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Preparé au laboratoire Verimag
sous la direction de

Oded Maler

Jury

Yassine Lakhnech Président
Nikolaj Bjørner Rapporteur
Sharad Malik Rapporteur
Kenneth McMillan Rapporteur
Armin Biere Examinateur
Eugene Asarin Examinateur
Andreas Podelski Examinateur
Oded Maler Directeur

Juin 2009



2



UNIVERSITY JOSEPH FOURIER - GRENOBLE I

THESIS

To obtain the grade of
UJF Doctor

Specialty: Mathematics and Computer Science

Presented And Defended in Public
by

Scott Cotton
on June 25th, 2009

On Some Problems in Satisfiability Solving

Prepared in the Verimag laboratory
under the supervision of

Oded Maler

Jury

Yassine Lakhnech President
Nikolaj Bjørner Reviewer
Sharad Malik Reviewer
Kenneth McMillan Reviewer
Armin Biere Examinator
Eugene Asarin Examinator
Andreas Podelski Examinator
Oded Maler Director

June 2009



2



i

Résumé

Le problème de la satisfiabilité est de déterminer si une formule donnée
a une solution. Le problème de la satisfiabilité propositionnelle (SAT),
où toutes les variables sont Booléennes, est un problème bien étudié avec
plusiers d’améliorations en efficacité. Durant ces dernières années, le do-
maine de théories de satisfiabilitè modulo (SMT) a étendu les méthodes
efficaces de SAT aux formules du premier ordre avec des variables non
Booléennes, qui sont définies dans une théorie, par example un fragment
décidable de l’arithmétique. Cette thèse explore des méthodes pour résoudre
les problèmes de SAT et de SMT, en mettant l’accent sur ceux derniers.

Après un aperçu de la satisfiabilité propositionnelle, la thèse présente les
résultats liés à la minimisation des clauses, les heuristiques, et les stratégies
de redémarrage. Ensuite, la thèse donne un aperçu des méthodes SMT ab-
straites, qui sont relativement indépendentes de la théorie dans laquelle les
variables sont définies. La thèse propose deux approches abstraites. La
première est une variante d’une approche de SMT largement utilisée, ap-
pelée DPLL(T) [GHN+04]. Cette approche favorise la souplesse et la clarité
de l’interface entre un solveur de théorie et un solveur SAT. La seconde
contient une classe d’algorithmes basées sur une généralisation de DPLL
(GDPLL [MKS09]), qui cherchent un modèle directement dans l’espace de
valuations des variables. Pour cette recherche directe, la thèse présente aussi
des preuves de la correction, avec une notion du progrès et des conditions
pour la terminaison.

La thèse étudie ensuite des instanciations de chacune de ces approches
générales. L’approche basée sur DPLL(T) est instanciée avec un solveur
efficace pour la logique de différences, ce qui donne lieu à un algorithme
rapide pour la propagation de théorie. Cette méthode a été adaptée pour
de diverses solveurs de SMT. La méthode de la recherche directe est in-
stanciée pour l’arithmétique linéaire réelle. Pour ceci, divers mécanismes et
propriétés utilisés dans les solveurs SAT ont été adaptées. Cette instancia-
tion a permis de révéler certaines limitations de la méthode. Les résultats
expérimentaux ont montré une variation de l’efficacité très différente de celle
des méthodes traditionnelles.
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Abstract

Satisfiability solving is the problem of determining whether a given formula
has a solution. The most ubiquitous and well-studied satisfiability problem
is propositional satisfiability (SAT), in which all variables are Boolean. In
recent years, the field of satisfiability modulo theories (SMT) has extended
methods in SAT solving to accommodate existential first order formulas
with non-Boolean variables. Here the non-Boolean variables are related by
a background theory, such as a decidable fragment of arithmetic. This thesis
explores SAT solving and SMT solving, with an emphasis on the latter.

Beginning with an overview of propositional satisfiability, this thesis
presents results related to clause minimization, heuristics, and restarts. The
thesis then gives a general overview of abstract SMT methods, which are rel-
atively independent of a given theory. Two approaches are proposed. The
first is a variant of a widely used SMT framework, DPLL(T) [GHN+04],
which promotes flexibility and clarity in the interface between a theory
solver and a propositional solver. The second is a class of generalized DPLL
(GDPLL[MKS09]) algorithms which search directly for a model over the
space of variable valuations. In this direct search case, the thesis presents
proofs of correctness, with accompanying notions of progress and conditions
for termination.

