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Abstract. Given a timed regular expression and a dense-time Boolean signal
we compute the set of all matches of the expression in the signal, that is, the
set of all segments of the signal that satisfy the regular expression. The set of
matches is viewed as a set of points in a two-dimensional space with each point
indicating the beginning and end of a matching segment on the real time axis.
Our procedure, which works by induction on the structure of the expression, is
based on the following result that we prove in this paper: the set of all matches
of a timed regular expression by a signal of finite variability and duration can be
written as a finite union of zones.

1 Introduction

Pattern matching, the determination of all sub-sequences of a string of symbols that
match some pre-specified pattern, is a fundamental operation in searching over texts
and elsewhere. Pattern matching has been studied extensively for textual data starting
from the 60s. The basic string matching algorithms for single words [KMP77,BM77] as
well as specialized data structures such as suffix trees [Wei73] and later advancements
can be found in [Ste94,CR02]. For more complex patterns, the classical regular expres-
sions of [Kle56] is an adequate pattern description language supporting a minimal set of
features (concatenation, alternation and repetition). It has been enhanced over the years
by various features such as anchors, character sets and any-character [Fri06]. Pattern
matching based on variants of regular expressions is implemented in many software
tools ranging from the grep [Tho68] family to regular expression modules of mod-
ern programming languages, notably Perl and Python. Besides texts, pattern matching
has important applications in Biology (DNA and protein searches) [AGM+90] and in
database querying (especially temporal databases [FRM94]).

In this work we introduce a quantitative-time variant of the pattern matching prob-
lem where discrete sequences are replaced by dense-time, discrete-valued signals. As
a pattern specification formalism we use a variant of the timed regular expressions of
[ACM02] which are expressively related, in terms of timed languages, to the timed
automata of [AD94]. We provide a complete solution to the timed pattern matching
problem defined as: find all sub-segments of the signal that match the expression. Note
that a straightforward application of the classical translations of regular expressions to
automata can be used to detect whether the prefix of a string matches the pattern. The
classical algorithm of Thompson [Tho68] adapted the automaton construction for the
matching context but still, the discrete case, finding all matches of an expression in a



string is considered a very difficult problem and is not part of the mainstream (some ex-
ceptions are [Pik87] and [Lau00]). One reason might be that without a symbolic repre-
sentation, which is necessary for the timed case, the set of matches may be prohibitively
large to represent.

In addition to the theoretical interest, we believe that the problem of finding patterns
in real-time data has numerous applications in many domains. This particular work was
triggered by assertion-based circuit (dynamic) verification which is the hardware equiv-
alent of what is called runtime verification in software. This form of lightweight veri-
fication consists in monitoring simulation traces against temporal specifications. Moni-
toring procedures for temporal logic formulas are well-studied and have been extended
successfully to real-time and analog signals [MN04,MNP08]. However, standard asser-
tion languages used in the semi-conductor industry such as PSL [EF06,CVK04] and
SVA [VR06,Spe06] combine temporal logic with regular expressions in a non trivial
way. The results of this paper can be used to extend monitoring procedures toward such
specification languages and their timed extensions such as the one proposed in [HL11].

To give an intuition of what we do, consider the expression ϕ := 〈(p∧q)·q̄·q〉[4,5] ·p̄
whose verbal description is as follows. Inside a time window of a duration between 4
and 5 there exists an interval where both p and q are high, followed by q going down
and up again; after that time window there is an interval where p is low. If we look
at signals p and q plotted in Fig. 1-(a), we can see ϕ is matched by any time intervals
[t, t′] such that t ∈ [1, 2] and t′ ∈ [6, 7]. Clearly, the number of such segments of the
signal (the matches) is infinite and two of them, [1.3, 6.8] and [1.5, 7.0] are shown in
Fig. 1-(b).
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Fig. 1. (a) Boolean signals p and q; (b) Intervals [1.3, 6.8] and [1.5, 7.0] are two possible matches
that satisfy ϕ over p and q.

