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Abstract. We present Time-Frequency Logic (TFL), a new specification
formalism for real-valued signals that combines temporal logic proper-
ties in the time domain with frequency-domain properties. We provide
a property checking framework for this formalism and illustrate its ex-
pressive power in defining and recognizing properties of musical pieces.
Like hybrid automata and their analysis techniques, the TFL formalism
is a contribution to a unified systems theory for hybrid systems.

1 Introduction

The exportation of Temporal Logic (TL) from philosophy [31,32] to systems
design [28,29] is considered a turning point in formal verification [33], putting
the focus on the ongoing input-output behavior of a reactive system [14] rather
than on the final output of a complex program. While reactive systems might
be a concept worth distinguishing in Computer Science, in other domains such
as Control, Signal Processing and Circuit Design, being reactive is the rule, not
the exception. Such systems are viewed by designers as networks of transducers
(block diagrams) communicating continuously via signals: functions from Time
to some domain, such as the Reals. This is the world view underlying data-flow
languages and frameworks such as Lustre [2], Signal [1], Simulink6 and Ptolemy
[27], as well as transistor-level circuit simulators.

TL provides a convenient framework for writing in a compact and formal
way specifications that the system under design should satisfy. It was initially
intended to evaluate clean and well-defined sequences of states and events as
found in digital systems. In the last couple of years, it has been extended to the
specification of properties of real-valued signals defined over dense time [19,21]
and applied to diverse domains ranging from analog circuits [17] to biochemical
reactions [6]. The logic STL (signal temporal logic) allows designers to speak
of properties related to the order of discrete events and the temporal distance
between them, where “events” correspond to changes in the satisfaction of some
predicate (e.g., threshold crossing) over the real variables. Traditional perfor-
mance measures used to evaluate signals are more continuous and “event-free”,

6 http://www.mathworks.com/tagteam/43815_9320v06_Simulink7_v7.pdf
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for example, averaged/discounted integrals of some variables over time, and the
added expressivity is an important contribution to the emergence of a hybrid
Systems Theory.

One of the technical and cultural impediments to the adoption of STL, es-
pecially in analog circuits (its original motivating domain), was its purely time-
domain nature; i.e., it did not lend itself to frequency-domain analysis. This kind
of analysis is based on the Fourier spectrum of the signal which in many engineer-
ing applications is more important than the properties of the signal itself; i.e., its
properties in the time domain, which STL is intended to express. One reason for
this bias is that real-life analog signals are accompanied by omnipresent noise,
i.e., random perturbations of the desired signal. This is conveniently dealt with
in the frequency domain via filtering. Typically, the noise component of a signal
populates a range of frequencies different from the range of the signal of interest.
If we keep only the latter, then the amplitude of the noise is strongly reduced.
More generally, an analog signal is usually a composition of multiple sources,
and the first purpose of signal processing is the separation of these sources. In
the frequency domain, this is done by simple operations such as thresholding
or filtering the range of frequencies of interest, assuming that each source has a
range clearly distinct from the ranges of others.

Source separation, noise removal and signal filtering are fundamental oper-
ations which are time-invariant. They affect the signal in the same way from
time t = −∞ to t = ∞. Since the Fourier transform (FT) is defined over this
unbounded time-interval, it is appropriate for these operations. However, when
it comes to characterize bounded or local-time intervals, the FT becomes cum-
bersome in practice, as its definition aggregates for each frequency of interest
all values along the duration of the signal. This observation naturally led to the
search for proper time-frequency analysis techniques, beginning from straight-
forward extensions of FT (such as the Short Time Fourier Transform (STFT)
[10]) and culminating with the sophisticated and versatile family of Wavelet
transforms [22]. Time-frequency analysis as a branch of Signal Processing have
seen contributions of tremendous importance. To name only one, modern com-
pression algorithms at the root of Jpeg, Mpeg, etc, file formats are all based on
wavelet theory.

