A Unified Approach for Studying
Discrete and Continuous Dynamical Systems

Oded Maler
VERIMAG
2, av. de Vignate
38610 Gieres, France
maler@imag.fr
www-verimag.imag.fr/PEOPLE/Oded.Maler

Abstract

The goal of this paper is to present discrete transi-
tion systems and continuous dynamical systems in a
uniform manner, stressing the fundamental differences
as well as the commonalities between these two fun-
damental models. Such a framework seems to be a
pre-requisite to any theory and methodology for hy-
brid systems. For both types of systems we introduce
three models (a closed system, a system with one type
of input and a system with two types of input) such
that the problems associated with them correspond re-
spectively to the tasks of simulation, verification and
control synthesis. We will discuss some of the computa-
tional problems associated with building control CAD
tools that carry these tasks.

1 Introduction

The primary object of computer science and of dis-
crete event systems (DES) is the discrete transition sys-
tem (automaton). In control theory this role is played
by the continuous dynamical system. Hybrid systems
combine these two models and in order to develop a
theory to support them, it is useful to step back and
attempt to unify these two models, and reformulate
problems, results and algorithms in a similar fashion.
This is what this paper attempts to do, without pre-
senting any new results. We believe that every scientific
domain can benefit from re-examination of its under-
lying assumptions, its models and its (often implicit)
rules of the game, especially when the ultimate goal is
to build an inter-disciplinary research community.

We sketch three models (closed systems, systems with
one type of input and systems with two types of inputs)
and show how the corresponding activities of simula-
tion, verification and control synthesis are treated in
the continuous and discrete cases. Due to time and
space limitation, this manuscript is far from being com-

plete and many important issues are only mentioned
briefly.

2 Common Features

We will use 7" to denote the teme domain. For discrete
transition systems, 7' is the set IN of natural num-
bers. More often than not, it is the order relation on
IN which is important and not the metric: the “real”
time that has elapsed between two consecutive events
can be arbitrarily small or large.! For continuous sys-
tems, we need to make a distinction between a theoret-
tcal model, where 1" will be the set R4 of non-negative
reals (as defined in calculus textbooks) and an effective
model, used in computations, where 7" is something like
{nA :n € IN} for some rational A.

We will use three data domains: X will be the state-
space of the system under consideration. At the first
level of modeling (simulation) we will consider closed
systems such that given an initial state zy € X, the
state of the system 1s determined for every t € T'. At
the second level (verification), we add an input domain
U, affecting the dynamics of the system.? Finally, at
the third level of modeling (synthesis), we consider two
input domains, U and V', having different interpreta-
tions. One stands for the controller’s actions while
the other models uncontrolled disturbances — a two-
person game situation.® In this model we are interested
in finding a control law which guarantees that the sys-
tems behaves properly in the presence of any admissible
disturbance.

For transition systems, X, U and V are usually finite
(or at most, countable) sets. They will be rather amor-
phous sets admitting neither order relations, nor oper-
ations such as addition or multiplication.* For contin-

'n fact, in models such as Timed Automata metric time is
re-introduced.

2This can be interpreted in two ways: either U represents
uncontrolled disturbances, in that case answering questions con-
cerning all possible input patterns of U has, indeed, a verification
flavor. We can view U as the output of a controller (computed as
function of the state) and thus, in the absence of disturbances,
equivalent to a pre-computed control.

3This can be generalized to an arbitrary number of players,
which are not necessarily antagonistic. Such a model can be a
useful for distributed systems.

4We ignore, for the moment, the problem of the represen-
tation of X by a product of smaller domains, which has a lo¢

uous systems, the theoretical domains are reasonable
subsets of IR" (or other differentiable manifolds) while
for doing effective calculations on a computer we will
assume them to be “sufficiently dense” finite subsets of
the rationals, without going too deep into the founda-
tions of numerical analysis.