Technically, our contribution is based on the following result. Let w be a Boolean
signal defined over an interval [0, d], let its restriction to the temporal interval [t, t′] be



denoted by w[t, t′] and let ϕ be a timed regular expression. Then, the set of matches for
ϕ in w,

M(ϕ,w) = {(t, t′) : w[t, t′] ∈ [[ϕ]]}
is a finite union of zones. Zones are a special class of convex polytopes definable by
intersections of inequalities of the form c1 ≤ xi ≤ c2 and c1 ≤ xi − xj ≤ c2. They
are used extensively in the verification of timed automata and admit a data-structure
(difference-bound matrices, DBM) on which various operations, including all those
required by the recursive computation ofM(ϕ,w), can be carried out efficiently.

The rest of the paper is organized as follows. Section 2 defines the syntax and se-
mantics of timed regular expressions. Section 3 illustrates the zone-based decomposi-
tion of match-sets, states the main result that is the finiteness of such a decomposition,
and proves it by showing the following lemma: for every signal w of finite variability
and expression ϕ there exist some k such that M(ϕ∗, w) = M(ϕ≤k, w). Section 4
gives more details about the implementation of our algorithm with a practical bound
on the convergence to a fixed point for ϕ∗. Section 5 reports the performance of the
algorithm on several families of examples and is followed by a discussion of future
work.

2 Timed Regular Expressions over Signals

Signals are the dense-time analogues of sequences, functions from a time domain into a
value domain. We will work with Boolean signals but the results can be easily extended
to any discrete value domain.

Definition 1 (Boolean Signals). Let T = [0, d] be a bounded interval of R+ and let m
be a positive integer. A Boolean signal is a function w : T→ Bm.

We use w[t] to denote the value of the signal at time t. An interval I ⊆ [0, d] is uniform
with respect to w if w[t] = w[t′] for every t, t′ ∈ I . A maximally uniform interval is a
uniform interval such that any interval strictly containing it is not uniform. We focus on
non-Zeno signals of bounded duration which thus have a finite number of maximally-
uniform intervals. We use w[t, t′] to denote the segment of w on the interval [t, t′].
Remark: To keep the fluidity of the presentation we do not give too much attention to
the issue of open/closed intervals in the definitions of signals and expressions. In fact,
the semantics of timed regular expressions in [ACM02] is not based on total functions
from T to the alphabet. An element from the underlying signal monoid is written as
w = p5 · p̄3 which means 5 time of p followed by 3 time of p̄. As a function, it is clear
that w[t] = 1 when t ∈ (0, 5) and w[t] = 0 when t ∈ (5, 8). However concerning its
value at points 0, 5 and 8 there are different schools of thought. One possibility is to
let w = 1 at [0, 5), w = 0 at [5, 8) and undefined elsewhere. Another possibility is to
consider the value of the signal be non-deterministic or undefined at boundary points.
In this paper our regular expressions semantics simply ignore the value of signal w at
boundary points.

As a pattern specification language we use a variant of the timed regular expres-
sion of [ACM02]. Such expressions admit, in addition to the standard concatenation,



union and star, also intersection, time restriction and renaming (we do not use the latter
operator which was introduced to match the full expressive power of timed automata).

Definition 2 (Timed Regular Expressions). The syntax of timed regular expressions
is given by the grammar

ϕ := ε | p | p | ϕ · ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ∗ | 〈ϕ〉I
where p ∈ {p1, . . . , pm} is a propositional variable and I is an interval of R+ with
integer endpoints.

We use an exponent notation with ϕ0 = ε, ϕk+1 = ϕk · ϕ, ϕ<1 = ε and ϕ<k+1 =
ϕ<k ∨ ϕk. Note that the expressions used in the paper are more “symbolic” than in the
standard “flat” theory of regular expression and closer in spirit to temporal logic where
an atomic expression like pi denotes (or can be viewed as a syntactic sugar for) the set
of all tuples in Bm whose ith coordinate is 1. The identity of signal w should always
be clear from context, so that we use pi[t] as a shorthand for the value at time t of the
projection of w on propositional variable pi.

