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Abstract

In this paper we prove that every finite Markov chain can be de-
composed into a cascade product of a Bernoulli process and several
simple permutation-reset deterministic automata. The original chain
is a state-homomorphic image of the product. By doing so we give
a positive answer to an open question stated in [Paz71] concerning
the decomposability of probabilistic systems. Our result is based on
the observation that in probabilistic transition systems, “randomness”
and “memory” can be separated so as to allow the non-random part
to be treated using common deterministic automata-theoretic tech-
niques. The same separation technique can be applied to other kinds
of non-determinism as well.



1 Preliminaries

The object of our study is a probabilistic input-output state-transition sys-
tem. Its definition is not new and has appeared under various names in the

past (e.g., [Arb68, PazT1, Sta72]).

Definition 1 (Probabilistic Transition Systems) A probabilistic transi-
tion system (PTS) is a quadruple A = (X,Q,Y,p) where X is the input al-
phabet, () is the state-space, Y is the output alphabet andp: Qx X xQxY —
[0,1] is the input-transition-output probability function satisfying for every
ge Qv e X:

Y plg.a.dy) =1

(¢'y)eQxY

The intuitive meaning of this definition is that whenever A4 is in a state ¢
and reads the input x it will move to state ¢’ and emit y with probability
p(q,x,4¢',y). Throughout this paper we will consider only finite @), X, and Y.
Several well-known models can be considered as degenerate variants of PTSs
where either X or () are singletons, |Y| < |@| or some additional constraints
are imposed upon p. We will mention a few of these:

e A Markov chain: X is a singleton, Y = @ and p(q,z,¢’,y) > 0 only if
¢’ = y. The intuitive meaning is that the behavior of the chain depends
only on the passage of time, and the observable output coincides with
the internal state. In this case we will refer to the transition probability
(also known as transition matrix) as p(q, ¢).

o A probabilistic automaton: a Markov chain with a non-singleton input
alphabet. In the Markovian terminology this is a controlled process
where the input letter determines which of the several transition ma-
trices will be applied at each step.

o A deterministic input-output automaton: for every ¢ € (), x € X there
exists exactly one ¢ € ), y € Y such that p(q,z,¢’,y) = 1. In this case
we can express p using a transition function 6 : ) x X — ) and an
output function v : ) x X — Y. When the output is suppressed, i.e.,
(¢, ) = ¢, we have a probabilistic automaton with a 0 — 1 transition
matrix.



e An acceptor: Y = {0,1}. In the deterministic case A is said to ac-
cept all input sequences that produce output sequences ending with 1.
In the probabilistic case it accepts all the input sequences such that
the expected value of their corresponding last output is above some
threshold. If we suppress the input we get what is also known as a
partially-observable Markov chain.

o A Bernoulli process: both X and () are singletons. In this case the sys-
tem has no memory and no input and it produces its output according
to a fixed probability distribution.

2 Homomorphisms between PTSs

One of the most important notions concerning transition systems is the no-
tion of homomorphism. A system A, is homomorphic to A; if, in some sense,
A, approximates A;. This notion is very well developed and studied in the
context of deterministic systems but its application to probabilistic systems
is a bit more subtle. We will consider here only state homomorphism, that
is, homomorphism between two PTSs having the same input and output al-
phabets. These definitions can be extended to mappings between the input
and output alphabets of the two systems.

Definition 2 (PTS Homomorphism) Given two PTSs Ay = (X, Q1,Y,p1)
and Ay = (X, Q2,Y,p2), a (state) homomorphism from Ay to Ay is a surjec-
tive function ¢ : Q1 — Qo such that for every (q2, @, ¢4, y) € Q2 X X X Q2 XY
and every q1 € ¢~ (q2) we have

P2 dhy) = >, pila2.qh.y)

g1 €0 1 (q})

We denote this fact by Ay <, Ay. Two systems are isomorphic if ¢ is a
bijection.

Intuitively this definition means that A, can be constructed by parti-
tioning ()2 into blocks in such a way that the transition probabilities be-
tween the blocks are consistent with the transition probabilities between
their elements (this is also termed the lumpability condition in the Marko-
vian terminology). It can be seen that in the case of 0 — 1 probabilities
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this notion coincides with the familiar notion of automaton homomorphism,

namely ©(8(q, x)) = &'(¢(q), x).
An essential property of homomorphisms is their transitivity, that is, if A,

approximates A; and A; approximates A, then A3 approximates A;.

