategy that minimizes
the worst-case.

Dynamic programming uses an auxiliary function
(value function, cost-to-go)

→V : X → R such that
→V (x) is the performance of the optimal strategy
for the sub-game starting from x. For “leveled”
acyclic transition graphs (where all paths that
reach a state x from x0 have the same number
of transitions),

→V admits the following backward
recursive definition:

→V (x) = 0 when x ∈ F
→V (x) = min

u
max

v
(c(x, u, v)+

→V (f(x, u, v))).

In more general settings, including cycles, the
value function is the fixed-point of the following
iteration:

→V0 (x) =
{

0 when x ∈ F
∞ when x �∈ F

→V i+1 (x) = min

{ →V i (x),

min
u

max
v

(c(x, u, v)+
→V (f(x, u, v)))

}

We recall that the choice of max and summa-
tion in this “local” operator is specific to this
particular performance criterion. When max is
replaced by weighted sum, we obtain the solution
procedure for Markov decision processes, leading
to a strategy with optimal expected value. When
summation is replaced by max, you obtain essen-
tially the backward synthesis algorithm for dis-
crete event systems (automata). In this case, the
value of

→V i stands for the characteristic function of
the set of states from which the controller cannot
postpone reaching a forbidden state for more than
i steps.

This elegant procedure is guaranteed (if it con-
verges) to find the optimal value

→V (x0) of the
game, as well as the strategy that attains this op-
timum: just take for each x the u that achieves the
local optimum. For finite-state systems with pos-
itive transition costs, finite convergence is guar-
anteed. The only deficiency of dynamic program-
ming is the need to compute the function for
too many states, sometimes states that are not
reachable from x0 at all, and sometimes states
that are not reachable by any reasonable strategy.
This prevents the straightforward application of
the algorithm to systems having a huge state-
space (Bellman’s “curse of dimensionality”).

6. FORWARD SEARCH

Shortest path problems (without an adversary)
admit a dual forward procedure, due to Dijkstra.
Here we use a backward value function

←V such
that

←V (x) indicates the minimal cost for reaching
x from x0, and we want to compute

←V (x) for
x ∈ F . This is done iteratively using:

←V (x0) = 0



←V (x) = min
u

(c(x′, u)+
←V (f(x′, u)))

where x′ ranges over all the immediate predeces-
sors of x. This algorithm is polynomial as well
but, as noted before, this is not of much help for
exponential transition graphs. The advantage of
this procedure is the ability to apply intelligent
search and sometimes find the optimum without
exploring all the reachable states. If we do not in-
sist on optimality, we can find reasonable solutions
while exploring a small fraction of the paths.

To demonstrate this idea in a way that can be
extended later for problems with adversaries, we
view each incomplete path as a partial strategy
defined only on states encountered along the path.
We will store triples of the from (s, x,

←V) where s
is a partial strategy, x stands for the last node in
the path and

←V is the cost for reaching x along the
path. The first version of the algorithm explores
all the paths (and all the partial strategies). We
use a waiting list W in which we store partial
paths that need to be explored further. The al-
gorithm is given below:

W := {(∅, x0, 0)}
repeat
Pick a non-terminal node (s, x,

←V) ∈ W
for every u ∈ U do

(s′, x′,
←V ′

) :=
(s ∪ {x �→ u}, f(x, u),

←V +c(x, u))
Insert (s′, x′,

←V ′
) into W

end
Remove (s, x,

←V) from W
until W contains only terminal nodes

If new nodes are inserted at the end of W , the
graph is explored in a breadth-first manner. The
nodes explored by this procedure on the example
of Figure 2 appear in the table below. The four
entries for the terminal nodes are compared and
the path/strategy with minimal cost is selected.

s x
←V

∅ x0 0
{x0 �→ u1} x1 c(x0, u1)
{x0 �→ u2} x2 c(x0, u2)
{x0 �→ u1, x1 �→ u1, } x3 c(x0, u1) + c(x1, u1)
{x0 �→ u1, x1 �→ u2, } x3 c(x0, u1) + c(x1, u2)
{x0 �→ u2, x2 �→ u1, } x3 c(x0, u2) + c(x2, u1)
{x0 �→ u2, x2 �→ u2, } x3 c(x0, u2) + c(x2, u2)