Typically, the semantics of real-time temporal logics such as MTL [Koy90] and
MITL [AFH96] is expressed in terms of a satisfaction relation of the form (w, t) |=
ϕ, indicating that the signal w satisfies ϕ from position t. For the past fragment of
a temporal logic this is a statement about w[0, t] while for the future fragment it is
a statement about w[t, d], see [MNP05]. For regular expressions we found necessary
to parameterize the satisfaction relation by two time points t ≤ t′, as concatenation
requires equality between the end time of its left argument with the begin time of its
right argument. In this setting we note (w, t, t′) |= ϕ the fact that w[t, t′] is part of
the semantics of expression ϕ. Such a satisfaction relation also appears in extensions
to real-time temporal logics such as freeze quantification which has been shown in
[DBS12] to be monitorable by working directly in R2.

Definition 3 (Semantics). The satisfaction relation � of a timed regular expression ϕ
by a signal w, relative to start time t and end time t′ ≥ t is defined as follows:

(w, t, t′) � ε ↔ t = t′

(w, t, t′) � p ↔ t < t′ and ∀t′′. t < t′′ < t′ → p[t′′] = 1
(w, t, t′) � p ↔ t < t′ and ∀t′′. t < t′′ < t′ → p[t′′] = 0
(w, t, t′) � ϕ · ψ ↔ ∃t′′. (w, t, t′′) � ϕ and (w, t′′, t′) � ψ
(w, t, t′) � ϕ ∨ ψ ↔ (w, t, t′) � ϕ or (w, t, t′) � ψ
(w, t, t′) � ϕ ∧ ψ ↔ (w, t, t′) � ϕ and (w, t, t′) � ψ
(w, t, t′) � ϕ∗ ↔ ∃k ≥ 0. (w, t, t′) � ϕk

(w, t, t′) � 〈ϕ〉I ↔ t′ − t ∈ I and (w, t, t′) � ϕ

The set of segments of w that match an expression ϕ is captured by the match-set.

Definition 4 (Match-Set). For any signal w and expression ϕ, we let

M(ϕ,w) := {(t, t′) ∈ T× T : (w, t, t′) � ϕ}
Geometrically speaking, match-sets are subsets of [0, d] × [0, d] confined to the upper
triangle defined by t ≤ t′. In the sequel we show constructively that for every timed
regular expression ϕ and a finite-variability signal w, the match-set can be written as a
finite union of zones.



3 Match-Sets and Zones

Zones constitute a restricted class of convex polyhedra defined by orthogonal con-
straints c ≺ ti and difference constraints c ≺ ti − tj with ≺∈ {<,≤,≥, >}. They
are used extensively to represent clock values in the analysis of timed automata. In this
paper we use them to represent absolute time values in a match-set. While the con-
stants for the diagonal constraints may be taken as integers, those of the orthogonal
constraints have fractional parts inherited from the time stamps of events in w. Such a
zone z also lies in the upper quadrant of R2 and not below the diagonal. Consequently
we let π1(z), π2(z) and δ(z) be its vertical, horizontal and diagonal projections; these
are intervals with respective endpoints noted π−1 (z), π+

1 (z), π−2 (z), π+
2 (z), δ−(z), and

δ+(z). Typically we have

(t1, t2) ∈ z ↔

π−1 (z) ≤ t1 ≤ π+
1 (z)

π−2 (z) ≤ t2 ≤ π+
2 (z)

δ−(z) ≤ t2 − t1 ≤ δ+(z)

with all constraints being tight. Note that under this representation diagonal constraints
may no longer be integers. Due to the positive duration constraint for atomic predicates
we also have to consider zones that are partly open, with the same canonical represen-
tation yet featuring strict inequalities.

Below we explain how the match-set of an expression is inductively constructed
and prove that the outcome is always a finite union of zones. Since operations ∧, 〈.〉I
and · distribute over union, it is sufficient to prove closure of zones under their asso-
ciated match-set operations and the closure of unions of zones will immediately fol-
low. The closure is almost immediate for all cases except ϕ∗ where we will compute
the match-set by a finite number of concatenation. The convergence to a fixed point
M(w,ϕ≤k+1) = M(w,ϕ≤k) can be intuitively understood due the finite number of
zones definable using a finite number of constants in the constraints. One may show
that non-redundant constraints, as opposed to tight ones are either integers or have a
fractional part equal to that of some event in w. However a bound obtained from an
argument along these lines would be overly pessimistic and we will use other proofs to
compute better bounds on the number of iterations.