A behavior (or an input) of a system is a function of
the form £ : T — X (or a partial function defined
over some interval [0,¢] € T). These are called se-
quences® for discrete T, and signals® for continuous 7.
The set of all such behaviors is denoted by X* (we bor-
row the computer science notation). In the continuous
case X~ is usually restricted to have some nice prop-
erties (measurable, continuous, smooth, Lipschitz). A
length-preserving” function f : X* — Y™ is a causal
transduction if for every t the value of f(£) at t de-
pends only on the values of £ in the interval [0,¢). Any
function f: X — Y admits a natural pointwise exten-
sion f: X* > YY",

3 Model I

3.1 Discrete Systems

Definition 1 (System I-D) A transilion system is
S = (X,96) where X is a finite set and § : X = X
1s the transition function.

Given an initial state zg € X, the behavior of the sys-
tem is a sequence & : IN — X (or equivalently & € X™)
such that £[0] = 2 and for every 1,

i+ 1] = 6(&la))-
A useful abuse of notation is:
Tit1 = (S(l‘l)

Yet another way to characterize the behavior of S is
to define two operators (functions) from X* to itself.
One is the pointwise extension of § and the other is the
delay (shift) operation z,

2(&)[] = &[i - 1].

The behavior of the system is the fixed-point of é o z,
that is, it satisfies

£ =14(z(¢))-

3.2 Continuous Systems

Definition 2 (System I-C) A differential system is
S = (X,f) where X is R" and f : X — X is a con-

tinuous function (vector field).

of significance when dealing with complexity, compositionality,
distributed control etc.

5 Also called runs, executions, words, strings, traces.

6 Also known as trajectories, orbits, solutions to the Cauchy
problem.

"Le. the domain of definitions of the input and output signals
coincide.

Given zg € X, a behavior of the system is a signal
¢ Ry — X satisfying £[0] = zo and for every {,

dft]/dt = f(&[t)-

People also say®

This can be phrased also as:

€[] = w0 + / F(El)dr.

Again, the behavior can be seen as a fixed point of a
signal operator, composed from the pointwise extension
of f and the integrator I, defined for every signal ¢ as

1) :xo+/0 f(E[r])dr.

The solution® is the fixed-point of I o f,
§=1(/(8)-

Note the difference from the discrete case: here the
initial value zg is a basis for the ongoing summation,
while in the discrete case no “inertia” is involved.?

It is worth mentioning that both discrete and continu-
ous systems satisfy the semi-group property, that is, if
¢ is the behavior of the system starting at x¢ and ¢’ is
the behavior starting at £[t1] then £[ty + t2] = &'[t2].

3.3 Approximated Continuous System (Sketch)
There are two basic steps leading from the ideal math-
ematical continuous objects to their effective realiza-
tions. At the first level, one still pretends that X 1is
indeed IR", but admits T to be discretized time (with
a fixed step). This is the level which corresponds to
discrete-time dynamical systems. When looking fur-
ther into computational realizations, X 1is discretized
as well, and a whole science of error bounds is needed.

3.4 Problems and Solutions

Given a description of a dynamical system, the most
natural thing to ask is how it will behave starting from
some initial state. In many cases, we are particularly
interested in avoiding a certain set of “bad” states.

Definition 3 (Basic Reachability Problem) The
basic reachability problem for a dynamical system S is:
given xo and a subset P of X, does there exist a time
t such that the behavior of S starting at xg satisfies
&t e P.

8In general, theoretical computer science, due to the influence
of mathematical logic, is much more concerned with the distinc-
tion between syntax (symbols, formulae) and semantics (what
the syntactic objects denote).

?When exists and is unique and all that.

10What this vague statement is supposed to say is that in con-
tinuous systems, the “next-state” function £[t + At] = g(€[t], At)
can be decomposed naturally into g(£[t], At) = &£[t] + h(£[t], At)
while in the discrete case, such a decomposition usually makes
no sense.

A related problem is to find all the states reachable
from xzg.

Remark [Properties]: Reachability is only one type
of what is called in verification a property. A property
is nothing but an expression in some formalism which
denotes some subset of X*. For example, in linear time
temporal logic, the formula OP denotes the set of se-
quences {£ : Vi € T,¢[t] € P}. Likewise, the formula
OO P denotes the set of sequences such that £[t] € P for
infinitely many t’s. Properties can, of course, be viewed
as functions from X* to {0, 1} which makes them closer
to cost and value functions used in optimal control, but
their all-or-nothing nature calls sometimes for a differ-
ent treatment.