This algorithm can be modified in order to find an
optimal strategy without exhaustive exploration.
The idea is to associate with every partial strategy
an estimation function which gives a lower-bound
on the cost of any extension of the strategy.
This function is defined for every (s, x,

←V) in
W as E(s, x,

←V) =
←V +

→V(x) where
→V is an

under-approximation of the cost-to-go function
→V . This function can be derived from domain-

x0

x1 x2

x3

u1 u2 u1 u2

u2u1

Fig. 2. A shortest path problem.

specific knowledge and it provides an optimistic
estimation of the remaining cost to reach the
target by any strategy that extends s. Note that
as x gets deeper, the past component in E(x)
becomes more dominant and the estimation —
more realistic.

A best-first version of the algorithm maintains W
ordered according to E and explores the more
promising nodes first. Moreover, the algorithm
can stop exploring when the value of E for the first
element in W is larger than solutions that were
already found. To increase the efficiency of the
algorithm we can first perform depth-first random
search to obtain some solutions at early stages of
the search (branch and bound). Best-first search
is guaranteed to find the optimum, and if we relax
the optimality requirements, we can explore even
less states, for example, by exploring only a subset
of the successors of each node, or by stopping the
algorithm when a solution smaller than some pre-
specified value is found.

The adaptation of forward search to game graphs
situations is done as follows. First let us redefine
the value function as:
←V (x) = min

u
max

v
(c(x′, u, v)+

←V (f(x′, u, v))).

Here, because of the adversary, every partial strat-
egy results in a set of states. To avoid heavy
notations we omit the cost from the reachable sets
of states and the reader should keep in mind that
every reachable x is, in fact, (x,

←V) where
←V is

the accumulated cost to reach x via the path in
question. The set of successors of a state x via a
controller action u is

f(x, u) = {f(x, u, v) : v ∈ V }.
The u-successor of (s, x) with s being a partial
strategy is

σ((s, x), u)) = (s ∪ {x �→ u}, f(x, u)).

Consider now a node of the form (s, L) where s
is a partial strategy and L is the set of states
reachable while following s. The successors of
(s, L), that is, the partial strategies the extend
s and their respective sets of reachable states, are
all combinations of all possible choices of u for all
x ∈ L:



σ(s, L) =
⊗
x∈L

{(σ(s, x), u) : u ∈ U)},

where
L1 ⊗ L2 = {(s1 ∪ s2, m1 ∪ m2) :

(s1, m1) ∈ L1, (s2, m2) ∈ L2}.

Let is illustrate this on the game tree of Figure 1.
The root node, (∅, {x0}), has two successors:

σ(∅, {x0}) = {σ((∅, x0), u1), σ((∅, x0), u2)}

=
{

({x0 �→ u1}, {x1, x2})
({x0 �→ u2}, {x3, x4})

}
Let us compute the successors of the first:

σ({x0 �→ u1}, {(x1, x2}) =

{
({x0 �→ u1, x1 �→ u1}, {x5, x6}),
({x0 �→ u1, x1 �→ u2}, {x7, x8})

}
⊗

{
({x0 �→ u1, x2 �→ u1}, {x9, x10}),
({x0 �→ u1, x2 �→ u2}, {x11, x12})

}
which gives the following four nodes( {x0 �→ u1, x1 �→ u1, x2 �→ u1},

{x5, x6, x9, x10}
)

,

( {x0 �→ u1, x1 �→ u1, x2 �→ u2},
{x5, x6, x11, x12}

)
,

( {x0 �→ u1, x1 �→ u2, x2 �→ u1},
{x7, x8, x9, x10}

)
and ( {x0 �→ u1, x1 �→ u2, x2 �→ u2},

{x7, x8, x11, x12}
)

An exhaustive version of the forward search algo-
rithm for game graphs is exponential in the size
of the graph (unlike the backward procedure) but
with the help of an estimation function on sets
of nodes, one can hope to prune many branches
of the search tree using best-first search. Note
that the procedure can be adapted easily to the
average-case criterion by replacing sets of states
by probabilities on states.