Empty word Just notice that the match-set of ε is the diagonal zone

M(ε, w) = {(t, t′) ∈ T× T : t = t′}.

Literals When ϕ is a literal (p or p̄) the match-set is a disjoint union of triangles
touching the diagonal whose number depends on the number of switching points of the
projection of w on p, see Fig. 2-(a).

Boolean Operations The match-sets for disjunction and conjunction satisfy

M(ϕ ∨ ψ,w) =M(ϕ,w) ∪M(ψ,w) and M(ϕ ∧ ψ,w) =M(ϕ,w) ∩M(ψ,w)

and finite unions of zones are closed under Boolean operations.



Time Restriction The match-set of the time restriction of an expression is obtained by
intersecting the match-set with the corresponding diagonal band, that is,

M(〈ϕ〉I , w) =M(ϕ) ∩ {(t, t′) : t′ − t ∈ I}.

This is just an intersection with a zone and the result remains a union of zones, see
Fig. 2-(b).
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Fig. 2. (a) The match-set of a signal with respect to an atomic expression; (b) The effect of time
restriction.

Concatenation Viewing M as a binary relation, the match-set for concatenation is
nothing but a relational composition of the corresponding match-sets:

M(ϕ · ψ,w) =M(ϕ,w) ◦M(ψ,w)

as illustrated in Fig. 3-(a).

Lemma 1. The composition of two zones is a zone.

Proof. Let F [t, t′] and G[t, t′] be conjunctions of difference constraints defining zones
z and z′ respectively. Their composition z′′ = z ◦ z′ is defined by the formula H :=
∃t′′.F [t, t′′]∧G[t′′, t′]. Eliminating t′′ fromH using the Fourier-Motzkin procedure we
get an equivalent, quantifier-free formula H ′ which is also a conjunction of difference
constraints and hence z′′ is a zone.

Geometrically speaking, z ◦ z′ can be seen as inverse-projecting z and z′ into a 3-
dimensional space with axes labeled by t, t′ and t′′, intersecting these two sets and
projecting back on the plane t, t′. Another intuition in dimension 2 is given Fig. 3-(b).
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Fig. 3. (a) Match-sets of expressions ϕ := 〈p〉[1,∞], ψ := 〈q〉[0,2] and ϕ ·ψ; (b) A point (t, t′) ∈
z ◦z′ corresponds to a path from t to t′ via some (t, t′′) ∈ z, t′′ on the diagonal, and (t′′, t′) ∈ z′

Star We prove that the match-set of the star can be computed by a finite number of
concatenations. An interval [t, t′] is said to be unitary with respect to w if t′− t < 1 and
w is constant throughout its interior (t, t′). The following simple property of unitary
intervals can be proved by a straightforward structural induction on ϕ.

Lemma 2. Let [t, t′] be a unitary interval with respect to w. For all intervals [r, r′] ⊆
[t, t′] we have (w, r, r′) |= ϕ if and only if (w, t, t′) |= ϕ.

Let σ(w) be the least k such that w can be covered by k unitary intervals, that is,
there exists a sequence of intervals [0, t1], [t1, t2], ..., [tk−1, d], all unitary with respect
to w. A key property of k = σ(w) is the following.

Lemma 3. For any n > 2k + 1 if (w, t, t′) |= ϕn then (w, t, t′) |= ϕn−1.

Proof. Let [0, t1], [t1, t2], ..., [tk−1, d] be a sequence of unitary intervals with respect to
w. If (w, t, t′) |= ϕn then there exists a sequence of time points t = r0 ≤ r1 ≤ · · · ≤
rn = t′ such that for any i ∈ 1..n

(w, ri−1, ri) |= ϕ (1)

When n > 2k + 1, by the pigeonhole principle, among time points r0, . . . , rn there
are three consecutive points, denoted by ri−1, ri, ri+1, within the same unitary interval
[tj−1, tj ] of w. By Lemma 2 it holds that (w, ri−1, ri+1) |= ϕ, thus the time point ri
can be excluded from r0, . . . , rn still preserving (1). Hence (w, t, t′) |= ϕn−1.