Remark [Deductive vs. Algorithmic]: In dis-
crete systems verification, one distinguishes between
two basic approaches to solving reachability problems.
Within the deductive or theorem-proving approach,
reachability properties are inferred formally from ax-
ioms and rules concerning the dynamics of the system.
The main disadvantage of this approach from the CAD
point of view is that it is not fully-automatic, that 1s,
one does not feed the computer with the description
of the system, pushes a button and obtains the result.
Even with the help of an automatic theorem prover, an
active participation of a human user who understands
the dynamics of the system in question is required. The
analog of this approach in continuous systems would
be, for example, proving a reachability property using
a user-supplied Lyapunov function. In the rest of this
paper we restrict the discussion to the alternative al-
gorithmic approach, in which the computer is expected
to solve the problem without any human intervention.

For finite-state discrete systems every behavior is an
ultimately-periodic!! sequence of states. Hence a sim-
ple algorithm can solve the reachability problem: start
with £[0] = 2o and calculate £[i + 1] = §(&[¢]) until ei-
ther £[{] € P (answer is “yes”) or &[i] = £[j] for some
j < ¢ and we have reached a cycle without visiting P
(answer is “no”). You can either memorize the visited
states or just count the number of steps: if P has not
been reached in |X — P| steps, it will never be. The
ultimately-periodic state sequence uv*, which can be
extracted from the algorithm, gives truth assignments
to every other temporal property on X*. For example
the temporal logic property OGP (infinitely-often P)
is true if some x € P appears in the period v.

Remark [Backward vs. Forward]: The abovemen-
tioned algorithm solves the reachability problem by for-
ward simulation. There is a similar method using back-
ward simulation from P which can be used to deter-
mine all the states from which the system goes to P (a
kind of “domain of attraction”). Since going backwards

1A sequence is ultimately periodic if there exist k, [such that
for every n, £k + nl] = €[k 4+ (n + 1)]]. In formal language
theory such sequences are written as uv* where v and v are finite
sequences, the first denoting the prefir and the second denoting
the period of £.

may introduce non-determinism, we will discuss it in
the next section. Note that unlike systems defined by
differential equations, discrete transition systems are
rarely reverse-deterministic.

Finiteness plays an important role in this setting: the
transition function, the set P, and the set of reach-
able states accumulated during the simulation can all
be enumerated explicitly and be stored in finite data-
structures. Finiteness also guarantees the ultimate-
periodicity of the trajectory.

By relaxing the finiteness condition and allowing a
countable state-space such as IN”, and an effectively-
computable d (i.e. a procedure for calculating the next-
state), the reachability problem becomes undecidable.
This notion is a bit alien to control theorists so it
is worth elaboration: by saying that the reachability
problem for discrete infinite-state systems is undecid-
able, we mean that there is no general algorithm that
can take an effective description of any discrete dynam-
ical system with unbounded integer variables (e.g. a
program or a recurrence equation over IN™), and solve
the reachability problem on it. All that you can do is
to simulate forward until you reach P (“yes”) or make
a cycle (“no”), but none of these is guaranteed to hap-
pen.'? This notion allows theoretical computer scien-
tists to publish negative results concerning the provable
wnability to produce certain algorithms.

Other problems that come with infinitude are the rep-
resentation of the set P and of the accumulated tra-
jectory. Typical representations of P would be com-
binations of linear inequalities or even worse types of
inequalities. Checking the membership of £[t] in P be-
comes another computational issue.

How much of this carries over from discrete to continu-
ous systems? Continuous systems allow two types of in-
finitude, unbounded (which seems roughly like discrete
infinity) and bounded (compact if you want to sound
more mathematical). If hypothetically our computers
had infinitesimal computation power (i.e. the capability
to perform continuous integration) we could simulate
trajectories forward but still suffer from the problem of
infinite state-space: the trajectories are not necessarily
periodic. Hence, we would have only a semi-decision
procedure: if the simulation reaches P, the answer is
positive, otherwise, unless we have detected a cycle,
we can never know. So even in this ideal setting, the
reachability problem for arbitrary continuous systems
can be at best semi-decidable (for certain sub-classes
of continuous systems, the problems can be solved by
analytical methods).

