
Online Timed Pattern Matching
using Derivatives

Dogan Ulus1, Thomas Ferrère1, Eugene Asarin2, and Oded Maler1

1 VERIMAG, Université Grenoble-Alpes/CNRS, France
2 LIAFA, Université Paris Diderot/CNRS, France

Abstract. Timed pattern matching consists in finding all segments of a dense-
time Boolean signal that match a pattern defined by a timed regular expression.
This problem has been formulated and solved in [17] via an offline algorithm that
takes the signal and expression as inputs and produces the set of all matches, rep-
resented as a finite union of two-dimensional zones. In this work we develop an
online version of this approach where the input signal is presented incrementally
and the matching is computed incrementally as well.
Naturally, the concept of derivatives of regular expressions due to Brzozowski [6]
can play a role in defining what remains to match after having read a prefix of the
signal. However the adaptation of this concept is not a straightforward for two
reasons: the dense infinite-state nature of timed behaviors and the fact that we
are interested in matching, not only in prefix acceptance. To resolve these issues
we develop an alternative theory of signals and expressions based on absolute
time and show how derivatives are defined and computed in this setting. We then
implement an online timed pattern matching algorithm based on these results.

1 Introduction

Timed regular expressions (TRE), introduced in [3, 4], constitute a formalism for ex-
pressing patterns in timed behaviors in a compact and natural way. They augment clas-
sical regular expressions with timing constraints and as such they provide an alternative
specification style to real-time temporal logics such as MTL [10]. We believe that such
expressions have numerous applications in many domains such as runtime verification,
robotics, medical monitoring and circuit analysis [9, 7].

For a given expression ϕ and input signal w, timed pattern matching means com-
puting the match set M(ϕ,w) consisting of all pairs (t, t′) of time instants such that
the segment of w between t and t′ satisfies the expression ϕ. In [17] we showed how to
computeM(ϕ,w) offline, assuming the input signal to be completely available before
the matching. In this paper we develop an online matching algorithm where the input is
presented incrementally and matches are computed on the fly. An online procedure can
be used to monitor real systems during their actual executions (in contrast with moni-
toring simulations) and alert the user in real time. In addition, an online procedure can
reduce memory requirements, discarding signals and intermediate matches when those
are no longer needed.

The online pattern matching procedure that we develop in this paper is built upon
the notion of derivatives of regular expressions, introduced by Brzozowski in 1964 [6].

In essence, the derivative of an expression with respect to a letter or word, tells us what
remains to be observed in order to reach acceptance. In this sense it is very similar to
the tableaux construction used to build automata from temporal logic formulae. Deriva-
tives provide an elegant solution for problems of language membership [14], pattern
matching [13, 16] and automaton construction [1, 5, 6] and have been observed to be
naturally suitable for monitoring behaviors of systems [15, 12]. The original notion of
the derivative that we recall in Section 2 is based on discrete time and requires a careful
adaptation to dense time. Moreover, as we will explain, matching is more complex than
acceptance (of the word or its prefixes) and this has some implications on associating
derivatives with rewrite rules.

In Section 3 we modify the definition of signals, one of the commonly-used for-
malisms to express timed behaviors, so as to lift the theory of derivatives to the timed
setting. Signals (and sequences) are traditionally defined to start at time zero and when
two signals are concatenated as inw = u·v, the second argument v is shifted forward in
time, to start at the end of u. In contrast, we define signals in absolute time, each having
its own fixed starting point. In this setting concatenation becomes a partial function,
defined only when the domains of definition of the two signals fit. We also introduce
a special place holder symbol X and define extended signals where all letters in some
prefix have been replaced by this symbol.

We then adapt timed regular expressions to represent sets of extended signals us-
ing the absolute time semantics. The regular expressions of [3, 4, 17] are obtained as
a syntactic sub-class denoting “pure” X-free signals, used for the initial specification.
The more general expressions are used to represent intermediate stages during the in-
cremental computation of the match set.

In Section 4 we introduce our main technical contribution: the definition and compu-
tation of derivatives of left-reduced timed regular expressions with respect to a constant
signal of arbitrary duration and all its factors. We apply this result to solve the problem
of online timed pattern matching in Section 5 where we observe an input signal consist-
ing of a finite concatenation of constant signals. We give a complete example of a run
of our algorithm and briefly mention our implementation and its performance.

2 Preliminaries

Let Σ∗ be the set of all finite words over alphabet Σ with ε denoting the empty word. A
language L over Σ is a subset of Σ∗. The syntax of regular expressions over Σ is given
by the following grammar:

r := ∅ | ε | a | r1 · r2 | r1 ∨ r2 | r∗

where a ∈ Σ. A regular expression r specifies a regular language JrK, inductively
defined as follows:

J∅K = ∅ Jr1 · r2K = Jr1K · Jr2K
JεK = {ε} Jr1 ∨ r2K = Jr1K ∪ Jr2K
JaK = {a} Jr∗K = JrK∗

In some cases it is important to determine whether or not the language of a regular
expression r contains the empty word ε. For this purpose an empty word extraction
function ν (also known as the nullability predicate) is defined such as

ν(r) =

{
ε if ε ∈ JrK
∅ otherwise

This function which extracts ε from r if it exists, is computed inductively by the follow-
ing rules:

ν(∅) = ∅ ν(r1 · r2) = ν(r1) · ν(r2)
ν(ε) = ε ν(r1 ∨ r2) = ν(r1) ∨ ν(r2)
ν(a) = ∅ ν(r∗) = ε

Definition 1 (Derivative). The derivative of a language L with respect to a word u is
defined as

Du(L) := { v ∈ Σ∗ | u · v ∈ L}.