The alert reader might have traced some inac-
curacies in the description which was specialized
to game trees, rather to the more general case of
game graphs. In the latter case, a set of reachable
states my include several copies of the same state,
and all but the one with the worst cost can be
removed. We also assumed that a strategy cannot
reach the same state twice along the same path.
A strategy that does that has an infinite value
and can be discarded. For clarity of exposition we
assumed that both players can apply any element
of U and V at any time, while in reality some
actions are possible only at certain states.

This concludes the first part of the paper in which
we presented three approaches to solve optimal
control problems in the presence of an adversary.
The first approach was based on bounded hori-
zon and finite dimensional optimization. The two
other approaches were based on propagation of
costs along paths, either backward (dynamic pro-
gramming) or forward. These approaches were de-
scribed using discrete U and V and their adapta-
tion to continuous domains is not straightforward,
unless they are discretized. Discretization of U
may lead to loss of optimality while discretization
of V — to optimistic values of the chosen strat-
egy. In the following sections we demonstrate this
approach on an interesting type of a game played
with discrete values over continuous time, namely,
scheduling under uncertainty in task durations.

7. SCHEDULING AS A GAME

Scheduling problems appear in diverse situations
where the use of bounded resources over time
has to be regulated. A scheduler is a mecha-
nism that decides at each time instant whether
or not to allocate a resource to one of the tasks
that needs it. Unfortunately, scheduling research
is spread over many application domains, and in
many of them problems are often solved using
domain specific methods, without leading to a
more general theory (except for, perhaps, oper-
ations research where scheduling is treated as a
static optimization problem, similar to the the
approach described in Section 4). In this section
we will reformulate scheduling in our terminology
of dynamic two player games.

On one side of the problem we have the resources,
a set M = {m1, . . . , mk} of “machines” that we
assume to be fixed. On the other side we have
tasks, units of work that require the allocation of
certain machines for certain durations in order
to be accomplished. In a world of unbounded
resources scheduling is not a problem: each task
picks resources as soon as it needs them and
terminates at its earliest convenience. When this
is not the case, two tasks may need the same
resource at the same time and the scheduler has to
resolve the conflict and decide to whom to give the
resource first. The tasks may be related to each
other by various inter-dependence conditions, the
most typical among them is precedence: a task can
start only after some other tasks (its predecessors)
have terminated. In this paper we assume the set
of tasks to be fixed and known in advance.

To model such situations as dynamic games we
need first to fix the state-space. For our purposes
we take the state of the system at any given
instant to include the states of the tasks (waiting,
active, finished), the time already elapsed (for



active tasks) and the corresponding states of the
machines (idle, or busy when it is used by an
active task). The actions of the scheduler are of
two types, the first being actions of the form
start(p) which means allocating a machine m to
task p so that it can execute. The effect of such
an action on a state where p is enabled (all its
predecessors have terminated) and m is idle, is
to make p active and m occupied. Let us denote
this set of actions by S. The other “action” of
the scheduler is to do nothing, denoted by ⊥. In
this case the active tasks continue to execute, the
waiting tasks keep on waiting and time elapses.
The actions of the environment consist of similar
waiting and a set of actions of the form end(p)
whose effect, when the task spent enough time in
an active state, is to move the task to a terminal
state and release the machine. We assume that the
environment is deterministic, that is, every end(p)
transition occurs exactly d time after the start(p)
where d is the pre-specified duration of the task
(later, we will relax this assumption). In this case
the strategy can be viewed as a single schedule, a
function s : R+ → S ∪ {⊥}. For all but a finite
number of time instances we have s(t) = ⊥ and
the schedule is determined by a finite number of
start times for each task.

8. DETERMINISTIC JOB SHOP
SCHEDULING

A job shop problem consists of a finite set J =
{J1, . . . , Jn} of jobs to be processed on a finite
set M of machines. Each job J i consists of a
finite sequence of tasks to be executed one after
the other, where each task is characterized by a
pair of the form (m, d) with m ∈ M and d ∈ N,
indicating the required utilization of machine m
for a fixed time duration d. Each machine can
process at most one task at a time and, due to
precedence constraints, at most one task of each
job can be active at any time. Tasks cannot be
preempted once started. We want to determine
the starting times for each task so that the total
execution time of all jobs (the time the last task
terminates) is minimal.