But our machines do not have such a computational
power and the simulation is performed in discrete time
on a discretized space. It seems that by adding epsilons

12Not «ll infinite-state systems have undecidable reachability
problems — some sub-classes, such as systems with one integer
variable, admit reachability algorithms which always terminate.

in the right places, e.g. asking whether |P ¢[t]| < e
instead of £[f] € P, numerical simulations can solve the
reachability problem for this type of systems. A more
serious discussion of numerical aspects'® will eventually
appear in an expanded version of this paper.

4 Model II

4.1 Discrete Systems

Definition 4 (System II-D) A one-input transition
system is S = (X, U,0) where X and U are finite sets
and § : X x U — X is the transition function.

The system evolution 1s now influenced also by an in-
put. A behavior of S giwen some ¢ € U™ is a sequence
¢ such that'?® for every %,

Eli+ 1] = ([, []).-

An arbitrary behavior of the systems is a sequence &
such that for every i,

FJue U :€[i+1] = 6(¢[i], u)

and this is equivalent to projecting away U from the
transition function, and obtaining a non-deterministic
transition function (also known as transition relation)

5 X — 2% with

S(z)={2' :Fuel,d(x,u) =2}

This is one of the main reasons for computer science
non-determinism: when we do not know the values of
some variables we consider all the possible transitions
which these values might induce.!® Note that this non-
determinism 1s completely qualitative and it does not
assign any probabilities to subsets of U* or X*. All it
does is to specify the sets of all possible behaviors.

Yet another way to characterize behaviors of a type 11
system is as a sequential function from U* to X* or as
a subset of (U x X)* consisting of all the pairs (v, &)

satisfying
(¥, &) = (¥, 8(2(8), ¥)),

i.e. a fixed point of an operator on (U x X)*.

Remark [Admissible Inputs]: Here we made an im-
plicit assumption that all elements of U* are admissi-
ble. Sometimes only a subset of U* can be considered
as input to the system, e.g. sequences where no element

I3For example, what is the relation between the existence of
a cycle in the ideal system and the detection of a cycle in the
numerical simulation.

M From now on we omit explicit reference to the initial state
zo and the fact that £[0] = z¢.

15 Other uses of non-determinism where the computing devices
“guesses” some values during the computation, are very common
in computability and complexity theory, but seem irrelevant to
the current discussion.

of U repeats more than 3 consecutive times. Such re-
strictions can be captured by a model of automata with
both input and output. We assume (X, U, §) as before
and connect it to another system whose output ranges
over U and which generates only the admissible inputs.
When both are composed together, U/ becomes inter-
nal, and the product system is non-deterministic. If
all U* is admissible, the input generator is simply the
one-state trivial automaton.

The main important observation to remember 1s:

Open Deterministic System

(via input projection)
Closed Non-Deterministic System

4.2 Continuous Systems

Definition 5 (System II-C) A differential system is
(X, U, f) where X is R" and f : X xU — X is a

continuous function.

Given ¢ € U™ the behavior of the system is a signal
¢ IRy — X satisfying for every ¢,

dg[t)/dt = F(&[t], ¥[t])

or

or

£[t] = o —I-/O FE[r], v (r))dr.

The set of all possible behaviors of the system is ob-
tained by projecting away the input signals, i.e. all &
such that there exists some admissible ¢ € U* satis-
fying the above equation. As we did for the discrete
d, we can get rid of the input at the equation level by
defining F': X — 2% as

Fz)= | fla,).
The set of behaviors of S can be obtained as solutions
of the differential inclusion
&€ F(x),
that is, the set of behaviors £ such that for every ¢,

de[t]/dt € F(E[t]).

For completeness sake we also write the set of behaviors
as a (functional) relation on (U x X)* which is the
solution fixed-point equation

(¥, &) = (W, 1(f (&,)

where [is the integral operator. Solutions of differ-
ential inclusions which are “tubes” of trajectories are

not the favorite object for most dynamicists. There
are serious problems concerning the interpretation of
solutions, existence and uniqueness which we will not
touch here. However, for computer scientists such ob-
jects are very natural (or at least no more bizarre than
single continuous trajectories).