In this paper, we complement this evolution toward a fusion of time-domain
and frequency-domain analysis by proposing a unified logical formalism for ex-
pressing hybrid (time-frequency) properties of signals. Some preliminary work in
this direction is reported in [3] in which the author describes “envelope” predi-
cates over the Fourier coefficients in the context of hybrid systems verification.
However they use the standard Fourier transform, thus not treating the tighter
coupling of time and frequency domains that we investigate here. Attempts have
been done in the past to apply time-frequency analysis as a design methodology
to different application domains. In the context of analog circuits, time-frequency
analysis was used to study dynamic current supplies, oscillators, leapfrog and
state variable filters etc. In the bio-medical domain time-frequency analysis was
applied to detect anomalous ECG signals. We observed that the common dis-



advantage of these techniques is the lack of a formalism to express complex
temporal patterns of frequency responses and a suitable machinery to automat-
ically detect them. Our formalism, which we call Time-Frequency Logic (TFL),
is implemented in a generic monitoring framework, part of the tool Breach [5].

A somewhat related work is Functional reactive programming (FRP) [16],
a paradigm for high-level declarative programming of hybrid systems, instanti-
ated with the Yampa language which was used to program industrial-strength
mobile robots [26] but also to synthesize music [11]. Although it shares similar
concepts with our work (signal transformers), FRP as a programming paradigm
remains complementary to TFL, which is a specification formalism supporting,
in particular, acausality and non-determinism.

The rest of the paper is organized as follows. Section 2 gives a short in-
troduction to STL. Section 3 is a crash course on Fourier analysis.7 Section 4
explains time-frequency analysis and how it is integrated in the TFL monitoring
framework, while Section 5 demonstrates TFL’s applicability to Music.

2 Signal Temporal Logic

We present STL in a manner that makes it closer to the world of Control and
Signal Processing. Rather than taking the logic as a primary object and put all
the numerical predicates and functions as part of domain-specific signature (as
in [21]), we take a general framework of a data-flow network (as has been done in
[4]) and add the temporal operators (until and since) as a special type of signal
transducers. This approach is also close to [24], where AMS-LTL is extended
with auxiliary functions that allow to embed arbitrary signal transducers in the
body of property specifications.

This style of presentation is facilitated by a somewhat non-orthodox way of
defining the semantics of temporal logic using temporal testers [18,30,23]. This
approach has already been applied to STL monitoring [19,21] and to translating
the MITL logic into timed automata [20]. An STL formula ϕ is viewed as a net-
work of signal operators (transducers), starting with the raw signals x (sequences
of atomic propositions in the discrete case), and culminating in a top-level signal
ϕ,8 whose value at t represents the satisfaction of the top-level formula at time
t: ϕ[t] = 1 iff (x, t) |= ϕ. Each sub-formula of the form ϕ = f(ϕ1, ϕ2) is thus
associated with a signal transducer realizing f , whose inputs are the satisfaction
signals of ϕ1 and ϕ2. The whole apparatus for monitoring the satisfaction of a
formula by a signal can thus be viewed as a network of operators working on
signals of two major types: numerical (raw signals and those obtained by nu-
merical operations on them) and Boolean (satisfaction signals of sub-formulae).
We assume signals defined as functions from Time T to some domain D. The

7 We recommend [15] as a first reading for computer scientists.
8 We make a compromise between the conventions of Logic and those of other less

formal domains by writing abusively ϕ for both the formula and its satisfaction
signal and will do the same for variables x and their associated raw signals.



range T of the signal can be finite [0, r], infinite [0,∞] or bi-infinite [−∞,∞] and
we will make distinctions only when needed.

Definition 1 (Signal Operator). A signal operator is a mapping f : (T →
D1) → (T → D2), where D1 and D2 are, respectively, the domains of the input
and output signals.