The thesis then studies instantiations of each of these proposals. The
DPLL(T) based method is instantiated with an efficient solver for difference
logic, giving a fast algorithm for theory propagation. This method has been
adapted to various state-of-the-art SMT solvers. The direct search method
is instantiated for real linear arithmetic. In this instantiation, various mech-
anisms used in modern DPLL solving are adapted to the generalized case,
and some limitations of the method are recognized. Initial experimenta-
tion shows a very different performance profile than is found in traditional
methods.
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Chapter 1

Introduction

The problem of satisfiability is the problem of finding whether or not there
exists a solution of a given formula. Different kinds of formulas admit very
different methods for determining whether there exists a solution, and there
are of course very many kinds of formulas. The field of satisfiability solving
also addresses a broad and diverse set of applications, touching on problems
from verification to scheduling and optimization. Such applications often
induce another, somewhat orthogonal, classification of problems related to
the properties of the problem at hand. Overall, the range of issues related
to satisfiability solving may seem over-encompassing.

At the same time, amongst this wide array of activity some principles
and some problems have become ubiquitous. Over time some solution meth-
ods have become effective in a wide array contexts. On the other hand, some
issues arise time and again and yet seem to always be addressed by ad hoc
solutions. One ubiquitous problem is the problem of propositional satisfia-
bility. Fortunately, solution methods for this problem are often effective and
moreover tend to be structured around a single core methodology.

A harder ubiquitous problem is the problem of solving Boolean combi-
nations of simple arithmetic constraints. For this problem, many ad hoc
solutions involving the composition of a propositional solver with some con-
junctive arithmetic solvers have been proposed [WW99, CAB+02, MR02,
ACG+04]. These works fueled interest in the interface between proposi-
tional solvers and conjunctive solvers, leading to the DPLL(T) framework
[GHN+04] and corresponding proof system [NOT05]. Later, a linear arith-
metic solver was incorporated into the DPLL(T) framework [DdM06], yield-
ing excellent results for the Yices solver and setting a standard for this class
of problems.

1



2 CHAPTER 1. INTRODUCTION

The DPLL(T) framework and proof system demonstrated that it may
be worthwhile in specific cases to consider the full problem of satisfiability
solving in very abstract terms. Some literature has followed this line of
thought [dMB08, BDdM08, MKS09] but the fundamental questions are dif-
ficult and the newer proposals have not yet been demonstrated in the form
of a competitive general purpose solver.

The primary contributions of this thesis are as follows. We propose two
abstract frameworks for satisfiability solving, and in each case examine con-
crete instantiations for solving Boolean combinations of simple arithmetic
constraints. Our first proposal is a variant of DPLL(T) which promotes flex-
ibility and clarity in the interface between a propositional solver and a theory
solver. We instantiate this framework for simple difference constraints and
demonstrate improvement on previous work. Second, we present a family
of direct model search algorithms in the spirit of GDPLL [MKS09] based
on variable-local consistency. We then examine a concrete instantiation for
continuous linear arithmetic, and show how various aspects of propositional
solving can be generalized to the case of linear arithmetic.

The rest of this thesis is organized as follows. Chapter 2 presents the
topic of propositional satisfiability solving, and includes major developments
from the last few decades. This chapter forms an important foundation of
all the subsequent chapters. Chapter 3 gives an overview of abstract frame-
works for satisfiability solving, and places our proposals in the context of
existing work. In Chapter 4 we present a theory solver for simple difference
constraints which implements the ideas we proposed for flexible propaga-
tion in the DPLL(T) framework. We also give efficient algorithms for the
problem of theory propagation of difference constraints in the DPLL(T)
framework. This work has provided a basis for how some competitive SMT
solvers treat difference constraints. Chapter 5 examines how various mech-
anisms in propositional solving generalize to linear arithmetic in a direct
model search framework. We conclude in Chapter 6.



Chapter 2

Boolean Satisfiability

Not only is the problem of propositional satisfiability central to computer
science in general due to its relation to complexity theory, but it is also
central the rest of the problems we consider in this thesis. In this chapter,
we review propositional logic and its decision procedures.

2.1 Propositional Logic

Definition 2.1.1. Propositional Formula
The set of propositional formulas over a set of variables X is defined recur-
sively as the smallest set containing all the following

1. The constants 0, 1.

2. The variable x if x ∈ X.

3. ¬φ if φ is a propositional formula.

4. φ ∧ ψ if φ and ψ are propositional formulas.