4.3 Approximated Continuous System [Sketch]
Due to the discretization of 7', U* is restricted to
precewise-constant signals. Further discretization of U
can make the techniques used for discrete systems, as
described in the next section, applicable to continuous
systems.

4.4 Problems and Solutions

As in the case of closed systems, we are interested in
the possible behaviors of the system for any admissible
input. There are two ways to interpret the input U
from a control point of view. It can either stand for
“our” choice of a control action at a given state, or
a disturbance (an uncontrolled action of the external
environment). The chosen interpretation and the types
of questions which are asked determine whether the
quantification over the possible behavior is existential
or universal.

Let H be some property of trajectories, and let L(S, ¢)
denote the behavior of a type Il system S given an in-
put ¥ € U*. Interpreting U as being under our control
we can phrase the question “Is there some ¥ which
steers the system such that it satisfies H?” as:

J L(S,) € H (1)

and its negation as:

vy L(S,¢) & H (2)

On the other hand if U stands for the adversary, we
can ask whether the system will satisfy H for any ad-
missible input/disturbance:

Yy L(S,¢) € H (3)

and its negation as:

30 L(S,v) ¢ H (1)

Note that if we project away U, and let L(S) denote
the set of all behavior of the resulting non-deterministic
system, question (1) becomes

L(SYNH #0 (5)
and question (3) becomes
L(S)C H (6)

Question (6) is essentially what verification is all about,
although it is not easy for non-natives to discover this

Figure 1: An initial part of the execution tree of a type
IT system.

fact under the formalistic make-up, as it is hard to get
to the essence of control by browsing the CDC pro-
ceedings. For historical reasons, solving problems such
as (6) is called model-checking.

Whenever the answer to questions (1) or (4) is posi-
tive we would like a constructive answer, i.e. an input
1 € U* which induces the behavior in question. In the
former case ¥ can be a pre-computed open-loop control
sequence (remember that the system is deterministic
once ¢ is determined). In the latter case it will be an
example of an external input which causes the system
to violate H. Whether or not we are interested in such
“witnesses” will influence our decision to hide the input
U and treat the system as a non-deterministic one.

Before elaborating on the type of properties we are in-
terested in, let us reflect a little bit on the structure
of the set of behaviors of a type II system. This is
the natural point of view for the the discrete case, but
with some dose of infinitesimal imagination one may
view the continuous case similarly. The set of trajecto-
ries starting from xg, can be organized as a tree, with
xg as 1ts root and where each node has successors cor-
responding to possible choices of U. Each behavior is
a sequence of nodes along one branch of the tree, and
the input is the sequence of labels on the edges (see

figure 1).

Checking a property of the set of trajectories amounts
to searching the execution tree (which in the finite-state
case folds into a graph). If the property H we are inter-
ested in is a simple reachability property (“safety”), i.e.
¢ € Hiff¢[t] € P for somet, then the way we search the
tree is not important: H is satisfied depending on the
existence of some P-node anywhere in the tree. On the
other hand, if we are interested in more complicated
properties, such as beahviors where every occurrence
of z is followed by a later occurrence of x’, the order of
traversal is important because the existence of infinitely
many x and z’ nodes on the tree does not imply the
existence of a branch satisfying the property. In any
case, discrete finite-state verification can be reduced to
various search problems on finite graphs, where many
techniques such as depth-first, breadth-first or heuristic
serach exist.

Theoretically, the verification problem for discrete
event systems (with respect to all interesting classes of

properties) is solved, and all that remains to be done is
to improve performance and to extend the methodology
toward systems with countable state-spaces. For con-
tinuous systems, there are various works on differential
inclusions, but their nature is much less “effective”. It
seems that the common engineering practice, when no
analytic method works, is to simulate with many in-
stances of inputs signals, hoping that the obtained set
of behaviors is a representative sample of the set of all
behaviors.