The domains D1 and D2 define the type of the operators, and we always assume
that the arguments of these operators match the type. We assume that all op-
erators are (approximately) computable so that given some representation of a
signal x, it is possible to produce a representation y = f(x).

Definition 2 (Operator Classification). Let f be a signal operator and let
y = f(x). We say that f is

– Pointwise (memoryless) if it is a lifting to signals of a function f : D1 → D2,
that is, ∀t y[t] = f(x[t]);

– Causal if, for every t, y[t] is computed based on at most x[0], . . . , x[t];
– Acausal (otherwise)

The causal operators are, for example, past temporal operators, back-shifts, or
integrals over temporal windows that extend backwards. The advantage of such
operators is that they can be naturally monitored online, which is particularly
important for monitoring real systems rather than simulated models. The acausal
operators are the future temporal operators and other operators that depend on
values in temporal windows that extend beyond the current point in time.

Definition 3 (Temporal Operators). Let ϕ1 and ϕ2 be two Boolean signals
and let a, b be two positive numbers satisfying a ≤ b. Then ψ1 = ϕ1 U[a,b]ϕ2 (ϕ1

until ϕ2) are the signals satisfying9

(x, t) |= ϕ1 U[a,b]ϕ2 if
∃t′ ∈ t⊕ [a, b] (x, t′) |= ϕ2 ∧ ∀t′′ ∈ [t, t′] (x, t′′) |= ϕ1[t′′])

(1)

Recalling that over the Booleans, ∧ and ∨ coincide with min and max, (1) is
equivalent to:

ψ1[t] = maxt′∈t⊕[a,b] min(ϕ2[t′], mint′′∈[t,t′] ϕ1[t′′]) (2)

The derived operator ♦[a,b]ϕ = true U[a,b]ϕ (eventually ϕ) is true at t when ϕ[t′]
holds in some t′ ∈ t⊕ [a, b], while �[a,b]ϕ = ¬♦[a,b]¬ϕ (always ϕ) requires ϕ to
hold throughout the interval t⊕ [a, b]. The untimed until, U = U[0,∞] does not
pose any metric constraints on the timing of the future occurrence of ϕ2.

Let us assume a set x1, . . . , xm of variables and a family F of signal operators
including

– Pointwise operators that realize standard arithmetical and logical operators
such as +, ·, min, max, ∧, ¬, = and <;

9 Expression t⊕ [a, b] denotes the interval [t + a, t + b].



– Other useful operators such as integral, convolution, etc.
– As many instances as needed of U[a,b].

Definition 4 (STL Syntax). The syntax of an STL formula is defined induc-
tively as

– An atomic formula is any variable xi or any rational constant c;
– If ϕ is a formula, so is any f(ϕ) for any operator f ∈ F compatible with the

type of ϕ.
– If ϕ1 and ϕ2 are formulae, so is any f(ϕ1, ϕ2) for any operator f ∈ F

compatible with the types of ϕ1 and ϕ2.

The semantics of an STL formula ϕ relative to a raw signal x = (x1, . . . , xm)
is immediate; that is, the semantics of x is the signal x and the semantics of
a constant is the constant signal c. Then the semantics of f(ϕ) or f(ϕ1, ϕ2) is
obtained by applying the operator f to the semantics of ϕ or ϕ1 and ϕ2.

The work in [19,21] shows that given an STL formula ϕ and a signal x, there is
an algorithm that can check whether x satisfies ϕ by computing the satisfaction
signals of all sub-formulae. The algorithm works on the parse tree of ϕ, scanning
the raw signals and propagating values upwards in the tree as well as backwards
and forward in time until the satisfaction of all sub-formulae are computed,
including ϕ[0]. The tool AMT [25] realizing this algorithm solves various practical
problems that we do not discuss here such as the interpretation of STL over
signals of finite duration, bridging the gap between ideal mathematical signals
defined over R and actual signals given by a finite sequence of sampled values,
combining online and offline monitoring, etc. A quantitative semantics for STL
has been presented in [7], which returns as output positive or negative numbers
indicating how robustly the property is satisfied or violated. These numbers
are propagated naturally using a real-valued version of (2). The Breach tool [5]
implements monitoring for this semantics.