As an example consider the problem

J1 : (m1, 4), (m2, 5) J2 : (m1, 3)

which exhibits a conflict on m1. This conflict can
be resolved in two ways, either by giving priority
to J1 or to J2 (schedules s1 and s2 of Figure 3).
The length induced by s1 is 9 and it is the optimal
schedule for this example. The hardness of the
problem stems from the fact that sometimes an
optimal schedule is achieved by not executing a
task as soon as it is ready in order to keep the
machine free for another task that will need it in
the future.
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Fig. 3. Two schedule s1 and s2 for the example.

The traditional way to solve this problem is to
assign variables, z1, z2 and z3 for the start times of
the three tasks, a variable z4 for the total length of
the schedule and solve a constrained optimization
problem. The precedence constraints for J1 are
expressed by z2 ≥ z1 + 4 (it cannot use m2 before
finishing using m1). The fact that only one task
can use m1 at a given time is expressed by the
condition

[z1, z1 + 4] ∩ [z2, z2 + 3] = ∅
stating that the utilization periods of m1 by both
jobs should not coincide. The whole problem is
thus formulated as:

min(z4) subject to
z2 − z1 ≥ 4
z4 − z2 ≥ 5
z4 − z3 ≥ 3
(z2 − z1 ≥ 4 ∨ z1 − z2 ≥ 3)

The format of this problem is both simpler and
more complex than general linear programming.
On one hand the constraints are always of the
form zi − zj ≥ d rather than arbitrary linear
inequalities. On the other, the last disjunctive con-
straint, which expresses a discrete choice, makes
the set of feasible solutions non-convex. As the
problem gets larger, the set of feasible solutions
gets more and more fragmented into a disjoint
union of convex polyhedra whose number is ex-
ponential in the number of conflicts. Like many
other combinatorial optimization problems, job
shop scheduling is NP-hard and this suggests that
any algorithm might, in some cases, end up enu-
merating all possible solutions.

It is worth mentioning that people accustomed
to continuous optimization tend to transform the
problem into mixed integer-linear program by in-
troducing auxiliary integer variables with which it
is possible to encode disjunctions as arithmetical
constraints. The problem is then transformed via
relaxation (assuming temporarily that these vari-
ables are real-valued) into a convex linear program
which can be solved efficiently. Then it rests to
transform the obtained “solution” to a feasible
solution with integer values for the relaxed vari-
ables. While this approach has been reported to
work well for some classes of problems, I have
doubts concerning its usefulness for scheduling, a
problem dominated by discrete choices that have
no numerical interpretation.



9. SCHEDULING WITH TIMED AUTOMATA

In this section I sketch in more detail the modeling
of scheduling situations as a dynamical system
on which optimal paths and optimal strategies
can be computed using the forward search algo-
rithm described in Section 6. We use the timed
automaton model which has established itself as
the formalism of choice for describing discrete
time-dependent behaviors. Timed automata are
automata operating in the dense time domain.
Their state-space is a product of a finite set
of discrete states (locations) and the clock-space
R

m
+ , the set of possible valuations of clock vari-

ables. The behavior of the automaton consists of
an alternation of time-passage periods where the
automaton stays in the same location and the
clock values grow uniformly, and of instantaneous
transitions that can be taken when clock values
satisfy certain conditions and which may reset
some clocks to zero. The interaction between clock
values and discrete transitions is specified by con-
ditions on the clock-space which determine what
future evolution, either passage of time or one or
more transitions, is possible at a state.

When timed automata model scheduling prob-
lems, the discrete states record the qualitative
state of the scheduling problem (who is execut-
ing, who has terminated) and the clocks provide
the quantitative component of the state, namely
the times that each active task has already spent
executing. We assume here that there is a single
machine of each type and hence the states of the
machines are implied by the states of the tasks.
We will spare from the reader the exact formal
definition of timed automata and illustrate our
modeling approach via an example.

We start by modeling each job as a simple au-
tomaton with one clock. The automata for our
example, depicted in Figure 4, have a straightfor-
ward structure. Automaton A1 starts with state
m1 where it waits for machine m1. It stays at this
state until a transition to active state m1 is taken.
This “start” transition is issued by the scheduler
and it resets clock c1 to zero. The automaton
stays at that state until the clock reaches 4 and
then moves to state m2, waiting for the next
task and so on until it reaches a final state. The
“end” transitions outgoing from active states are
made by the environment and are considered as
actions uncontrolled by the scheduler. Clocks are
considered “inactive” at waiting states as they are
reset to zero before they are tested.