Corollary 1. For any expression ϕ and any signal w with σ(w) = k it holds that
M(ϕ∗, w) =M(ϕ≤2k+1, w).

From all this we conclude:

Theorem 1 (Match-Sets and Unions of Zones). Given a finite variability signal w
and a timed regular expression ϕ,M(ϕ,w) is a finite union of zones.

Fig. 4 demonstrates the whole process of computing matches by zones for the ex-
pression 〈(p∧ q) · q̄ · q〉[4,5] · p̄ and signal of Fig. 1-(a) from the introduction. The result
is indeed the rectangle [1, 2]× [6, 7].
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Fig. 4. The match-sets for all sub-expressions of 〈(p∧ q) · q̄ · q〉[4,5] · p̄ in the signal of Fig. 1-(a)

4 Computation

4.1 Algorithms and implementation

The proof of Theorem 1 gives us a procedure for computing match-sets. This proce-
dure, sketched in Algorithm 1, recursively calls a subroutine COMBINE that takes as
arguments the topmost operator of the expression • ∈ {·,∨,∧,∗ , 〈 〉I} along with the
match-set(s) of the subexpression(s) and applies the operation corresponding to the spe-
cific operator •. All the operations on individual zones, including composition of two
zones, see Lemma 1, are realized using calls to the zone library of the tool IF [BGM02]
from our Python implementation.



Algorithm 1 ZONES(ϕ,w)

select (ϕ)
case ε, p, p:
Zϕ := ATOM(ϕ,w)

case •ψ:
Zψ := ZONES(ψ,w)
Zϕ := COMBINE(•, Zψ)

case ψ1 • ψ2:
Zψ1 := ZONES(ψ1, w)
Zψ2 := ZONES(ψ2, w)
Zϕ := COMBINE(•, Zψ1 , Zψ2)

end select
return Zϕ

Our algorithm intensively performs various binary operations over sets of zones,
that is, Z • Z ′ = {z • z′ : z ∈ Z, z′ ∈ Z ′}. In addition to the operations defined
in the expressions, in various stages we eliminate redundancy by checking pairwise
inclusion of zones covering a match-set. For this we define a special filtering operation
by ↓ Z = {z ∈ Z : ∀z′ ∈ Z. z 6⊂ z′}, which consists in removing from Z all zones
strictly included in other zones in Z. We define the general pairwise inclusion testv by
Z v Z ′ ↔ ∀z ∈ Z,∃z′ ∈ Z ′. z ⊆ z′, that is each zone in Z is included in a zone of
Z ′. Note that the filtering Z is just taking the smallest Z ′ ⊆ Z such that Z v Z ′.

A straightforward implementation of a binary operation on sets of zones with n ele-
ments will needO(n2) operations. In practice, many of these operations yield an empty
set and can be avoided by exploiting inherent ordering between zones. Such operations
are very similar to the spatial join operation, studied extensively for spatial databases,
see [JS07]. Spatial joins are usually performed using a filter-and-refine approach to
avoid redundant operations, where two-dimensional objects in Euclidean space are first
approximated by their minimum bounding boxes in a filtering stage and then actual
operations are performed on filtered sets of objects. We implement this idea through
the plane-sweep algorithm, used as is for intersection and filtering, and specialized for
concatenation.

For intersection, Algorithm 2 keeps Z and Z ′ sorted according to π−1 . It maintains
two active lists Y and Y ′ consisting of candidates for intersection. Elements are suc-
cessively moved to the active lists and are removed from them when it is clear they will
not participate in further non-empty intersections. This happens for z ∈ Y such that
π+
1 (z) < π−1 (z′) for every z′ ∈ Y ′ and vice versa. The filtering operation ↓ is per-

formed using a similar algorithm. For concatenation, that is computing Z ′′ = Z ◦Z ′,
observe that z ◦z′ 6= ∅ iff π2(z)∩π1(z′) 6= ∅. Hence we can apply an algorithm similar
to Algorithm 2 where Z is sorted according to π−2 and Z ′ is sorted according to π−1 .