Claim 1 (Transitivity of Homomorphism) If A; <, A; and A; <, A
then As <q Ay where 6 = .

Proof: We will give the proof for Markov chains for reasons of clarity — the
generalization to input-output PTSs is straightforward. Let 4, = (Q,p1),
Ay = (R, p2) and As = (5, p3) be three chains satisfying the premise of the
claim. We want to show that for every s,s’ € S and every ¢ € 671(s) we

have
ps(s,s) = > pia,q)

qlee—l(sl)

But 0(¢) = s if for some r € R, ¢©(q) = r and ¢(r) = s. Thus for every s € S

07 (s)= U ¢

rey=1(s)
Thus we have to prove that for every r € ¢»~'(s) and ¢ € o ~(r)
p3(575/) = Z ( Z pl(qu/))
T/ew—l (5/) qlew—l(T/)

But since A; <, A; we can replace, for every ¢ € ¢~ !(r), the expression in
the parentheses by py(r, ') and obtain

pa(s,s’) = Z pa(r,r’)

7’/61,[/_1 (5/)

which, in turn, follows from Az <, As. a

3 Composition of PTSs

Two PTSs can be connected together such that the output of the first is the
input of the second, or formally:



Definition 3 (Cascade Product) Given two PTSs Ay = (X,Q1,7Z,p1)
and Ay = (Z,Q2,Y,p2), their cascade product is Ay o Ay = (X,Q,Y,p)
where Q = Qu % Qs and for cvery (g1, 42), (¢ ¢3) € Q, ¢ € X and y € Y

p((q17q2)7x7 (qqug)vy) = ZP1(Q1,SE,Q1,Z) ) p2(Q27Z7q;7y)
2€EZ

This definition can be extended to a family Ay, ..., Ag of PTSs such that
the input alphabet of A;;4 is the output alphabet of A;. The product defined
this way is associative so the notation A; o0 Ay0...0A; is well-defined. One
can see that this definition reduces to the common notion of cascade product
when both systems are deterministic, Z = X x ()7 and Y = (). In that case
we have the following well-known result ([KR65]), stating that every finite
automaton can be constructed from simple building blocks:

Theorem 2 (Krohn-Rhodes Decomposition) Fvery deterministic automa-
ton A is inverse-homomorphic to a cascade product of simple permutation
automata and reset automata.

This theorem is beyond the scope of this paper, so we will only mention
that:

1. The permutation groups of the components divide the subgroups of
the transformation semigroup of A (which implies that counter-free
automata can be decomposed into a cascade of reset automata).

2. The number of automata in the cascade is bounded by |Q)].
3. The number of states in the decomposition can be exponential in |Q].

Additional details can be found in [Fil72, Gin68, MP90]. With respect to
this theorem, the following question has been asked in [Paz71, p. 115]: Can
every Markov system be “embedded” in a nontrivial way into a cascade type
interconnection of systems which have a specific simple form? In other words,
is there any theorem which can be proved for Markov systems and which
parallels in some way the Krohn-Rhodes theorem for the deterministic case?
In this paper we give an affirmative answer.



4 Owur Result

First we will show how to decompose a finite-state PTS into an isomorphic
cascade product of a Bernoulli process and a deterministic automaton. For
simplicity we will consider the degenerate case of a Markov chain, and show
that every such chain can be simulated by a product of two systems, the first
one taking care of the randomness and the other behaving deterministically
according to the outcome of the former. In other words, instead of throwing
a different coin at every state, we throw each time the same (but a much
larger) coin, whose outcome tells us which transition to take from each of
the states we might be in. The probabilities of all the possible trajectories
of the original chain and those of its associated decomposition are the same.