Remark [“Symbolic” Verification]:

In discrete finite-state systems, one also distinguishes
between enumerative and symbolic methods for doing
verification. In the former, the search is performed on
an explicit representation of the transition graph, while
in the latter the system and the set of reachable states
are encoded using some formalism, such as Boolean
formulae over state variables.'® The calculation of the
reachable set is usually performed breadth-first by do-
ing syntactic operations on these formulae. In many
cases, symbolic techniques allow to treat systems with
a number of states which i1s otherwise prohibitive. For
infinite-state systems (and uncountable-state systems
in particular) exhaustive enumeration is not an option.
A differential equation is, among other things, a sym-
bolic description of an uncountable transition relation,
and a closed-form solution to the initial-value problem
i1s a symbolic description of the set of reachable states,
which can be checked for intersection with P using al-
gebraic techniques.

5 Model III [Sketch]

5.1 Discrete Systems

Definition 6 (System III-D) A (wo-inpul transi-
tion system is S = (X,U,V,d) where X and U are
finite sets and § © X x U x V. — X is the transition
function.

The behavior of the systems in the presence of two
inputs, ¢ € U* and n € V*, L(S,4,n) can be char-
acterized as before. The main novelty here is in the
different interpretation we give to the two inputs. This
model can be viewed as a game between a controller
U and the external disturbances V. The overall po-
tential behavior of a type III system can be viewed as
a game tree which is the unfolding of an alternating
And-Or automaton. After input projection the transi-
tion structure of the automaton becomes a function &
from X to the distributive lattice generated by X i.e.
something of the form:

§(x) = &(2, ur, v1)AS(x, uy, v2)VI(x, uz, v1)AS (2, ur, v1).

For such systems we are looking for a function C :

16 These formulae are represented and manipulated efficiently
using data-structures such as Binary Decision Diagrams (BDDs).

X* = U (strategy, feed-back law) which tells the con-
troller which action to apply at a given stage of the
game such that whatever the adversary does, the re-
sulting behavior satisfies some property H. Pseudo-
formally!” we ask whether for every sequence n € V*
there exists a sequences @ € U*, which is calculated
in a causal manner, such that L(S,v¢,n) € H. This is
essentially the controller synthesis problem for discrete-
event systems which can be solved by various algo-
rithms, one of which we illustrate below.

Let H be the property of staying within P C X. We
define the operator 7 : 2% — 2% as

(@) ={zx:JuelU Yo eV i(x,u,v) € Q}.

In other words # € 7(Q) iff from x the controller, by
properly chosing u, can force the game into . The
states from which the controller can force the game to
stay at P forever are called the winning states and they
are calculated iteratively by letting Py = P and

Pii=FnN F(PZ)

This is a sort of backward reachability calculation
which is guranteed to converge for finite-state systems.
The strategy for the winning states can be extracted
during the iteration or after it terminates.

Many question are not discussed in this version of the
paper. They include maximality of the controller (in
the sense of being least-restrictive), partial observabil-
ity of the state and the distinction between memory-
less strategies (the choice of u depends only on the
current state) and strategies which memorize some of
the history.

5.2 Continuous Systems
The notion of a differential game involves a system de-

fined by
&= f(x,u,v)

and one 1s interested in finding a continuous control law
C : X* — U such that all trajectories satisfy a prop-
erty. In many aspects these games are very similar to
the discrete ones, except for the fact that they evoke
some mathematical problems concerning the existence
of solutions. Apart from the explicit study of differen-
tial games, many branches of control (stable designs,
robust control, stochatic control) seem to study varia-
tions (mostly restrictions but some extensions) of this
model.

Acknowledgments: Comments made by E. Asarin,
A. Kurzhanski, J. Lygeros, G. Pappas, S. Sastry and
P. Varaiya on drafts of this paper improved its political
and mathematical correctness. The lack of references is
due to space constraints and is balanced by the lack of
self-references. This work was supported by the European
Community Esprit-LTR Project 26270 VHS at VERIMAG,
the US ARO under Grant DAAH-04-96-1-0341 and DARPA
under grant F33615-98-C-3614 at Berkeley.

17The fact that ¥ is computed as a feed-back from the history
of the game, makes formalization cumbersome.