In [6] Brzozowski applied the notion of derivatives to regular expressions and proved
that the derivative Da(r) of an expression r with respect to a letter a can be computed
recursively using the following syntactic rewrite rules:

Da(∅) = ∅ Da(r1 · r2) = Da(r1) · r2 ∨ ν(r1) ·Da(r2)
Da(ε) = ∅ Da(r1 ∨ r2) = Da(r1) ∨Da(r2)
Da(a) = ε Da(r

∗) = Da(r) · r∗
Da(b) = ∅

These rules are extended for words by letting Da·w(r) = Dw(Da(r)). By definition,
membership w ∈ L is equivalent to ε ∈ Dw(L). Hence to check, for example, whether
abc is in the language of the expression ϕ = a∗ · (b · c)∗ we compute Dabc(ϕ) =
Dc(Db(Da(ϕ)))) = (b · c)∗ as follows:

a∗ · (b · c)∗ −→
Da

a∗ · (b · c)∗ −→
Db

c · (b · c)∗ −→
Dc

(b · c)∗,

and since ν((b · c)∗) = ε, abc ∈ JϕK.
It is of course not a coincidence that this procedure resembles the reading of the

word by an automaton where derivatives correspond to states and those that contain ε
correspond to accepting states. Hence we can report membership in JϕK of w as well as
the membership of all its prefixes. We can do it incrementally as new letters arrive.

Matching is more involved as we are interested in the membership of all factors
of w, starting at arbitrary positions. Thus, having read j letters of w, the state of a
matching algorithm should contain all the derivatives by w[i..j], i ≤ j. When letter
j + 1 is read, these derivatives are updated to become derivatives by w[i..j + 1], new
matches are extracted and a new process for matches that start at j + 1 is spawned.
Table 2 illustrates the systematic application of derivatives to find segments of w =
abcbc that match ϕ = a∗ · (b · c)∗. The table is indexed by the start position (rows)
and end position (columns) of the segments with respect to which we derive. Deriva-
tives that contain ε correspond to matches and their time indices constitute the match

set {(1, 1), (1, 3), (1, 5), (2, 3), (2, 5), (4, 5)}. In a discrete finite-state setting there are
finitely many such derivatives but this is not the case for timed systems.1

Symbols a b c b c

Positions 1 2 3 4 5

1 ϕ −→
Da

a∗ · (b · c)∗ −→
Db

c · (b · c)∗ −→
Dc

(b · c)∗ −→
Db

c · (b · c)∗ −→
Dc

(b · c)∗

2 ϕ −→
Db

c · (b · c)∗ −→
Dc

(b · c)∗ −→
Db

c · (b · c)∗ −→
Dc

(b · c)∗

3 ϕ −→
Dc

∅ −→
Db

∅ −→
Dc

∅

4 ϕ −→
Db

c · (b · c)∗ −→
Dc

(b · c)∗

5 ϕ −→
Dc

∅

Table 1. Pattern matching using derivatives for w = abcbc and ϕ = a∗ · (b · c)∗. Entry (i, j)
represents the derivative with respect to w[i, j]. Derivatives containing ε are shaded with green.
The state of an online matching algorithm after reading j symbols is represented in column j.

In dense time, the analogue of the arrival of a new letter is the arrival of a constant
segment of the signal w[t1, t2]. When this occurs, the state of the algorithm should be
updated to capture all derivatives by segments of the form w[t, t2] for t < t2 and all
matches ending in some t < t2 should be extracted. The technique for representing and
manipulating such an uncountable number of derivative together with their correspond-
ing time segments is the main contribution of this paper.

3 Signals, Timed Languages and Expressions

We consider an alphabetΣ = Bm which is the set of valuations of a set of propositional
variables P = {p1 . . . , pm}. We define signals not as free floating objects but anchor
them in absolute time.

Definition 2 (Signals). A signal over an alphabet Σ is a piecewise-constant function
w : [t1, t2) −→ Σ, where t1 ≤ t2 ∈ R≥0 and w admits a finite number of discon-
tinuities. The time domain of the signal and its beginning and end times are denoted
as

dom(w) = [t1, t2) = [τ1(w), τ2(w)).

The empty signal ε is the unique signal satisfying dom(w) = ∅. The duration of w is
|w| = τ2(w) − τ1(w) and |ε| = 0. We often view the boundary points of a signal as a
pair, τ(w) = (τ1(w), τ2(w)).

1 To keep the survey within a reasonable size and avoid tedious repetitions, the description here
is not fully rigorous, using the same notation for the semantic notion of a left quotient, which
is unique for every language and word, and the syntactic notion of a derivative of a regular
expression. The derivation of the minimal automaton from a regular expression, for example,
requires additional rewrite rules to detect equivalence between different regular expressions.