These automata describe the possible behaviors
of each job in isolation. Their joint behavior
under resource constraints is captured by their
product shown in Figure 5. This is essentially a
Cartesian product of the job automata, where

m1

m1

m2

m2

c1 := 0

c1 = 4

c1 := 0

m1

m1

c2 := 0

c1 = 3

c1 = 5

A1 A2

�

�

Fig. 4. Automata for the two jobs.

resource constraints are expressed by removing
states such as (m1, m1) where more than one job
uses a machine. This results in a “hole” in the
automaton and the scheduler has to decide how
to bypass this hole, either by giving the machine
first to J1 or to J2. The two schedules of Figure 3
correspond to the following two behaviors (runs)
of the automaton (we use notation ⊥ to indicate
inactive clocks, and 0−→ for discrete actions such
as starting or ending a task):

s1 :

(m1, m1, ⊥, ⊥)
0−→ (m1, m1, 0, ⊥)

4−→ (m1, m1, 4, ⊥)
0−→

(m2, m1, ⊥, ⊥)
0−→ (m2, m1, 0, ⊥)

0−→ (m2, m1, 0, 0)
3−→

(m2, m1, 3, 3)
0−→ (m2, �, 3, ⊥)

2−→ (m2, �, 5, ⊥)
0−→

(�, �,⊥, ⊥)

s2 :

(m1, m1, ⊥, ⊥)
0−→ (m1, m1, ⊥, 0)

3−→ (m1, m1, ⊥, 3)
0−→

(m1, �, ⊥, ⊥)
0−→ (m1, �, 0, ⊥)

4−→ (m1, �, 4, ⊥)
0−→

(m2, �, ⊥, ⊥)
0−→ (m2, �, 0, ⊥)

5−→ (m2, �, 5, ⊥)
0−→

(�, �,⊥, ⊥)

It is not hard to see the correspondence between
the set of possible behaviors of the automaton
that reach the final state and the set of all feasible
schedules. Hence the problem of optimal schedul-
ing reduces to finding the shortest run in a timed
automaton, where the length of the run is the total
elapsed time. The number of such runs is uncount-
able (each automaton may stay any amount of
time in a waiting state) however we have shown
that the optimum is found among a finite number
of runs and each node in the search tree has a
finite number of successors worth exploring. The
number of such paths is still exponential and an
exhaustive search is infeasible. Our implementa-
tion of a best-first search algorithm on this model
could find optimal schedules for problems with 6
jobs, 6 machines and 36 tasks. Beyond that we
had to apply a heuristic that could find solutions
with 5% from the known optimum for problems
with up to 15 jobs, 15 machines and 225 tasks.

The reader probably noticed that the dynamic
model used here does not fit exactly into the
discrete time synchronous framework previously
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Fig. 5. The global timed automaton for the two
jobs. The paths that correspond to the two
schedules are indicated by thicker arrows.

described. By using a “sampled” approach and
restricting events to occur and to be observed only
at multiples of some constant δ, we can approx-
imate any timed automaton by a discrete time
system. However, when events occur sparsely over
time, the continuous time asynchronous approach
is computationally more efficient as it allows to
“accelerate” the evolution of the system by letting
time advance until the next event.

10. SCHEDULING UNDER UNCERTAINTY

Although the approach just described is elegant,
one may argue that the world of scheduling could
live without yet another technique for solving the
job shop problem. The advantage of using state-
based dynamic models is manifested when we
move to the more complex problems of scheduling
under uncertainty. Academic scheduling research
has often been criticized from a practical point
of view for making unrealistic assumptions and it
was noted that real schedules are rarely executed
as planned. During execution it may happen that
tasks terminate sooner or later then expected, new
tasks may appear, machines may break down, etc.
In such situations what we need is a scheduling
policy, a strategy which adapts to the evolution

of the plant and modifies its decisions accordingly.
In this section we augment the job shop problem
with one type of uncertainty, namely bounded
uncertainty in task durations. This means that a
task description gets the form (m, [l, h]) indicating
that the actual duration of the task is some d ∈
[l, h]. Each actual instance of the job shop problem
consists of picking such a d for each interval and
we need to evaluate a strategy according to its
performance on all such instances. Consider the
problem