3 Frequency Analysis in a Nutshell

The essence of frequency analysis [8] is that a signal can be transformed into
an alternative representation consisting of a weighted sum of basic elementary
signals, namely, sinusoids of various frequencies and phases. E.g., the signal x
of Fig. 1 can be written as x = x1 + x2 + x3 with xi[t] = bi sin 2πωit, where
bi is the amplitude/coefficient of the sinusoid of frequency ωi. Thus, the signal
is transformed from a time-domain representation x : T → D to a function
x̂ mapping frequencies to their coefficients. Many standard signal-processing
operations are best defined as manipulating these coefficients. E.g., if we nullify
b3, we remove the high-frequency component of x to obtain signal x̃, which can
be viewed as removing noise from x (Fig. 1).

More formally, on any interval of size T0 = 1/ω0, a signal x can be decom-
posed into a Fourier series:

x[t] =
a0
2

+

+∞∑
k=0

ak cos(2πωkt) + bk sin(2πωkt) with ωk = kω0.



Fig. 1. Fourier transform of a sum of sinusoids and filtering the highest fre-
quency.



This can be written more concisely using Euler’s formula eix = cos(x) + i sin(x):

x[t] =

+∞∑
k=−∞

cke
2iπkω0t (3)

Coefficients {ck, k ∈ Z} provide a discrete spectrum for x on [0, T0]. The Fourier
transform maps x on the whole time domain to a continuous spectrum {cω, ω ∈
R} containing all real frequencies. The inverse Fourier transform (IFT), which
recovers x from its spectrum, can be written as:

x[t] =

∫ +∞

−∞
cωe

2πiωtdω, where cω = x̂(ω) =

∫ +∞

−∞
x[t]e−2iπωtdt. (4)

which can be seen as a generalization of the Fourier series (3). In practice,
the coefficients cω are computed for a finite discrete set of frequencies using
the FFT algorithm (Fast Fourier Transform [9]), but in the following, we keep
the presentation in the continuous domain. This is in the spirit of STL, whose
semantics is defined relative to dense-time signals, leaving to the monitoring
algorithm the burden of dealing with time-discretization, interpolation, etc.

As mentioned previously, a convenient interpretation of the FT and its inverse
is that of a decomposition of x into a sum of sinusoidal components, taking the
family of functions φω : t→ e2πiωt as elementary “blocks” for the decomposition.
With this notation, the IFT (4) becomes x[t] =

∫ +∞
−∞ cω φω[t]dω. However, the

use of φω as an elementary analysis block has the drawback that its definition
involves the values of x for all times t. Thus, finding a subset of frequencies or
some transformation of x̂ that affects a precise time interval for x is not trivial.
This motivated the search for other transforms using analysis functions that
have a localization both in frequency and in time.

4 Combining Time and Frequency Properties

The Short-Time Fourier Transform (STFT) In the theory of signal pro-
cessing, the extension of classical frequency analysis to a combined time-frequency
analysis is realized by replacing the analysis function φω[t] = e2πiωt used in the
FT with some other analysis function φω,τ such that the new transform involves
the values of x not only around a specific frequency ω but also around a given
time τ (see, e.g., Chapter 4 of [22]). The short-time or windowed Fourier trans-
form (STFT), first introduced by Gabor [10], uses a straightforward definition of
such an analysis function. It consists of the product of φω and a window function
g[t− τ ] whose purpose is simply to filter the values of x outside a neighborhood
of τ by forcing them to be 0. It can be as simple as the rectangular function of
length L > 0:

gL[t] =

{
1/L if t ∈ [−L2 ,

L
2 ],

0 else.
(5)



but other functions with better properties such as the Hanning or Gaussian win-
dow functions are usually preferred [22]. They satisfy the normalization property∫ +∞
−∞ g[t]dt = 1. In the following we assume that g has the form (5) and that the

only parameter varying is its length L.