We use w[t, t′] to denote the restriction of w to an interval [t, t′) ⊆ dom(w) and
let Sub(w) = {w[t, t′] | τ1(w) ≤ t < t′ ≤ τ2(w)} be the set of sub-signals (factors,
segments) of w. Concatenation is restricted to signals that meet, that is, one ends where
the other starts.

Definition 3 (Meets and Concatenation). Signal w1 meets signal w2 when w1 = ε or
w2 = ε or τ2(w1) = τ1(w2). Concatenation is a partial function such that w1 · w2 is
defined only if w1 meets w2:

w1 · w2(t) =

{
w1(t) if t ∈ dom(w1)

w2(t) if t ∈ dom(w2)

The empty signal ε is the neutral element for concatenation: ε · w = w · ε = w. The
set of signals thus defined can be made a monoid by making concatenation total by
introducing a new element ⊥ and letting w1 · w2 = ⊥ when the signals do not meet.
The newly introduced element is an absorbing zero satisfying ⊥ · w = w · ⊥ = ⊥.

The variability (logical length) of a signal w is the minimal n such that w can be
written as w = w1 · w2 · · ·wn where each wi is a constant signal. We use notations
Σ(∗), Σ(+) and Σ(n) to denote the set of all signals, non-empty signals and signals
of variability n, respectively. In particular, Σ(1) is the set of all constant signals. Sets
of signals are referred to as signal languages on which Boolean operations as well as
concatenation and star are defined naturally. Finally we extend the time restriction oper-
ation of [4] which constrains the duration of signals, to apply also to their time domains.
The language KJ 〈L〉I where I, J,K are intervals of non-negative reals, is a subset of L
consisting of signals with duration in I , beginning in t1 ∈ J and ending in t2 ∈ K.
We omit the corresponding interval when there is no restriction on beginning, ending or
duration.

We are interested in representing a family of sub-signals of a n-variability signal
w = w1 . . . wn starting in segment i and ending in segment j, that is, Sub[i:j](w) :=
{w[t, t′] | t ∈ dom(wi) and t′ ∈ dom(wj)}. It can be easily verified that

Sub[i:j](w) = Sub(wi) · wi+1 · · · Sub(wj) = Sub(wi) · Sub(wi+1) · · · Sub(wj).

In the classical discrete setting, the derivative Da is associated with a rewrite rule
a→ ε and a word w is accepted if it can be transformed into ε by successive rewritings.
For the purpose of timed matching we need a more length-preserving view where read-
ing a corresponds to a rule a→ X whereX is a special place-holder that indicates that
a has been processed. Acceptance then corresponds to the rewriting of w into a signal
w′ : dom(w) 7→ X. We let ΣX = Σ ∪ {X} and define extended signals which are
signals over ΣX, as well as some subclasses of those.

Definition 4 (Extended Signals). An extended signal over alphabet Σ is a function
w : [t, t′) → ΣX. An extended signal w is left-reduced if w ∈ X(∗) · Σ(∗). A left-
reduced signal w is pure if w ∈ Σ(∗) and reduced if w ∈ X(∗).

We use initial Greek letters to denote reduced signals and hence a left-reduced signal w
will be written as w = α · v where α is a reduced signal and v is a pure signal.

Definition 5 (Left Reduction). A reduction rule R(u) for a signal u ∈ Σ(∗) is a pair
(u, γ) such that γ ∈ X(∗) and dom(u) = dom(γ). The left reduction of a left-reduced
signal language L with respect to u is:

δu(L) := { αγw | αuw ∈ L, α ∈ X(∗) and w ∈ Σ(∗)}

We use operation δu(L) in a similar way Du(L) is used in the classical setting but with
one important difference. When v = Du(w) the length of the word is reduced, that is,
|v| = |w|−|u|, while when v = δu(w) the domains (and hence durations) of v andw are
the same. Consequently, unlike the classical case where membership of w in L amounts
to ε ∈ Dw(L), here the membership is equivalent to γ ∈ δw(L) where γ is a reduced
signal of the same domain asw. It is not difficult to check that δu1·u2

(L) = δu2
(δu1

(L))
and sometimes we denote by δS the left reduction with respect to a set of signals.

Example 1. Consider a signal language L = {w1, w2} such that

w1(t) =

{
a if t ∈ [0, 3)

b if t ∈ [3, 5)
w2(t) =

{
a if t ∈ [0, 2)

b if t ∈ [2, 5)

In Figure 1 we illustrate a left reduction operation δu3
(δu2

(δu1
(L))) = {w′′′1 } with

respect to u = u1u2u3 with u1 : [0, 1) 7→ a, u2 : [1, 3) 7→ a and u3 : [3, 5) 7→ b. Since
w′′′1 is a reduced signal and τ(u) = τ(w′′′1), u ∈ L.

w1:

w′1:

w′′1 :

w′′′1 :

w2:

w′2:

0 1 2 3 4 5 0 1 2 3 4 5

a b

↓δu1

X a b

↓δu2

X b

↓δu3

X

a b

↓δu1

X a b

↓δu2

⊥

Fig. 1. A left reduction example.

We now introduce timed regular expressions to describe sets of signals and extended
signals using the absolute time semantics. Note that the intersection operator, which is
considered a syntactic sugar in the classical theory, adds expressiveness in the timed
setting [4].