For the star operation, we tried two different approaches. In the incremental ap-
proach we compose the input set Z with an accumulating set Y initialized to Z. In
the squaring approach we compose the accumulating set Y with itself. The squaring
approach is more efficient for sets of zones that converge slowly to a fixpoint. Algo-
rithm 3 depicts our implementation of this approach. In order not to compose the same



Algorithm 2 COMBINE(∧, Z, Z ′) assume Z,Z ′ sorted by π−1
Y := Y ′ := Z′′ := ∅
while Z 6= ∅ ∨ Z′ 6= ∅ do
z := first(Z); ` := π−1 (z)
z′ := first(Z′); `′ := π−1 (z′)
if ` < `′ then

Move z from Z to Y
Y ′ := {z′ ∈ Y ′ : π+

1 (z′) ≥ `}
foreach z′ ∈ Y ′ loop
z′′ := z ∩ z′
Z′′ := Z′′ ∪ {z′′}

end loop
else

Move z′ from Z′ to Y ′

Y := {z ∈ Y : π+
1 (z) ≥ `′}

foreach z ∈ Y loop
z′′ := z ∩ z′
Z′′ := Z′′ ∪ {z′′}

end loop
end if

end while
return ↓Z′′

sequence of zones twice, we maintain two sets Xk and Yk such that at the end of iter-
ation k we have ∪Xk = (∪Z)2

k

and ∪Yk = (∪Z)<2k . According to Corollary 1, we
may stop at the first k such that 2k ≥ 2 · σ(w) + 1; however a fixpoint can be reached
in less iterations. For performance reasons we use the pairwise inclusion test Xk v Yk
and give in the sequel an upper-bound on the number of iterations needed until this
condition is met.

Algorithm 3 COMBINE( ∗, Z)

Y := Z
X := COMBINE(·, Z, Z)
while X 6v Y do
Y :=↓(Y ∪X ∪ COMBINE(·, X, Y ) )
X := COMBINE(·, X,X)

end while
return Y ∪ {ε}

4.2 A bound on the number of iterations

We show that for an input set of zones Z produced by our matching procedure, having
|Z| elements and covering d = dmax {π+

2 (z′) − π−1 (z) : z, z′ ∈ Z}e time units, the
pairwise inclusion test is met before k = log(|Z|+ d) iterations.



A sequence of zones z1, . . . , zn is said to be redundant if there exists 1 ≤ i < j ≤ n
with z1 ◦ · · · ◦ zj ⊆ z1 ◦ · · · ◦ zi. Note that the star algorithm eliminates redundant
sequences as for any such sequence z1, . . . , zn we have by transitivity z1 ◦ · · · ◦ zn ⊆
z1 ◦ · · · ◦ zi ◦ zj+1 ◦ · · · ◦ zn. We first see that in a non-redundant sequence the maximal
duration never decreases.

Lemma 4. For any z, z′ such that z ◦ z′ * z we have δ+(z ◦ z′) ≥ δ+(z).

Proof. The propagation of difference constraints gives us δ+(z ◦ z′) = min{δ+(z) +
δ+(z′), π+

2 (z′) − π−1 (z)}. Suppose δ+(z ◦ z′) < δ+(z) and show z ◦ z′ ⊆ z. First
note that π1(z ◦ z′) ⊆ π1(z). By hypothesis π+

2 (z′) − π−1 (z) < δ+(z), yet δ+(z) ≤
π+
2 (z)− π−1 (z) so that π+

2 (z′) < π+
2 (z). This implies that π2(z ◦ z′) ⊆ π2(z). Finally

the hypothesis δ+(z ◦ z′) < δ+(z) gives us δ(z ◦ z′) ⊆ δ(z).

We call repeated a position i in the sequence z1, . . . , zn such that there exists j > i
with zi = zj . Now when appending a zone that may be repeated, the maximal duration
increases by the corresponding amount.

Lemma 5. For any z, z′ such that there exists z′′ with z ◦ z′ ◦ z′′ ◦ z′ * z ◦ z′ we have
δ+(z ◦ z′) = δ+(z) + δ+(z′).