Having chosen a window function gL, the new analysis function for the STFT
is defined as the product φω,τ [t] = φω[t]gL[t − τ ] of φω and the translation of
gL around τ . Consequently, the STFT of x in (ω, τ), denoted x̂L(ω, τ), defines
a two-dimensional spectrum {cω,τ : (ω, τ) ∈ R2}. As with the IFT (4), x can
be recovered from its spectrum and the analysis function φω,τ using the inverse
form of the STFT :

x[t] =

∫ +∞

−∞

∫ +∞

−∞
cω,τφω,τ [t]dωdτ (6)

For a given pair (ω, τ) of frequency and time, the coefficient cω,τ , i.e., the STFT
of x in (ω, τ), is given by

cω,τ = x̂L(ω, τ) =

∫ +∞

−∞
x[t]gL(t− τ)e−2iπωtdt. (7)

In practice, it can be computed with a straightforward extension of the FFT
algorithm, using a sliding window and multiplying x by the gL window function.
The STFT can be visualized as a spectrogram, which plots the norms (or more
commonly the squared norm) of the coefficients cω,τ as a surface above the time-
frequency plane (ω, τ) as illustrated in Fig. 2. There are inherent limitations
(Heisenberg Uncertainty Principle) concerning the trade-offs between precision
in frequency and precision in time. They are explained in the appendix.

Defining Time-Frequency Predicates The STFT of a signal x thus defines
a two dimensional operator taking time and frequency as arguments. By con-
sidering the frequency as a parameter, we obtain a family of signal operators
{fL,ω} such that y = fL,ω(x) if y[t] = x̂L(ω, t). In other words, fL,ω(x) is the
projection of the L-spectrogram of x on frequency ω. It yields a spectral signal
which tracks the evolution of the STFT coefficient at ω over time.

Our logic, time-frequency logic (TFL) is obtained by adding the operators
{fL,ω} to STL. A spectral signal y = fL,ω(x), like any other signal, can partic-
ipate in any TFL formula as an argument to predicates and arithmetic expres-
sions. The monitoring machinery is similar to that of STL except for the fact
that the raw signals x are pre-processed to yield the spectrogram from which
spectral signals y are extracted. This can be done before the monitoring process
starts or be integrated in an online procedure as in [21] where segments of y are
computed incrementally upon the arrival of segments of x.

On Window Functions and Time-Frequency Resolution To be able to
detect the occurrence of a frequency ω at a given time τ , we would need a spec-
trogram representing a perfect matching between ω and τ for the signal x, i.e.,
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Fig. 2. Signal x[t] in (a) is composed of different sinusoids at different times. A
simple FT (b’) exhibit peaks at frequencies 10, 20 and 40 without information
about when they occur, whereas the spectrogram in (b) provide this information.
We can see, e.g., that the frequency ω0 =10 occurs at two distinct time intervals.
In (c), a slice of the STFT at ω = ω0 provides a signal that takes higher values at
times when ω0 is in the spectrum of x. Using a simple threshold, it then defines
a predicate for the detection of frequency ω0 along the time axis.

that |cω,τ | be non-zero if and only if x contains a component of frequency ω at
time τ . Unfortunately, such ideal mapping cannot be obtained. To begin with, it
is intuitively clear that low frequencies require an amount of time at least larger
than the corresponding periods to be detectable. Moreover, there is an obvious
technical limitation related to the sampling rate of x and the discretization of
the FT by the FFT algorithm. But even if we ignore discretization errors and
assume that we work in an ideal, continuous domain, there is a fundamental
limitation of the time-frequency resolution than can be achieved, related to the
Uncertainty Principle of Heisenberg. We sketch its development next (a thorough
explanation is provided in [22]) since it provides a practical method for choos-
ing the appropriate window function g for a desired accuracy of time-frequency
detection with the STFT. The idea is as follows: assume a hypothetical signal
x with an energy concentrated exactly at the time τ0 and frequency ω0. Then



the STFT of x using a window function g will “spread” the concentrated energy
of x in a box (so called an Heisenberg box [22]) in the time-frequency domain
which has dimensions στ (g)× σω(g) given by