Definition 6 (Extended Timed Regular Expressions). Extended timed regular ex-
pressions are defined by the following grammar:

ϕ := ∅ | ε | p |X | ϕ1 · ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ∗ | KJ 〈ϕ〉I

where p is a proposional variable in P and I, J,K are intervals of R≥0.

The semantics of the expressions is defined by the following rules (we use a |= p to
denote the fact that p holds at a):

J∅K = ∅
JεK = {ε}
JpK = {w : [t, t′)→ Σ | 0 ≤ t < t′ and ∀t′′ ∈ [t, t′). w(t′′) |= p}
JXK = {w : [t, t′)→ {X} | 0 ≤ t < t′}

Jϕ · ψK = JϕK · JψK
Jϕ ∨ ψK = JϕK ∪ JψK
Jϕ ∧ ψK = JϕK ∩ JψK

Jϕ∗K =
⋃∞
i=0JϕKi

JKJ 〈ϕ〉IK = {w | w ∈ JϕK, |w| ∈ I, w 6= ε→ (τ1(w) ∈ J ∧ τ2(w) ∈ K)}

A signal language is regular if it can be represented by a timed regular expression.
The syntax in Definition 6 allows to define sets including extended signals with

arbitrary interleavings of letters and X. Below we define three syntactic classes of ex-
pressions. The first class, called pure (or original) timed regular expressions, corre-
sponds almost the same syntax of expressions seen in [3, 4, 17]. Pure expressions are
X-free and do not place any restriction on the absolute beginning and ending values over
their sub-expressions. The second class is reduced timed regular expressions which is
formed using theXsymbol only. Lastly we have left-reduced timed regular expressions,
obtained as compositions of reduced and pure expressions satisfying some conditions.

Definition 7 (Syntactic Classes). A timed regular expression ϕ belongs to the classes
of reduced, pure or left-reduced timed regular expressions if functions r?, p? or lr?,
respectively, evaluate to true in the following table.

Reduced Pure Left-reduced
Case r?(ϕ) p?(ϕ) lr?(ϕ)

∅ > > >
ε > > >
p ⊥ > >
X > ⊥ >

ϕ1 · ϕ2 r?(ϕ1) ∧ r?(ϕ2) p?(ϕ1) ∧ p?(ϕ2)
lr?(ϕ1) ∧ p?(ϕ2) ∨
r?(ϕ1) ∧ lr?(ϕ2)

ϕ1 ∧ ϕ2 r?(ϕ1) ∧ r?(ϕ2) p?(ϕ1) ∧ p?(ϕ2) lr?(ϕ1) ∧ lr?(ϕ2)
ϕ1 ∨ ϕ2 r?(ϕ1) ∧ r?(ϕ2) p?(ϕ1) ∧ p?(ϕ2) lr?(ϕ1) ∧ lr?(ϕ2)
ϕ∗ r?(ϕ) p?(ϕ) r?(ϕ) ∨ p?(ϕ)

K
J 〈ϕ〉I r?(ϕ) p?(ϕ) ∧ J = K = [0,∞) lr?(ϕ)

Trivially any reduced expression ψ and any pure expression ϕ represent reduced and
pure signal languages such that JψK ⊆ X(∗) and JϕK ⊆ Σ(∗). For left-reduced ex-
pressions we do not allow concatenation and star operations on arbitrary left-reduced
expressions as in Definition 7 because left-reduced languages are not closed under con-
catenation. By doing that we have the following result.

Proposition 1. The language JϕK of a left-reduced timed regular expression ϕ is an
extended signal language such that JϕK ⊆ X(∗) ·Σ(∗).

Proof. For the concatenation ϕ1 · ϕ2 we have two possibilities: (1) Jϕ1K ⊂ X(∗) ·Σ(∗)

and Jϕ2K ⊂ Σ(∗); (2) Jϕ1K ⊂ X(∗) and Jϕ2K ⊂ X(∗) · Σ(∗). For both possibilities,
we have Jϕ1 · ϕ2K = Jϕ1K · Jϕ2K ⊂ X(∗) · Σ(∗). Other cases are straightforward by
following the definitions.

A comprehensive study on regular algebra extended with intersection operation can
be found in [2]. We now mention some algebraic rules relative to the time restriction
operator. It is shown in [17] how the right hand side of following equations can be
computed from the corresponding left hand side.

K1

J1
〈X〉I1 ·

K2

J2
〈X〉I2 = K3

J3
〈X〉I3 and K1

J1
〈X〉I1 ∧

K2

J2
〈X〉I2 = K3

J3
〈X〉I3

for some intervals I3, J3 and K3, and

(

m∨
i=1

Ki

Ji
〈X〉Ii)+ =

n∨
i=1

K′i
J′i
〈X〉I′i for some m,n ∈ N

Therefore we can simplify timed regular expressions further using these equations and
procedures.

4 Derivatives of Left-Reduced Timed Regular Expressions

We now introduce, semantically and syntactically, a derivative operation for left-reduced
signal languages and expressions based on the left reduction operation. Since our goal is
to solve the dense time matching problem, we have to operate on sets of signals and de-
fine derivatives more symbolically. Therefore we define the derivative∆v to correspond
to the left reduction with respect to all factors of v.