Definition 4 (Probability of Transformations) Foraset Q = {q1,...,q.},
we let M = Q9 denote the set of all n™ transformation on Q. Fquipped with
the composition operation, M is a semigroup. With every Markov chain!
A= {z*},Q,Q,p) we associate a function = : M — [0,1] by letting

m(m) = f[lp(qwm(qz'))
Claim 3 >, cpr7(m) = 1.
Proof: Follows from
%W(m) =Y it P i) - P42 ) - p(gnn i) (1)
=112 2o plaiq5) = T2 1 (2)

Claim 4 (New Decomposition I) FEvery Markov chain A = ({2*},Q,Q, p)
with |Q| = n is isomorphic to a cascade product of a Bernoulli generator with
at most n™ outcomes and a deterministic n-state automaton.

Proof: We define a Bernoulli process B = ({z*}, {¢*}, M, 7) and a determin-
istic automaton A" = (M, @, p') where for all m € M, q € Q, p'(¢,m,m(q)) =

'We omit the singleton input and the output (which is identical to the state) from the
definition of p.



1. Their product C = B o A" is a Markov chain C = ({2*},{¢*} x Q,Q,p)
where p is defined as
p(a™,9). (q% ") = > w(m)-p'(¢,m,¢") = p(q,q)
meM

and the straightforward state bijection ¢((¢*,¢)) = ¢ is indeed a PTS iso-
morphism between A and C. a

Note that B can be further decomposed into a direct product of n in-
dependent Bernoulli trials, each having at most n outcomes. This result
extends easily to input-output PTSs: instead of an input-less Bernoulli pro-
cess we will have a one-state PTS with input; we can get rid from the output
by splitting states, as in the standard proof of the equivalence of Moore and
Mealy machines (see [HUT9]).

In order to take advantage of this decomposition result and combine it
with the Krohn-Rhodes decomposition we need (a weak version of) the fol-
lowing:

Claim 5 Let B = (X,Q,Z,p), “41 = (ZvRvyvpl) and "42 = (Zv 57Y7p2) be
PTSs. If Ay < Ay then Bo Ay < Bo A,.

Proof: Without loss of generality we let Y = @ x S and thus B o A; =
(X,Q X R,Q x S,p1) and Bo Ay = (X,Q x S,Q x S,pz2). Based on the
assumed homomorphism ¢ : B — S we construct a surjective mapping
@ : QxR — QxS byletting ¢(q,r) = (¢,¢(r)). According to our definition,
@ is a homomorphism if for every © € X, y € Y, (¢,5),(¢,s') € Q x S and

for every (¢,7) € 7 (q, s):
ﬁ?((Q73)7x7(q/73/)7y) = Z pl((Q7r)7x7(q/7r/)7y)
(q/77,/)€¢—1(q/75/)
Using the definition of the product we get:
ZP(Q7x7q/72)'pQ(szvslvy): Z ZP(Q7x7q/72)'pl(rvzvrlvy)
z€Z r'cp=l(s") 2€Z

Since p(q,x, ¢, z) does not depend on r we can rearrange the right hand side
and get

> oplg,x,q,2) - pa(s, = => plg,2,q,2)- Z pi(r,z, ', y)

2€7Z 2€7 r'ep=1(s’)

which follows from the fact that ¢ is a homomorphism. -
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Corollary 6 (New Decomposition IT) FEvery finite Markov chain is in-
verse homomorphic to a cascade product of a Bernoulli process and a chain
of deterministic permutation-reset automata.

Proof: Follows from the above and the Krohn-Rhodes decomposition theo-
rem (theorem 2). a
An example appears in the appendix.

Remark: Our claim 4 can be improved using the following result [Paz71, pp.
11-12]: Every probabilistic n x n matriz can be written as Y., p;A; where for
every i, 0 < p; <1, A; is a 0 — 1 matriz, Y, p; = 1 and m < n®. Hence,
a Bernoulli generator and a deterministic automaton over an n? alphabet
suffice.

5 Discussion

We have shown how the automata-theoretic framework, emphasizing the no-
tion of communication between processes, can be used in order to decompose
arbitrary probabilistic transition matrices into products of several “commu-
nicating” simple zero-one matrices.

In addition to the solution we give to an open problem, the connection we
establish between every finite Markov chain and its “characteristic” deter-
ministic automaton might be used in order to transfer various results between
automata theory and the theory of stochastic processes. For example, the
algebraic theory of deterministic automata and their associated semigroups
is well-developed (see [Eil76], [Lal79], [Pin86]) and it will be interesting to
investigate the relation between the detailed classification results concern-
ing automata, and various properties of stochastic processes discussed in the
Markovian literature ([KS60]).