J1 : (m1, 10), (m3, [2, 4]), (m4, 5) J2 : (m2, [2, 8]), (m3, 7)

where the only resource under conflict is m3 and
the order of its utilization is the only decision
of the scheduler. The uncertainties concern the
durations of the first task of J2 and the second
task in J1. Hence an instance is a pair d =
(d1, d2) ∈ [2, 4] × [2, 8]. Figure 6-(a) depicts the
optimal schedules for the instances (8, 4), (8, 2)
and (4, 4) that could have been found by a non-
causal clairvoyant scheduler who knows the whole
instance in advance. But instances reveal them-
selves progressively during execution — the value
of d1, for example, is known only after the termi-
nation of the second task of J1.

It turns out that for this particular type of uncer-
tainty, optimization with respect to the worst-case
criterion is somewhat trivial. There is always a
maximal (critical) instance, (8, 4) in this example,
having two important properties: 1) The optimal
schedule for this instance is valid also for all other
smaller instances (just ignore earlier termination
of certain tasks and keep the machine busy until h
time elapses); 2) No strategy can perform better
on this instance. Figure 6-(b) shows the behavior
of a static worst-case strategy based on instance
(8, 4) and one can see that is is rather wasteful
for other instances. We want a smarter adaptive
scheduler which takes the actual duration of m2

into consideration.

One of the simplest ways to be adaptive is the
following. First we choose a nominal instance d
and find a schedule s which is optimal for that
instance. Rather than taking s “literally” as an
assignment of absolute start times to tasks, we
extract from it only the qualitative information,
the order in which conflicting tasks utilize each
resource. In our example the optimal schedule for
instance (8, 4) is associated with giving priority to
J1 on m3. Then, during execution, we start every
task as soon as its predecessors have terminated,
provided that the ordering is not violated. As
Figure 6-(c) shows, such a strategy is better than
the static schedule for instances such as (8, 2)
where it takes advantage of the earlier termination
of the second task of J1 and “shifts forward” the
start times of the two tasks that follow.
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Fig. 6. (a) Optimal schedules for three instances;
(b) A static schedule based on the worst
instance (8, 4); (c) The behavior of a hole
filling strategy based on instance (8, 4); (d)
The equal performance of the two strategies
on instance (5, 4).

Note that this “hole filling” strategy is not re-
stricted to the worst-case. One can use any nomi-
nal instance and then shift tasks forward or back-
ward in time as needed while maintaining the
order. On the other hand, a static schedule can
only be based on the worst-case — a schedule
based on another nominal instance may assume
a resource available at some time point, while in
reality it will be occupied.

The hole filling strategy is optimal for all instances
whose optimal schedule has the same ordering
as that for the nominal instance. It is not good,
however for instances such as (4, 4) which cannot
benefit from the early termination of m2 because
shifting m3 of J2 forward will violate the priority
on m3. For such cases a more refined form of
adaptiveness is required. Looking at the optimal
schedules for (8, 4) and (4, 4) in Figure 6-(a),
we observe that in both of them the decision
whether or not to give m3 to J2 is taken at
the same qualitative state where m1 is executing
and m2 has terminated. The only difference is in
the elapsed execution time of m1 at the decision
point. Hence an adaptive scheduler should base its
decisions also on quantitative information encoded
by clock values.

Consider the following approach: initially we find
an optimal schedule for some nominal instance.
During execution, whenever a task terminates
we reschedule the “residual” problem, assuming
nominal duration for tasks that have not yet
terminated. In our example, we first build an
optimal schedule for (8, 4) and start executing it.

If task m2 in J2 terminated after 4 time units we
obtain the residual problem

J ′
1 : (m1,6), (m3, 4), (m4, 5) J ′

2 : (m3, 7)

where the boldface letters indicate that m1 must
be scheduled immediately (it is already executing
and we assume no preemption). For this problem
the optimal solution will be to give m3 to J2.
Likewise, if m2 terminates at 8 we have

J ′
1 : (m1,2), (m3, 4), (m4, 5) J ′

2 : (m3, 7)

and the optimal schedule consists of waiting for
the termination of m1 in order to give m3 to J1.
The property of the schedules obtained this way
is that at any state reachable during execution
they are optimal with respect to the nominal
assumption concerning the future. We call such
strategies d-future optimal.