Definition 8 (Dense Derivative). The derivative ∆v(L) of a left-reduced language L
with respect to a constant signal v ∈ Σ(1) is defined as follows:

∆v(L) :=
⋃

u∈Sub(v)

δu(L)

As mentioned previously, reduced signals will provide the output of our matching pro-
cedure. Their existence will be the witness of a match and their time domains will
indicate its position in the signal.

Definition 9 (Extraction). The extraction xt(L) of a left-reduced signal language L is

xt(L) := { α | α ∈ X(∗) ∩ L}

The following result shows that xt can be computed syntactically for left-reduced timed
regular expressions.

Theorem 1 (Extraction Computation). For a given left-reduced timed regular ex-
pression ϕ, applying the following rules recursively yields an expression ψ such that
JψK = xt(JϕK).

xt(∅) = ∅
xt(ε) = ε
xt(p) = ∅
xt(X) = X

xt(ψ1 · ψ2) = xt(ψ1) · xt(ψ2)
xt(ψ1 ∨ ψ2) = xt(ψ1) ∨ xt(ψ2)
xt(ψ1 ∧ ψ2) = xt(ψ1) ∧ xt(ψ2)
xt(KJ 〈ψ〉I) = K

J 〈xt(ψ)〉I
xt(ψ∗) = (xt(ψ))∗

Proof. We proceed by induction and only look at the case of concatenation, other cases
are similar. For any expressions ϕ1, ϕ2 it holds

Jxt(ϕ1 · ϕ2)K = {α | α ∈ X(∗) and α ∈ Jϕ1 · ϕ2K}
= {α1α2 | α1, α2 ∈ X(∗), α1 ∈ Jϕ1K and α2 ∈ Jϕ2K}
= {α1 | α1 ∈ X(∗) and α1 ∈ Jϕ1K} · {α2 | α2 ∈ X(∗) and α2 ∈ Jϕ2K}
= Jxt(ϕ1)K · Jxt(ϕ2)K

Example 2. Consider a left-reduced expression ϕ :=
〈 [0,3]

[0,3]〈X〉[0,3] · p
∗〉

[0,2]
. Applying

Theorem 1 we extract from ϕ a reduced expression ψ such that ψ =
〈 [0,3]
[0,3]〈X〉[0,3]

〉
[0,2]

.

Expression ψ can be simplified further to [0,3]
[0,3]〈X〉[0,2].

We now state our main result concerning derivatives of left-reduced timed regular ex-
pressions.

Theorem 2 (Derivative Computation). Given a left-reduced timed regular expression
ϕ and a constant signal v : [t, t′) 7→ a, applying the following rules yields an expression
ψ such that JψK = ∆v(JϕK).

∆v(∅) = ∅
∆v(ε) = ∅
∆v(X) = ∅

∆v(p) =

{
Γ ∨ Γ · p if a |= p where Γ :=

[t,t′]
[t,t′]〈X〉[0,t′−t]

∅ otherwise
∆v(ψ1 · ψ2) = ∆v(ψ1) · ψ2 ∨ xt

(
ψ1 ∨∆v(ψ1)

)
·∆v(ψ2)

∆v(ψ1 ∨ ψ2) = ∆v(ψ1) ∨∆v(ψ2)
∆v(ψ1 ∧ ψ2) = ∆v(ψ1) ∧∆v(ψ2)
∆v(

K
J 〈ψ〉I) = K

J 〈∆v(ψ)〉I
∆v(ψ

∗) = xt(∆v(ψ))
∗ ·∆v(ψ) · ψ∗

Proof. By semantic definition ∆v(ϕ) = { αγw | αuw ∈ JϕK and (u, γ) ∈ RSub(v)}
where RSub(v) := { R(u) | u ∈ Sub(v)}. We proceed by induction on the structure of
ϕ. In the following we tend to use languages and expressions interchangeably, when in
the interest of readability. Consider the cases:

• For ϕ = ∅, ϕ = ε and ϕ = X : for all cases αuw /∈ JϕK therefore ∆v(ϕ) = ∅.

• For ϕ = p : It needs that α = ε and u ∈ JpK. Then, αuw ∈ JpK can be satisfied if
either w = ε or w ∈ JpK. By applying definitions, we get

∆v(p) = { γ | u ∈ JpK and (u, γ) ∈ RSub(v)} ∪
{ γw | u ∈ JpK, w ∈ JpK and (u, γ) ∈ RSub(v)}

= Γ ∨ Γ · {w | w ∈ JpK}
= Γ ∨ Γ · p

where the expression Γ is [t,t′]
[t,t′]〈X〉[0,t′−t]. Hence, we have ∆v(p) = Γ ∨ Γ · p if

u ∈ JpK, otherwise ∆v(p) = ∅. The condition u ∈ JpK can be easily checked by
testing a |= p.

• For ϕ = ϕ1 ·ϕ2 : αuw ∈ Jϕ1 ·ϕ2K should be satisfied. There are three possibilities
to split αuw in dense time:
� It can be split up into αuw1 ∈ Jϕ1K and w2 ∈ Jϕ2K.

∆v(ϕ) = {αγw1w2 | αuw1 ∈ Jϕ1K, w2 ∈ Jϕ2K and (u, γ) ∈ RSub(v)}
= {αγw1 | αuw1 ∈ Jϕ1K and (u, γ) ∈ RSub(v)} · {w2 | w2 ∈ Jϕ2K}
= ∆v(ϕ1) · ϕ2

� It can be split up into α1 ∈ Jϕ1K and α2uw ∈ Jϕ2K.

