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Abstract

In this paper we prove that every �nite Markov chain can be de�

composed into a cascade product of a Bernoulli process and several
simple permutation�reset deterministic automata� The original chain

is a state�homomorphic image of the product� By doing so we give
a positive answer to an open question stated in �Paz��� concerning

the decomposability of probabilistic systems� Our result is based on
the observation that in probabilistic transition systems	 
randomness�

and 
memory� can be separated so as to allow the non�random part
to be treated using common deterministic automata�theoretic tech�

niques� The same separation technique can be applied to other kinds
of non�determinism as well�

�



� Preliminaries

The object of our study is a probabilistic input�output state�transition sys�
tem� Its de�nition is not new and has appeared under various names in the
past �e�g�� �Arb	
� Paz��� Sta����

De�nition � �Probabilistic Transition Systems� A probabilistic transi�
tion system �PTS� is a quadruple A � �X�Q� Y� p where X is the input al�
phabet� Q is the state�space� Y is the output alphabet and p � Q�X�Q�Y �
��� �� is the input�transition�output probability function satisfying for every
q � Q�x � X�

X
�q��y��Q�Y

p�q� x� q�� y � �

The intuitive meaning of this de�nition is that whenever A is in a state q
and reads the input x it will move to state q� and emit y with probability
p�q� x� q�� y� Throughout this paper we will consider only �nite Q� X� and Y �
Several well�known models can be considered as degenerate variants of PTSs
where either X or Q are singletons� jY j � jQj or some additional constraints
are imposed upon p� We will mention a few of these�

� A Markov chain� X is a singleton� Y � Q and p�q� x� q�� y � � only if
q� � y� The intuitive meaning is that the behavior of the chain depends
only on the passage of time� and the observable output coincides with
the internal state� In this case we will refer to the transition probability
�also known as transition matrix as p�q� q��

� A probabilistic automaton� a Markov chain with a non�singleton input
alphabet� In the Markovian terminology this is a controlled process
where the input letter determines which of the several transition ma�
trices will be applied at each step�

� A deterministic input�output automaton� for every q � Q� x � X there
exists exactly one q� � Q� y � Y such that p�q� x� q�� y � �� In this case
we can express p using a transition function � � Q � X � Q and an
output function � � Q�X � Y � When the output is suppressed� i�e��
��q� x � q� we have a probabilistic automaton with a � � � transition
matrix�
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� An acceptor� Y � f�� �g� In the deterministic case A is said to ac�
cept all input sequences that produce output sequences ending with ��
In the probabilistic case it accepts all the input sequences such that
the expected value of their corresponding last output is above some
threshold� If we suppress the input we get what is also known as a
partially�observable Markov chain�

� A Bernoulli process� both X and Q are singletons� In this case the sys�
tem has no memory and no input and it produces its output according
to a �xed probability distribution�

� Homomorphisms between PTSs

One of the most important notions concerning transition systems is the no�
tion of homomorphism� A systemA� is homomorphic to A� if� in some sense�
A� approximates A�� This notion is very well developed and studied in the
context of deterministic systems but its application to probabilistic systems
is a bit more subtle� We will consider here only state homomorphism� that
is� homomorphism between two PTSs having the same input and output al�
phabets� These de�nitions can be extended to mappings between the input
and output alphabets of the two systems�

De�nition � �PTS Homomorphism� Given two PTSs A� � �X�Q�� Y� p�
and A� � �X�Q�� Y� p�� a �state� homomorphism from A� to A� is a surjec�
tive function � � Q� � Q� such that for every �q�� x� q��� y � Q��X�Q��Y
and every q� � ����q� we have

p��q�� x� q
�

�� y �
X

q�
�
�����q�

�
�

p��q�� x� q
�

�� y

We denote this fact by A� �� A�� Two systems are isomorphic if � is a
bijection�

Intuitively this de�nition means that A� can be constructed by parti�
tioning Q� into blocks in such a way that the transition probabilities be�
tween the blocks are consistent with the transition probabilities between
their elements �this is also termed the lumpability condition in the Marko�
vian terminology� It can be seen that in the case of � � � probabilities
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this notion coincides with the familiar notion of automaton homomorphism�
namely ����q� x � �����q� x�
An essential property of homomorphisms is their transitivity� that is� if A�

approximates A� and A� approximates A� then A� approximates A��

Claim � �Transitivity of Homomorphism� If A� �� A� and A� �� A�

then A� �� A� where � � ���

Proof� We will give the proof for Markov chains for reasons of clarity � the
generalization to input�output PTSs is straightforward� Let A� � �Q� p��
A� � �R� p� and A� � �S� p� be three chains satisfying the premise of the
claim� We want to show that for every s� s� � S and every q � ����s we
have

p��s� s
� �

X
q������s��

p��q� q
�

But ��q � s if for some r � R� ��q � r and ��r � s� Thus for every s � S

����s �
�

r�����s�

����r

Thus we have to prove that for every r � ����s and q � ����r

p��s� s
� �

X
r������s��

�
� X
q������r��

p��q� q
�

�
A

But since A� �� A� we can replace� for every q � ����r� the expression in
the parentheses by p��r� r� and obtain

p��s� s
� �

X
r������s��

p��r� r
�

which� in turn� follows from A� �� A��

� Composition of PTSs

Two PTSs can be connected together such that the output of the �rst is the
input of the second� or formally�
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De�nition � �Cascade Product� Given two PTSs A� � �X�Q�� Z� p�
and A� � �Z�Q�� Y� p�� their cascade product is A� � A� � �X�Q� Y� p
where Q � Q� �Q� and for every �q�� q�� �q

�

�� q
�

� � Q� x � X and y � Y �

p��q�� q�� x� �q
�

�� q
�

�� y �
X
z�Z

p��q�� x� q
�

�� z 	 p��q�� z� q
�

�� y

This de�nition can be extended to a familyA�� 	 	 	 �Ak of PTSs such that
the input alphabet of Ai�� is the output alphabet of Ai� The product de�ned
this way is associative so the notation A� �A� � 	 	 	 �Ak is well�de�ned� One
can see that this de�nition reduces to the common notion of cascade product
when both systems are deterministic� Z � X �Q� and Y � Q�� In that case
we have the following well�known result ��KR	��� stating that every �nite
automaton can be constructed from simple building blocks�

Theorem � �Krohn�Rhodes Decomposition� Every deterministic automa�
ton A is inverse�homomorphic to a cascade product of simple permutation
automata and reset automata�

This theorem is beyond the scope of this paper� so we will only mention
that�

�� The permutation groups of the components divide the subgroups of
the transformation semigroup of A �which implies that counter�free
automata can be decomposed into a cascade of reset automata�

�� The number of automata in the cascade is bounded by jQj�

�� The number of states in the decomposition can be exponential in jQj�

Additional details can be found in �Eil��� Gin	
� MP���� With respect to
this theorem� the following question has been asked in �Paz��� p� ����� Can
every Markov system be �embedded	 in a nontrivial way into a cascade type
interconnection of systems which have a speci
c simple form� In other words�
is there any theorem which can be proved for Markov systems and which
parallels in some way the Krohn�Rhodes theorem for the deterministic case�
In this paper we give an a�rmative answer�

	



� Our Result

First we will show how to decompose a �nite�state PTS into an isomorphic
cascade product of a Bernoulli process and a deterministic automaton� For
simplicity we will consider the degenerate case of a Markov chain� and show
that every such chain can be simulated by a product of two systems� the �rst
one taking care of the randomness and the other behaving deterministically
according to the outcome of the former� In other words� instead of throwing
a di�erent coin at every state� we throw each time the same �but a much
larger coin� whose outcome tells us which transition to take from each of
the states we might be in� The probabilities of all the possible trajectories
of the original chain and those of its associated decomposition are the same�

De�nition 	 �Probability of Transformations� For a set Q � fq�� 	 	 	 � qng�
we let M � QQ denote the set of all nn transformation on Q� Equipped with
the composition operation� M is a semigroup� With every Markov chain�

A � �fx�g� Q�Q� p we associate a function 
 � M � ��� �� by letting


�m �
nY
i��

p�qi�m�qi

Claim �
P

m�M 
�m � ��

Proof� Follows from

X
m�M


�m �
Pn

i���

Pn
i���

	 	 	
Pn

in�� p�q�� qi� 	 p�q�� qi� 	 	 	 p�qn� qin ��

�
Qn
i��

Pn
j�� p�qi� qj �

Qn
i�� � ��

Claim 	 �New Decomposition I� Every Markov chain A � �fx�g� Q�Q� p
with jQj � n is isomorphic to a cascade product of a Bernoulli generator with
at most nn outcomes and a deterministic n�state automaton�

Proof� We de�ne a Bernoulli process B � �fx�g� fq�g�M� 
 and a determin�
istic automaton A� � �M�Q� p� where for all m �M� q � Q� p��q�m�m�q �

�We omit the singleton input and the output �which is identical to the state� from the
de�nition of p�
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�� Their product C � B � A� is a Markov chain C � �fx�g� fq�g � Q�Q� �p
where �p is de�ned as

�p��q�� q� �q�� q� �
X
m�M


�m 	 p��q�m� q� � p�q� q�

and the straightforward state bijection ���q�� q � q is indeed a PTS iso�
morphism between A and C�

Note that B can be further decomposed into a direct product of n in�
dependent Bernoulli trials� each having at most n outcomes� This result
extends easily to input�output PTSs� instead of an input�less Bernoulli pro�
cess we will have a one�state PTS with input� we can get rid from the output
by splitting states� as in the standard proof of the equivalence of Moore and
Mealy machines �see �HU����

In order to take advantage of this decomposition result and combine it
with the Krohn�Rhodes decomposition we need �a weak version of the fol�
lowing�

Claim 
 Let B � �X�Q�Z� p� A� � �Z�R� Y� p� and A� � �Z�S� Y� p� be
PTSs� If A� � A� then B � A� � B � A��

Proof� Without loss of generality we let Y � Q � S and thus B � A� �
�X�Q � R�Q � S� �p� and B � A� � �X�Q � S�Q � S� �p�� Based on the
assumed homomorphism � � R � S we construct a surjective mapping
�� � Q�R � Q�S by letting ���q� r � �q� ��r� According to our de�nition�
�� is a homomorphism if for every x � X� y � Y � �q� s� �q�� s� � Q� S and
for every �q� r � �����q� s�

�p���q� s� x� �q
�� s�� y �

X
�q��r��������q��s��

�p���q� r� x� �q
�� r�� y

Using the de�nition of the product we get�
X
z�Z

p�q� x� q�� z 	 p��s� z� s
�� y �

X
r������s��

X
z�Z

p�q� x� q�� z 	 p��r� z� r
�� y

Since p�q� x� q�� z does not depend on r we can rearrange the right hand side
and get
X
z�Z

p�q� x� q�� z 	 p��s� z� s
�� y �

X
z�Z

p�q� x� q�� z 	
X

r������s��

p��r� z� r
�� y

which follows from the fact that � is a homomorphism�






Corollary � �New Decomposition II� Every 
nite Markov chain is in�
verse homomorphic to a cascade product of a Bernoulli process and a chain
of deterministic permutation�reset automata�

Proof� Follows from the above and the Krohn�Rhodes decomposition theo�
rem �theorem ��
An example appears in the appendix�
Remark� Our claim � can be improved using the following result �Paz��� pp�
������� Every probabilistic n�n matrix can be written as

Pm
i�� piAi where for

every i� � � pi � �� Ai is a � � � matrix�
Pm

i�� pi � � and m � n�� Hence�
a Bernoulli generator and a deterministic automaton over an n� alphabet
su�ce�

� Discussion

We have shown how the automata�theoretic framework� emphasizing the no�
tion of communication between processes� can be used in order to decompose
arbitrary probabilistic transition matrices into products of several �commu�
nicating� simple zero�one matrices�

In addition to the solution we give to an open problem� the connection we
establish between every �nite Markov chain and its �characteristic� deter�
ministic automaton might be used in order to transfer various results between
automata theory and the theory of stochastic processes� For example� the
algebraic theory of deterministic automata and their associated semigroups
is well�developed �see �Eil�	�� �Lal���� �Pin
	� and it will be interesting to
investigate the relation between the detailed classi�cation results concern�
ing automata� and various properties of stochastic processes discussed in the
Markovian literature ��KS	���

Finally� it is worth mentioning that this technique works for other types
of �nite non�determinism as well� For example� it is possible to decompose
any non�deterministic automaton with input into an inverse�homomorphic
�in the appropriate sense of homomorphism cascade consisting of a non�
deterministic one�state input�output automaton and a deterministic automa�
ton� In this way the results in �MP��� conerning the translation from counter�
free automata to formulas of past temporal logic can be extended to non�
deterministic automata without explicit determinization�
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Figure �� A Markov chain A�

Appendix� An Example

Consider the Markov chain A � �fx�g� Q�Q� p with Q � f�� �� �g depicted
in �gure �� It is �rst decomposed into an isomorphic product B � A� of a
Bernoulli process B � �fx�g� fq�g� Z� 
 with Z � fa� b� c� dg and a determin�
istic automaton A� � �Z�Q�Q� � where � � Z � Q � Q is a deterministic
transition function �see �gure �� Note that we have considered only those
transformations m � QQ for which 
�m � ��

By applying the Krohn�Rhodes decomposition theorem� we decompose A
into an inverse homomorphic product A� � A� where A� � �Z�Q��W� ��� ��
and A� � �W�Q�� �� with Q� � f�� �� 	g� Q� � f�� 
g and W � fe� f� g� hg
� see �gure �� Note that all input symbols in both automata induce either a
reset or a permutation�

Their product yields the automaton C� � �Z�Q� � Q�� �� of �gure ��
which when multiplied from the left by B yields the chain C � �Q� �Q�� �p
of �gure �� One can verify that the mapping � � Q� � Q� � Q de�ned in
�gure 	 which is a deterministic state�homomorphism from C� to A� is also a
PTS homomorphism from C to A�

Note also that the projection � � Q��Q� � Q� is a state�homomorphism
from A� � A� to A�� It is also a PTS homomorphism from B � A� � A� to
B � A� �see �gures � and 
�

��



q�

d � �� � p�� � q
c � p�� � q
b � ��� pq
a � pq

�i

c� d

b� d

a� c

a� b
a� b� c� d

�

�

�

�ii

Figure �� �i� The Bernoulli process B and �ii� the deterministic automaton
A� such that B � A� is isomorphic to the original Markov chain A�
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b� d�h

c� d�h

a� b�g
d�e

c�fb�h

�i


�g� e

e� h

f� h

f� g

�ii

Figure �� The decomposition of the automatonA� into a cascade of determin�
istic permutation�reset automata �i� A� and �ii� A�� The transition labels of
the form x�y in A� indicate that x is the input and y is the output�
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Figure �� The automaton C� � A� � A��
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��� � � � p �� p � �
�	� � � � q � � q � �
��� � p�� � q ��� p�� � q � � ��� pq pq
�	� 
 � �� q � � � q

��� 
 � �� p � � � p
��� 
 �� � pq ��� p�� � q � � p�� � q pq

Figure �� The Markov chain C � B � A� � A� written in a matrix form� The
rows and columns are arranged according to the homomorphism from C to
the original chain A�
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Figure 	� The homomorphism � � Q� �Q� � Q�

p � � 	
� � p �� p
� q � p� �pq pq �� � p��� q
	 � q � � q

Figure �� The chain B � A��
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��� � � � p � � � � p
��� 
 � � � p �� p �
��� � p�� � q ��� pq � pq ��� p�� � q �
��� 
 �� � pq p�� � q � pq ��� p�� � q �
�	� � � � q � � �� q
�	� 
 � � � q � � q �

Figure 
� The Markov chain C � B � A� � A� written in a matrix form� The
rows and columns are arranged according to the projection homomorphism
from C to B � A��
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