Finally, it is worth mentioning that this technique works for other types
of finite non-determinism as well. For example, it is possible to decompose
any non-deterministic automaton with input into an inverse-homomorphic
(in the appropriate sense of homomorphism) cascade consisting of a non-
deterministic one-state input-output automaton and a deterministic automa-
ton. In this way the results in [MP90] conerning the translation from counter-
free automata to formulas of past temporal logic can be extended to non-
deterministic automata without explicit determinization.
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Figure 1: A Markov chain A.

Appendix: An Example

Consider the Markov chain A = ({2*},Q, @, p) with @ = {1,2,3} depicted
in figure 1. It is first decomposed into an isomorphic product B o A" of a
Bernoulli process B = ({«*}, {¢*}, Z, x) with Z = {a, b, ¢, d} and a determin-
istic automaton A" = (7,Q,Q,6) where 6 : Z x ) — @ is a deterministic
transition function (see figure 2). Note that we have considered only those
transformations m € Q% for which 7(m) > 0.

By applying the Krohn-Rhodes decomposition theorem, we decompose A
into an inverse homomorphic product A; o Ay where A; = (Z,Q1, W, 61,71)
and Ay = (W, Qq,09) with @1 = {4,5,6}, Q2 = {7,8} and W = {e, f, ¢, h}
— see figure 3. Note that all input symbols in both automata induce either a
reset or a permutation.

Their product yields the automaton C' = (Z,Q; x Q2,8) of figure 4,
which when multiplied from the left by B yields the chain C = (@1 x @2, p)
of figure 5. One can verify that the mapping ¢ : @)1 X 2 — ) defined in
figure 6 which is a deterministic state-homomorphism from C’ to A’ is also a
PTS homomorphism from C to A.

Note also that the projection ¢ : )1 X ()2 — ()1 is a state-homomorphism
from Ay o Ay to A;. It is also a PTS homomorphism from B o A; o A; to
Bo A; (see figures 7 and 8).
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Cl:pq
b:(1-pg
c:p(l—q)
d:(1—=p)(1—yq)

(i)

Figure 2: (i) The Bernoulli process B and (ii) the deterministic automaton
A" such that B o A’ is isomorphic to the original Markov chain A.
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(i)

Figure 3: The decomposition of the automaton A’ into a cascade of determin-
istic permutation-reset automata (i) Ay and (ii) Ay. The transition labels of
the form x/y in Ay indicate that x is the input and y is the output.
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| | (4.7 6.7 [(5.7) (6,8] (48 (58]
(4,7) 0 0 p 1-p| 0 0
(6,7) 0 0 g 1l—q| 0 0
G| p(l—q) (I=p)(L—gq)] O 0 [(I-=pl¢ pq
(6,8) 0 1—gq 0 0 0 q
(4,3) 0 1—p 0 0 0 p
(5.8) | (L=p)g A—p)l—g)] O 0 [p(l—q) pg

Figure 5: The Markov chain C = B o A; o Ay written in a matrix form. The
rows and columns are arranged according to the homomorphism from C to
the original chain A.
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N e e S S e
DO — W DN W

(4,7
(4,8
(5,7
(5,8
(6,7
(6,8

Figure 6: The homomorphism ¢ : ()1 X (Y2 — Q).

p 4 ) 6

4 0 p 1—p
51q¢+p—2pq pg (1—p)(l—q)
6 0 q 1—q

Figure 7: The chain B o A;.

L [ &9 @ |6

0 0.8 (6,7) (6,8) |
1

(4,7) 0 0 I 0 0 —p
(4,8) 0 0 0 p 1—p 0
G, |[p(l—q) (I=plg| 0  pg [(I1-p)(l—q) O
(5,8) || I=plg pl=q)| 0  pg [(I-p(I—-q) 0
(6,7) 0 0 q 0 0 1—¢q
(6,8) 0 0 0 q 1—gq 0

Figure 8: The Markov chain C = B o A o Ay written in a matrix form. The
rows and columns are arranged according to the projection homomorphism

from C to Bo A,.
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