∆v(ϕ) = {α1α2γw | α1 ∈ Jϕ1K, α2uw ∈ Jϕ2K and (u, γ) ∈ RSub(v)}
= {α1 | α1 ∈ Jϕ1K} · {α2γw | α2uw ∈ Jϕ2K and (u, γ) ∈ RSub(v)}
= xt(ϕ1) ·∆v(ϕ2)

� It can be split up into αu1 ∈ Jϕ1K and u2w ∈ Jϕ2K. For this case, it is required
by definitions that ϕ1 is a left-reduced expression and ϕ2 is a pure expression.
This is the most involved case requiring to split reducing signals.

∆v(ϕ) = {αγ1γ2w | αu1 ∈ Jϕ1K, u2w ∈ Jϕ2K and (u1u2, γ1γ2) ∈ RSub(v)}
= {αγ1γ2w | αu1 ∈ Jϕ1K, u2w ∈ Jϕ2K, (u1, γ1) ∈ RSub(v),

(u2, γ2) ∈ RSub(v) and (u1, γ1) meets (u2, γ2)}
= {αγ1 | αu1 ∈ Jϕ1K and (u1, γ1) ∈ RSub(v)}·

{γ2w | u2w ∈ Jϕ2K and (u2, γ2) ∈ RSub(v)}
= xt(∆v(ϕ1)) ·∆v(ϕ2)

Thus ∆v(ϕ1 · ϕ2) can be found by the disjunction of these three cases. Then, by
rearranging the last two cases, we obtain the equality claimed in the theorem.
• For ϕ = ψ∗: assume without loss of generality ε 6∈ ψ. Then

∆v(ψ
∗) = ∆v(ε) ∨∆v(ψ · ψ∗)

= ∆v(ψ) · ψ∗ ∨ xt(ψ) ·∆v(ψ
∗) ∨ xt(∆v(ψ)) ·∆v(ψ

∗)
= ∆v(ψ) · ψ∗ ∨ xt(∆v(ψ)) ·∆v(ψ

∗)
= [ε ∨ X ∨ X2 ∨ · · · ∨ X∞] ·∆v(ψ) · ψ∗ where X = xt(∆v(ψ))
= xt(∆v(ψ))

∗ ·∆v(ψ) · ψ∗

• Time restriction and Boolean operations follow definitions straightforwardly.

Corollary 1. The derivative ∆v(ϕ) of a left-reduced timed regular expression ϕ with
respect to a constant signal v is a left-reduced timed regular expression.

Proof. Theorem 2 shows that only finite number of regular operations is required to
find the derivative and these equations satisfy requirements in Definition 7.

We extend derivatives for arbitrary signals by letting ∆ε(ϕ) = ϕ and

∆v·w(ϕ) = ∆w(∆v(ϕ)).

Lemma 1. The derivative ∆w(ϕ) of a left-reduced timed regular expression ϕ with
respect to a signal w = w1 . . . wn with n segments is equivalent to the left reduction
of ϕ with respect to the set of sub-signals of w beginning in dom(w1) and ending in
dom(wn).

∆w(ϕ) =
⋃

u∈Sub[1:n](w)

δu(JϕK)

Proof. Using definitions we directly have

∆w(ϕ) = ∆wn
(∆wn−1

(. . . (∆w1
(ϕ))))

= δSub(wn)(δSub(wn−1)(. . . (δSub(w1)(JϕK)))
= δSub(w1)·Sub(w2)...Sub(wn)(JϕK)
= δSub[1:n]

(JϕK)

5 Application to Online Timed Pattern Matching

In this section we solve the problem of online timed pattern matching by applying con-
cepts and results introduced in previous sections. Our online matching procedure as-
sumes the input signalw to be presented incrementally as follows. Letw = w1w2 . . . wn
be an n-variability signal and at each step j we read a new segment wj : [tj , t′j) 7→ aj
where aj ∈ Σ. After reading a new segment wj we may have new matches ending
in dom(wj) in addition to previously found matches. Therefore we define an incre-
mental match setMj(ϕ,w) consisting of matches ending in dom(wj) and we say that
Mj(ϕ,w) is the output of jth incremental step.

Mj(ϕ,w) := { τ(s) | s ∈ JϕK, s ∈ Sub[i:j](w) and 1 ≤ i ≤ j}

We then define the state of the online timed pattern matching procedure at the step j as
a left-reduced timed regular expression.

Definition 10 (The State of Online Procedure). Given a pure timed regular expres-
sion ϕ the state of the online timed pattern matching procedure after reading a prefix
w1..j of the input signal is:

ψj :=
∨

1≤i≤j

∆wi..j (ϕ)

Then, starting with ψ0 = ϕ, we update the state upon reading wj+1 by letting

ψj+1 = ∆wj+1
(ψj) ∨∆wj+1

(ϕ)

Now we show that the extraction of reduced signals from state ψj provides the match
setMj(ϕ,w). We do not make a distinction here between a reduced signal α and its
time domain τ(α) as they stand for the same thing.