This is the principle underlying model-predictive
control where at each step, actions at the current
“real” state are re-optimized while assuming some
nominal prediction for a bounded horizon future.
A major drawback of this approach is that it
involves a lot of online computation, solving a new
scheduling problem each time a task terminates.
This restricts its applicability to “slow” processes.
In the next section we present an alternative ap-
proach where an equivalent strategy is synthesized
offline using a symbolic variant of dynamic pro-
gramming adapted for timed automata.

11. DYNAMIC PROGRAMMING ON TIMED
AUTOMATA

The state-space of a timed automaton consists of
pairs of the form (q, c) where q = (q1, . . . , qn)
is a discrete state, indicating the local states
of all jobs, and c = (c1, . . . , cn) is a vector of
clock valuations ranging over a bounded subset
of the non-negative reals. On these we define a
value function

→V such that
→V (q, c) denotes the

minimal time to reach the final state from (q, c),
assuming nominal values for tasks that have not
terminated. Before giving the formal definition let
us give an intuitive explanation. Being at (q, c), all
the local choices of the scheduler can be brought
into the following form: let some t time pass and
then execute one transition that is enabled by
the clock values. This definition covers also the
possibility of an immediate action (t = 0), as well
as the possibility of waiting until an uncontrolled
transition is taken by the environment. The value
induced by this choice is the sum of the waiting
time t and the value of the state reached after
the transition. This is captured by the following
recursive definition:
→V (�, c) = 0
→V (q, c) =

min{t+ →V (q′, c′) : (q, c)
t−→ (q, c + t1)

0−→ (q′, c′)}



To illustrate the computation of
→V we consider a

simplified version of the example from the previ-
ous section with only one uncertain duration:

J1 : (m1, 10), (m3, 4), (m4, 5) J2 : (m2, [2, 8]), (m3, 7).

Figure 7 shows the final part of the global automa-
ton corresponding to the problem, which includes
state (m1, m3) where a decision of the scheduler
has to be taken. The computation starts with
→V (�, �,⊥,⊥) = 0. The value of (m4, �, c1,⊥) is
the time it takes to satisfy the condition c1 = 5,
which is 5−. c1. Likewise

→V (�, m3,⊥, c2) = 7−. c2.
In state (m4, m3) the two jobs are active and the
transition to be taken depends on which of them
will “win the race” and terminate before:
→V (m4, m3, c1, c2)

= min

{
7 −. c2+

→V (m4, �, c1 + (7 −. c2),⊥),
5 −. c1+

→V (�, m3,⊥, c2 + (5 −. c1))

}

= min{5 −. c1, 7 −. c2}

=
{

5 −. c1 if c2 −. c1 ≥ 2
7 −. c2 if c2 −. c1 ≤ 2

Note that both transitions are uncontrolled end
transitions and no decision of the scheduler is
required in this state. The computation proceeds
backwards, computing

→V for all states. In partic-
ular, for state (m1, m3) where we need to choose
between giving m3 immediately to J2 or waiting
for the termination of m1 to give m3 to J1, we
obtain:

→V (m1, m3, c1,⊥) = min{16, 21 −. c1}

=
{

16 if c1 ≤ 5
21 −. c1 if c1 ≥ 5

Hence, if m1 terminates after less than 5 time
units it is better to give m3 to J2, otherwise it
is worth waiting and giving it to J1. Figure 6-(d)
shows that, indeed, the two strategies coincide in
performance when c1 = 5.

The reader should not be misled by the success of
our strategy to match the performance of a clair-
voyant scheduler for this small example. In slightly
more complex problems with several uncertainties
it is impossible to compete with knowing the fu-
ture and being d-future optimal is good enough.