Proof. Suppose δ+(z ◦ z′) < δ+(z)+δ+(z′), take z′′ a zone and show z ◦ z′ ◦ z′′ ◦ z′ ⊆
z ◦ z′. Similarly to the proof of Lemma 4 it is sufficient to show that π+

2 and δ+ do not
increase. On the one hand π+

2 (z ◦ z′ ◦ z′′ ◦ z′) ≤ π+
2 (z′) = π+

2 (z ◦ z′), and on the other
hand δ+(z ◦ z′ ◦ z′′ ◦ z′) ≤ π+

2 (z′)− π−1 (z) = δ+(z ◦ z′).

By a straightforward induction on the expression one may show that a zone z′ such
that δ+(z′) < 1 always verifies z′ = π1(z′) × π2(z′) ∩ {(t, t′) : t′ − t > 0}. Thus
if such a zone z′ was repeated it would make the corresponding sequence redundant;
under the conditions of Lemma 5 we indeed have δ+(z ◦ z′) ≥ δ+(z) + 1.

Theorem 2. Let Z be a set of zones covering d time units; Algorithm 3 stops within
k = log(|Z|+ d) iterations.

Proof. We first show that any non-redundant sequence of zones z1, . . . , zn with m rep-
etitions verifies δ+(z1 ◦ · · · ◦ zn) ≥ m.
Let i be a position in the sequence. If zi is repeated there exists j > i with zi = zj .
Factoring the composition of z1, . . . , zj into (z1◦· · ·◦zi−1) ◦ zi ◦(zi+1◦· · ·◦zj−1) ◦ zj
we see by Lemma 5 that δ+(z1◦· · ·◦zi) = δ+(z1◦· · ·◦zi−1)+δ+(zi) and in particular
δ+(z1 ◦ · · · ◦ zi) ≥ δ+(z1 ◦ · · · ◦ zi−1) + 1, maximal duration increases of 1. Else zi
is not repeated and by Lemma 4 we ensure δ+(z1 ◦ · · · ◦ zi) ≥ δ+(z1 ◦ · · · ◦ zi−1),
maximal duration does not decrease. With m repeated zones the sequence z1, . . . , zn
has maximal duration of at least m.
Now suppose the algorithm reaches iteration k, and take x a zone in Xk. There exists a
sequence z1, . . . , zn such that x = z1 ◦ · · · ◦ zn with n = 2k ≥ |Z| − d. If such a se-
quence was non-redundant it would have at least n− |Z| repeated zones, and maximal
duration δ+(z1 ◦ · · · ◦ zn) ≥ n − |Z| ≥ d > π+

2 (zn) − π−1 (z1) which is impossi-
ble. Therefore it is redundant so that there exists y ∈ Yk with x ⊆ y; we have shown
Xk v Yk thus if iteration k is reached the algorithm stops.



5 Experimentation

We test our implementation on several examples, focusing on performance aspects and
investigating the sensitivity of our algorithms to various parameters such as signal vari-
ability, signal length, and the magnitude of time units in the expression.

Example: Performance of the concatenation In this example we define an expres-
sion ϕ := p · q on random Boolean signals p and q with length L. We draw a number
E of switching points from a uniform distribution between 0 and L, and we define the
variability of the resulting signal as V = E/L. In Fig. 5-(a), we evaluate expression
ϕ over such signals w with fixed variability and of increasing length to measure the
execution time. This corresponds to the usual situation when monitoring various exe-
cutions of the same system: there the algorithm performs in linear time with respect to
signal length. Note that we use similar algorithms for concatenation, union, intersec-
tion and time-restriction operations; therefore, one can extend performance behavior of
concatenation to others.