Theorem 3. Given a state ψj of an online matching procedure for expression ϕ and a
signal w, the incremental match setMj(ϕ,w) is found by the extraction of the state:

Mj(ϕ,w) = xt(ψj)

Proof. Following Definition 10 and Lemma 1 we know the state ψj represents a re-
duced language δS(ϕ) of ϕ with respect to a set of signals S satisfying s ∈ Sub(w)
and τ2(s) ∈ dom(wj). A reduced signal α in δS(ϕ) indicates the existence of a signal
s ∈ S such that τ(s) = τ(α) and s ∈ JϕK, thus s is a match. Then we can find the
match setMj by extracting all reduced signals from the state ψj .

Theorem 3 allows us to have a complete procedure for online timed pattern matching
for given ϕ and an input signal w = w1 . . . wn summarized below:

1. Extract ϕ to see if the empty word is a match.
2. For 1 ≤ j ≤ n repeat:

(a) Update the state of the matching ψj by deriving the previous state ψj−1 with
respect to wj and adding a new derivation ∆wj

(ϕ) to the state for matches
starting in segment j.

(b) Extract ψj to get matches ending in segment j.

We present an example of online pattern matching for the timed regular expression
ϕ := 〈p · q〉[4,7] and input signal w := w1w2w3 with w1 : [0, 3) 7→ {p ∧ ¬q}, w2 :
[3, 8) 7→ {p ∧ q} and w3 : [8, 10) 7→ {¬p ∧ q} over propositional variables p and q
shown in Figure 2. In Table 2 we depict the step-by-step computation of the match set
M(ϕ,w) after reading the next segment from w. For Step 1 the state ψ1 is equal to the
derivative of ϕ with respect to w1 such that ψ1 = 〈Γ1 · q〉[4,7] ∨ 〈Γ1 · p · q〉[4,7] where
Γ1 =

[0,3]
[0,3]〈X〉[0,3]. The extraction xt(ψ1) is empty therefore we do not have any match

ending in dom(w1) = [0, 2). For Step 2 where Γ2 =
[3,8]
[3,8]〈X〉[0,5] the extraction of

p

q

0 3 8 10

Fig. 2. A signal w := w1w2w3 over variables p and q.

Symbols {p ∧ ¬q} {p ∧ q} {¬p ∧ q}
Segments [0, 3) [3, 8) [8, 10)

[0, 3) 〈p · q〉I −→
∆w1

〈Γ1 · q〉I ∨
〈Γ1 · p · q〉I

−→
∆w2

〈Γ1 · Γ2〉I ∨
〈Γ1 · Γ2 · q〉I ∨
〈Γ1 · Γ2 · p · q〉I

−→
∆w3

〈Γ1 · Γ2 · Γ3〉I ∨
〈Γ1 · Γ2 · Γ3 · q〉I

[3, 8) 〈p · q〉I −→
∆w2

〈Γ2〉I ∨
〈Γ2 · q〉I ∨
〈Γ2 · p · q〉I

−→
∆w3

〈Γ2 · Γ3〉I ∨
〈Γ2 · Γ3 · q〉I

[8, 10) 〈p · q〉I −→
∆w3

∅

Table 2. Timed pattern matching using derivatives forw = w1w2w3 andϕ = 〈p·q〉I . Entries rep-
resent the derivative with respect towi..j . Reduced expressions, indicating matched segments, are
shaded with green. (I = [4, 7], Γ1 =

[0,3]

[0,3]〈X〉[0,3], Γ2 =
[3,8]

[3,8]〈X〉[0,5] and Γ3 =
[8,10]

[8,10]〈X〉[0,2]).

the state is equal to xt(ψ2) = 〈Γ1 · Γ2〉[4,7] ∨ 〈Γ2〉[4,7] =
[4,8]
[0,3]〈X〉[4,7] ∨

[7,8]
[3,4]〈X〉[4,5].

Similarly, for Step 3 where Γ3 =
[8,10]
[8,10]〈X〉[0,2], the extraction of the state is equal to

xt(ψ3) = 〈Γ1 ·Γ2 ·Γ3〉[4,7]∨〈Γ2 ·Γ3〉[4,7] =
[8,9]
[1,3]〈X〉[5,7]∨

[8,9]
[4,6]〈X〉[4,5] . In Figure 3 we

illustrate corresponding segments (t, t′) extracted in Steps 2 and 3 where solid regions
show the actual outputs for the corresponding step.

Step 2 Step 3
t′

t3 8 10

3

8

10
t′

t3 8 10

3

8

10

Fig. 3. A graphical representation of online timed pattern matching presented in Table 2 with t
and t′ denoting, respectively, the beginning and end of the match.

We implemented our procedure using the functional term rewriting language PURE
and C++. Besides derivative and extraction rules we introduced in this paper, our im-

plementation includes some basic algebraic rewrite rules as well as simplification rules
for reduced expressions given in Section 3. We perform our experiments on a 3.3GHz
machine for a set of test patterns and we depict performance results of the online pro-
cedure in comparison with the offline procedure in [17] in Table 3. For typical cases,
experiments suggest a linear time performance with respect to the number of segments
in the input for both algorithms. Although the online procedure runs slower than the
offline procedure, it requires less memory and the memory usage does not depend on
the input size as expected.