The actual computation of the value function
is implemented using standard reachability tech-
niques for timed automata which are outside the
scope of the present paper. We have tested our
implementation on a problem with 4 jobs, 6 ma-
chines and 24 tasks, 8 of which having uncer-
tain durations. we fixed two instances, one “op-
timistic” where each task duration is set to l,
and one “pessimistic” with h durations. We ap-
plied our algorithm to find two d-future optimal
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Fig. 7. Part of the global automaton.

strategies and two hole filling strategies based on
these instances. We have generated 100 random
instances with durations drawn uniformly from
each [l, h] interval, and compared the results of
the abovementioned strategies with an optimal
clairvoyant scheduler that knows each d in ad-
vance, and with the static worst-case scheduler.
It turns out that the static schedule is, on the
average, longer than the optimum by 12.54%. The
hole filling strategy deviates from the optimum
by 4.90% (for optimistic prediction) and 4.44%
(for pessimistic prediction). Our strategy pro-
duces schedules that are longer than the optimum
by 1.40% and 1.14%, respectively.

The good news is that our strategy is much better
than static scheduling, and can be considered as
a useful tool for systems with “soft” real-time
performance criteria. The bad news is that it is
much more costly than the hole filling strategy.
The latter solves an adversary-free problem and
can use intelligent forward search while the com-
putation of our strategy has to explore the whole
state-space. The adaptation of forward game tree
search to this problem is not straightforward, due
to the density of the set of adversary actions,
and it is subject to ongoing research along with
the adaptation of this approach to other types



of uncertainty such as imprecise arrival times or
discrete uncertainty associated with conditional
dependencies between tasks.

12. DISCUSSION

People who are experts in their domain are often
skeptical toward proposals for unified theories.
Indeed, compared to successes of domain specific
research, various holistic trends such as “general
systems theory” proved in the past to be rather
sterile. Saying that “everything is systems” and
that many things that look so different are, at a
certain level of abstraction, similar, does not nec-
essarily solve problems. I hope that the framework
presented in this paper will have a better fate. It is
less ambitious than some of its predecessors in the
sense of not trying to predict the unpredictable
and pretend to give optimal recipes for complex
socio-economic or biological phenomena for which
we do not even know the appropriate modeling
vocabulary. Rather it is restricted to situations
where useful dynamic models and performance
criteria do exist, models which are already used,
implicitly or explicitly, for simulation, verification
or optimization. This framework is geared toward
a concrete goal: developing a tool for defining and
solving optimal control problems for systems with
diverse types of dynamics.

Some principles underlying such a framework
(some of which already exist in respective do-
mains) are mentioned below. First, I believe that
systems should be defined with a clear semantics
from which it is easy to see who are the players,
what are the variables they can observe and influ-
ence, what constitutes a behavior of the system,
what is assumed about the environment and what
are the natural performance criteria. At this level,
the description should be separated from the spe-
cific computational techniques that are used to
reason about the model. This is in contrast with
the domain-specific approaches where problems
are often phrased in terms biased toward particu-
lar and, sometimes, accidental solution techniques
which are common in the domain.

After an ideal optimal controller has been math-
ematically defined, computational issues should
be addressed. Here the difference between classes
of system dynamics is manifested by the type of
constrained optimization problem to be solved,
discrete (logical), continuous (numerical) or hy-
brid. In most cases the global optimality of the
solution is a ceremonial matter. No one really
intends to be optimal and models are imprecise
anyway. In some cases, proving some relation be-
tween approximate solutions and the optimum is
a good measure for the quality of a technique,

but this is neither a necessary nor a sufficient
condition for its usefulness.

Since some space is left, let me add some con-
troversial remarks. It seems to me that in many
domains relevant to this paper, there is a tension
between the mathematical (theoretical) and engi-
neering (hacking) approaches. The (real) practi-
tioner cannot choose the problems he has to solve
and also does not have time to develop nice the-
ories. In many cases he will adapt solutions pro-
vided by mathematicians of previous generations
to get the job done. The theoretician is supposed
to be more open-minded and explore new classes
of models for new phenomena but the structure
of academe does not always encourage him to
do so. Members of scientific communities often
impose upon themselves some intrinsic evaluation
criteria that deviate over time from the raison
d’être of the domain. There is nothing wrong with
(good) mathematics for its own sake, but one
should not confuse it with solving real engineering
problems or even with laying the foundations for
future solutions. What is really needed is a middle
road between mathematics and engineering, which
allows us to see the generic mathematical objects
behind the engineering instances, together with
a strong sense of criticism toward the traditions
of the respective academic fields, which are often
by-products of the sociology of scientific commu-
nities, rather than the result of a genuine attempt
to be relevant.
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