500000 1000000

Length

0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
tio

n
Ti

m
e

(s
)

V = 0.1

V = 0.05

V = 0.025

0 10 20 30 40 50 60

Fixpoint Index

0

20

40

60

80

100

120

140

E
xe

cu
tio

n
Ti

m
e

(s
)

Incremental
Squaring

(a) (b)

Fig. 5. (a) Performance of concatenation operation with respect to signal length; (b) Performance
comparison of star algorithms with respect to fixpoint index

Example: Performance of the star In this example we use a family of expressions
(〈p · q〉[0,r])∗ on randomly generated Boolean signals p and q of fixed length and vari-
ability, taken as large numbers in order to stress our algorithms. Reducing r in the
expression increases the fixpoint index n, defined as the minimum sequence length
such that all longer sequences are included in a sequence of at most this length. We
can compare incremental and squaring star algorithms as n changes and we plot the



performance results in Fig. 5-(b). We see that the squaring performs better than incre-
mental algorithm except cases where n is small. This can be explained by the fact that
in the squaring approach, the effect of filtering is multiplied in the following sense.
Every sequence that we discard may have appeared in several factorizations of longer
sequences; squaring will reuse sequences as subsequences in many places which the
incremental approach does not do. Another effect that we observe is that the number
of zones covering sequences of length n does not explode but rather seem to stay con-
stant over iterations. This is illustrated by the linearity of execution time with respect to
fixpoint index in the incremental approach.

Example: A complex expression In this example we keep expression ϕ fixed while
modifying the signal. We have two Boolean signals p and q, and define an expression
which is satisfied when they oscillate rapidly together for some amount of time:

ϕ := 〈(〈p · p̄〉[0,10])∗ ∧ (〈q · q̄〉[0,10])∗〉[80,∞]

We generate input signals by segments, with a segment length of 400 time units. For
each segment, we draw switching points in time using an exponential distribution over
the segment to provide less switching at the end thus favoring the stabilization case.
We tested the expression ϕ with varying signal length and variability. The results are
depicted in Table 1. We also report the number of maximally uniform intervals in the
signal |w| along with the number of zones found |Zϕ|. These results are consistent with
simpler examples, indicating that one can monitor complex expressions without facing
a blow-up in computation time.

Table 1. Evaluation time of the matchset construction of ϕ as a function of the variability (V) and
length (L) of input signal w.

V L |w| |Zϕ| Time (s)
0.025 40000 1893 0 0.08
0.025 80000 3825 0 0.17
0.025 160000 7642 0 0.37
0.05 40000 3654 0 0.27
0.05 80000 7305 0 0.60
0.05 160000 14614 0 1.27

0.075 40000 5131 1 0.64
0.075 80000 10476 4 1.40
0.075 160000 21200 5 2.88

0.1 40000 6715 10 1.35
0.1 80000 13306 23 2.73
0.1 160000 26652 47 5.83

6 Future work

We can already consider several direct or indirect extensions to the work presented here.



Longest or shortest match. There often exists several matches beginning at a given
time or position. In that case string matching programs enforce the greedy policy of
returning the longest match (containing all other matches), while hardware specification
languages enforce the lazy policy of returning the shortest match (earliest violation).
Both features are straightforward to implement within our framework.

Online matching. In the context of dynamic verification, it is useful to monitor a prop-
erty during simulation so as to possibly stop early in case a violation. Making our algo-
rithm work online would require to re-order the operations on zones according to some
notion of time. The duration-restriction operator may also enjoy specific treatment so
as to cancel matches passed the maximum duration.

New operators. Temporal operators can be useful to specify the intent of the regular
expression; for instance a safety property should be monitored according to the seman-
tics of a temporal always operator. This feature is available in hardware specification
languages PSL/SVA, where a regular expression may be evaluated in the context of
an arbitary temporal logic formula. Negation may also be introduced not as a Boolean
operation on signals, but as a regular expression primitive. Looking for absence of a
match requires to compute the complement of a matchset, which may be expensive to
compute.

Events and delays. Standard assertions languages only handle events or actions. This
also was the model of the timed regular expressions of [ACM02]. In our signals frame-
work, we would like to handle events such as rise and fall of signals. Events only in-
duce finitely many matches and can be represented by punctual zones. In the setting of
events-based regular expressions, specification languages have concatenation operators
allowing to wait a (non-deterministic) number of discrete time units between events;
the generalization of SVA proposed in [HL11] shows that this concept easily translates
in the real-time setting.
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