σ2
τ (g) =

∫ +∞

−∞
t2g(t)2dt and σ2

ω(g) =

∫ +∞

−∞
ν2ĝ(ν)2dν (8)

The Uncertainty Principle asserts that the area of this box satisfies στσω ≥ 1
2 .

It means that we cannot increase the accuracy in frequency detection without
altering precision in time. The values of στ (g) and σω(g) can be easily estimated
from the above formulae and can be used to optimize the trade-off between time
and frequency detection. For instance, one has to make sure that the distance
of two frequencies of interest is not small with respect to σω(g).

5 Music

As observed in [10], human acoustic perception is a prime example of analyzing
signals based on a combination of time and frequency features. In this section,
we illustrate the applicability of TFL in formalizing and recognizing melodies
starting with the basic task of note detection.

A note is characterized by a strong component at a fundamental frequency,
or pitch ω. To obtain a note detection predicate, we thus define a spectral op-
erator, pitchω, such that pitchω(x)[t] is the amplitude of frequency ω in signal
x around time t. This operator must be able to tolerate small pitch variations
while discriminating a note from its two closest neighboring notes, with pitches
ω1 = 2−

1
12ω and ω2 = 2

1
12ω. Thus, pitch is defined as the STFT pitchω(x)[t] =

x̂L(ω, t), where the size L of the window function is chosen to achieve the required
time-frequency resolution (see Section 4). Using pitchω, a predicate detecting,
e.g., the note A with pitch ωA = 440Hz can be: µA = pitchωA

(x) > θ. The only
parameter which remains to be fixed is the threshold θ. It determines the robust-
ness of the predicate to variations in volume, pitch or duration. If θ is large, it
will be more sensitive to such variations, increasing the chance of false negative.
Conversely, if it is small, it will tolerate more pitch variation but increase the
chance of false positive, e.g., by recognising a wrong note. Fig. 3 displays the
result of applying the pitch function to the detection of an F.

Specifying Melodies Music notation provides means to specify both the du-
ration of a note and the pace of a piece, also called tempo. Tempo is expressed
in units of beats per minute (bpm). The piece in Fig. 4 has a pace of 120 bpm.
This means that an eighth note (F, G), a quarter note (E, A, B), a half note
(D), and a whole note (C) have durations, respectively, of 0.25, 0.5, 1 and 2
seconds. The pause between G and A is one second long. In our experiments,
we have generated, using a MIDI Player, two different signals that correspond
to the performance of this melody by a violin and by an organ; see Fig. 4. We
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Fig. 3. Note detection: a) The STFT produced by the note F for its nominal
frequency and the frequencies of its closest notes E and FS; b) Max amplitudes
in time for the note F of a range of frequencies around its nominal frequency;
c) The predicate µF is satisfied by the signal and the predicates µFS and µE are
not.

then checked three properties on both signals. The first two properties are: C is
played for two seconds: �[0,2]µC , and D is played for one second: �[0,1]µD. As
one can see from the corresponding satisfaction signals in Fig. 4, the first holds at
the beginning of the signal and the second holds at the beginning of the second
note. The property �[0,2]µC ∧�[2,3]µD specifies the beginning of the melody and
is found to hold at time zero. The last property ignores duration and specifies
that the order of the notes corresponds to a diatonic scale of seven notes with a
pause (expressed using a time domain predicate of the form |x[t]| ≤ ε for some
threshold) between G and A: µC U µD U µE U µF U µG U σ U µA U µB .