Offline Algorithm Online Algorithm
Input Size Input Size

Test Patterns 100K 500K 1M 100K 500K 1M

p 0.06/17 0.27/24 0.51/33 6.74/14 29.16/14 57.87/14
p · q 0.08/21 0.42/46 0.74/77 8.74/14 42.55/14 81.67/14

〈p · q · 〈p · q · p〉I · q · p〉J 0.23/28 1.09/77 2.14/140 28.07/14 130.96/14 270.45/14
(〈p · q〉I · r) ∧ (p · 〈q · r〉J) 0.13/23 0.50/51 1.00/86 15.09/15 75.19/15 148.18/15

p · (q · r)∗ 0.11/20 0.49/37 0.96/60 11.53/15 52.87/15 110.58/15

Table 3. Execution times/Memory usage (in seconds/megabytes)

6 Conclusions

The contribution of the paper is both theoretical and practical. From a theoretical stand-
point we have tackled the difficult problem of exporting the concept of derivatives from
discrete to timed behaviors, languages and expressions. To this end we introduced a
new approach to handle signals in absolute time, yielding a new type of monoid with
interesting properties that by itself is worth investigating in the future. We have shown
that such derivatives can be computed syntactically using left-reduced timed regular ex-
pressions and that all the matches of the expressions in the signal can be extracted from
this representation.

We have used these results to implement a novel procedure for online pattern match-
ing for timed behavior that can be used to monitor systems in real time and detect
occurrences of complex patterns. Our procedure consumes a constant segment from
the input signal and reports a set of matches ending in that segment before processing
the next segment. The algorithm can be applied, of course, to the discrete case where
words are viewed as signals that can change their values only at integer times. Despite
the overhead, our algorithm might be advantageous for words that have long periods of
stuttering if a delay in the detection of matching can be tolerated.

We believe that this procedure has a lot of potential applications in detecting tem-
poral patterns at different time scales. It can be used, for example to detect patterns in
music as in [8], in cardiac behavior or in speech. To this end the expression should be

extended with predicates over real numbers [7] as in the passage from MTL to STL (sig-
nal temporal logic) [11]. Other potential application domains could be the detection of
congestions in traffic or in communication network and the analysis of execution logs of
organizations information systems or web servers, for example to detect internet robots
or customers who are about to abandon our web site.
Acknowledgement: This work was partially supported by the French ANR projects
EQINOCS and CADMIDIA and benefitted from useful comments made by anonymous
referees.

References

1. Valentin M. Antimirov. Partial derivatives of regular expressions and finite automaton con-
structions. Theoretical Computer Science, 155(2):291–319, 1996.

2. Valentin M. Antimirov and Peter D. Mosses. Rewriting extended regular expressions. The-
oretical Computer Science, 143(1):51–72, 1995.

3. Eugene Asarin, Paul Caspi, and Oded Maler. A Kleene theorem for timed automata. In Logic
in Computer Science (LICS), pages 160–171, 1997.

4. Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions. Journal of ACM,
49(2):172–206, 2002.

5. Gérard Berry and Ravi Sethi. From regular expressions to deterministic automata. Theoreti-
cal Computer Science, 48(3):117–126, 1986.

6. Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the ACM, 11(4):481–
494, 1964.

7. Thomas Ferrère, Oded Maler, Dejan Nickovic, and Dogan Ulus. Measuring with timed
patterns. In Computer Aided Verification CAV, pages 322–337, 2015.

8. Jean-Louis Giavitto and José Echeveste. Real-time matching of Antescofo temporal patterns.
In Principles and Practice of Declarative Programming (PPDP), pages 93–104, 2014.

9. John Havlicek and Scott Little. Realtime regular expressions for analog and mixed-signal
assertions. In Formal Methods in Computer-Aided Design (FMCAD), pages 155–162, 2011.

10. Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time Sys-
tems, 2(4):255–299, 1990.

11. Oded Maler, Dejan Nickovic, and Amir Pnueli. Checking temporal properties of discrete,
timed and continuous behaviors. In Pillars of Computer Science, volume 4800 of Lecture
Notes in Computer Science, pages 475–505. Springer Berlin Heidelberg, 2008.

12. Katell Morin-Allory and Dominique Borrione. On-line monitoring of properties built on
regular expressions. In Forum on specification and Design Languages, (FDL), pages 249–
255, 2006.

13. Scott Owens, John H. Reppy, and Aaron Turon. Regular-expression derivatives re-examined.
Journal of Functional Programming, 19(2):173–190, 2009.

14. Grigore Rosu and Mahesh Viswanathan. Testing extended regular language membership
incrementally by rewriting. In Rewriting Techniques and Applications (RTA), pages 499–
514, 2003.

15. Koushik Sen and Grigore Rosu. Generating optimal monitors for extended regular expres-
sions. Electronic Notes Theoretical Computer Science, 89(2):226–245, 2003.

16. Martin Sulzmann and Pippijn van Steenhoven. A flexible and efficient ML lexer tool based
on extended regular expression submatching. In Compiler Construction (CC), pages 174–
191, 2014.

17. Dogan Ulus, Thomas Ferrère, Eugene Asarin, and Oded Maler. Timed pattern matching. In
Formal Modeling and Analysis of Timed Systems (FORMATS), pages 222–236, 2014.