Recognizing a Blues Melody For the last experiment, we tested our frame-
work by trying to verify that a guitar melody, (imperfectly) played and recorded
by one of the authors, was indeed a Blues melody. To do this, we built a
formula based on the fact that standard blues is characterized by a 12-bar
structure (a bar being basically four beats). In the key of E, it is as follows:
E E E E | A A E E | B A E E. Note that a bar in E does not mean that we
play four beats of E notes in a row. There can be different notes, but the overall
bar should sound like a melody in the key of E. If we assumed that in a bar of E
there should be at least one E note played, and similarly for A and B, it would
be easy to write a formula that directly translates the above structure. However,
this would be too strict in transcribing the above blues pattern for the blues
line that we recorded. Indeed, our melody does not have an E in the fourth bar.
Instead, we verified a simpler (but definitely bluesy) formula which looks for a
starting E, an A in bars 5-6, and the so-called “turn-around” (the sequence B
A E) in bars 9-11: ϕblues = µE ∧♦[5b,6b]µA ∧♦[8b,9b](µB ∧♦[b,2b]µA ∧♦[2b,3b]µE).
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Fig. 4. Note and melody detection in violin and organ performances.



Our results are presented in Figure 5. The signal was recorded at 44 kHz for a
length of 1320960 samples. The formula takes 6.9 s to be evaluated on a laptop
with a Core i7 processor and 8 GB of memory.
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Fig. 5. Formula ϕblues is the conjunction of µE (top, with signal), ♦[4b,6b]µA
(middle), and ♦[8b,9b](µB ∧ ♦[b,2b]µA ∧ ♦[2b,3b]µE) (bottom). Since the three for-
mulae are satisfied at the time of the first E, ϕblues is satisfied by our recording.

Implementation We implemented the function pitch in Matlab and defined
STL formulae using the Breach tool [5] (examples available at http://www-verimag.
imag.fr/~donze/breach_music_example.html). Breach implements the full STL
syntax (Boolean and temporal operators) on top of STL predicates of the form
µ = f(x, p) > θ, where f is some signal operator and p is a parameter vector.
The function f can be an arithmetic expression such as 2 ∗ x[t] + p or a rou-
tine implemented separately and available in the Matlab environment, such as
the pitchω routine or any other implementation of spectral operators fL,ω. This
makes the implementation of TFL straightforward in the Breach framework.

6 Discussion

We have presented TFL, a specification formalism for time and frequency prop-
erties of signals, supported by a monitoring algorithm implemented in the Breach

http://www-verimag.imag.fr/~donze/breach_music_example.html
http://www-verimag.imag.fr/~donze/breach_music_example.html


tool, and showed it in action on real acoustic signals. We believe that the expres-
sivity added by the temporal operators can lead to new ways to specify music
and, in particular, will allow us to define formulae that can quantify the amount
of deviation of a performance from the “nominal” melody. Combining our for-
malism with complementary learning machinery (such as hidden Markov models,
used in speech recognition), one could automatically “tune” note predicates to
a given performance.

Although Music can definitely benefit from TFL, it is not necessarily the
primary application domain we have in mind for this formalism. The conver-
gence of technologies, where a typical system-on-a-chip features digital and ana-
log components, including radio transmitters, likewise requires a convergence of
modeling and analysis techniques used by the different engineering communities
involved, and TFL is a step in this direction. Other extensions include the use
of the more versatile Wavelet Transform for time-frequency analysis and the ex-
tension of the logic to spatially extended phenomena such as wave propagation
in the spirit of [12,13], where dynamic cardiac conditions are specified and de-
tected. Also note that the spectrogram is a two-dimensional entity indexed by
both time and frequency, and that TFL is currently biased toward time. It would
be interesting to explore a specification formalisms that can alternate more freely
between temporal, frequential and spatial operators. On the engineering applica-
tion side, we intend to apply the logic to specifying and monitoring the behavior
of analog circuits.
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