A variable-free formula can be mapped to {0, 1}, that is evaluated as
true or false, based on the truth tables of the two operators ∧ and ¬:

∧ 1 0
1 1 0
0 0 0

¬ 1 0
0 1

Applying the truth tables recursively from the leaves of a formula to its
root yields a value in {0, 1} taken to be the truth value of the formula.

3



4 CHAPTER 2. BOOLEAN SATISFIABILITY

One can readily express other connectives such as a ∨ b ≡ ¬(¬a ∧ ¬b) and
a→ b ≡ ¬a ∨ b.

Definition 2.1.2. Satisfiability A propositional formula φ over a set of
variables X is said to be satisfiable if there exists a valuation α : X → {0, 1}
to its variables such that substituting α(x) for every x occurring in φ yields
a formula with truth value 1.

A decision procedure for propositional logic is an algorithm which de-
termines whether or not a formula is satisfiable. A restricted form of this
problem was the first problem shown to be NP-complete [Coo71] and the
result readily generalizes to general formulas as stated here.

2.2 Satisfiability Solvers

Modern satisfiability solvers are general purpose implementations of decision
procedures which focus on efficient data structures, heuristics, and more or
less anything which might make them solve problems faster. The efficiency of
these solvers is not well described by the “intractable” label often associated
with NP hard problems. For instance, when applied to satisfiability, the
difficulty of NP hard problems is measured in terms of formula size, i.e.
the number of variables and clauses in a given problem. However, current
off-the-shelf solvers are able to decide non-trivial formulas with hundreds of
thousands (even in some cases millions) of variables and at the same time
unable to solve some problems with as few as 286 variables [SAJ+08]. In
general, while much certainly remains out of reach of current solvers, the
problems arising from specific application domains are often easily resolvable
by these solvers. Indeed this behavior is compatible with the fact that the
complexity class is only a worst-case measure; it may be a bit premature to
dismiss the potential of satisfiability solvers just because the general problem
they attempt to solve is NP-complete.

2.2.1 CNF

Most Boolean satisfiability solvers work on formulas in conjunctive normal
form, which we describe presently. A literal is a variable or its negation. A
clause is a disjunction of literals. A formula in conjunctive normal form is
a conjunction of clauses.

Any formula can be translated to CNF using standard Boolean equiv-
alences. For example, one could take any formula φ using ∧-, ∨- and ¬-
operators, then translate it to CNF as follows. First, take the negation
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¬φ. Second, push the negations to the leaves using De Morgan’s rules
¬(a ∧ b) ⇐⇒ ¬a ∨ ¬b and ¬(a ∨ b) ⇐⇒ ¬a ∧ ¬b. Third, apply dis-
tributivity, mapping sub-formulas in the form a∧ (b∨ c) to (a∧ b)∨ (a∧ c).
Now, after eliminating double negations, the formula is in the form

∨
i

∧
j lij

with each lij a literal. Finally, taking the negation of this formula, applying
De Morgans rules and eliminating double negatives again one arrives at a
formula equivalent to φ in the form

∧
i

∨
jmij . Observe that each mij ≡ ¬lij

is a literal and each
∨
jmij is a clause.

The above process, and in fact any translation using only valid equiv-
alences are problematic because the size of the formula can grow exponen-
tially, as is readily verified by an attempt to translate an example of the
form ∨

i∈I
xi ∧ yi

which grows exponentially with the size of the index set I.
However, if we allow the introduction of new variables we can arrive in

linear time at an equisatisfiable formula. Based on the translation of Tseitin
[Tse68], this is often accomplished as follows. Let s be a sub-formula of a
given formula φ which is positive, i.e. not in the form ¬ψ. Associate with
s a fresh variable zs. Without loss, we can assume each such sub-formula is
either a literal or the form a ∧ b where a and b are positive sub-formulas or
their negations. The formula

zs ↔ (a ∧ b)

may be expressed as the following conjunction.

(¬zs ∨ a) ∧ (¬zs ∨ b) ∧ (zs ∨ ¬a ∨ ¬b)

Using the above translation as a basic operation, we can translate an ar-
bitrary non-cnf formula φ to an equisatisfiable CNF formula φ′ as follows.
First we assume the formula is represented in the signature ∧,¬. Let a∧b be
a smallest positive sub-formula of φ using the ∧-operator. Observe that a, b
are literals. Now create a new variable z and add the clauses representing
z ↔ a ∧ b to the translation φ′. If we then replace φ with φ[a ∧ b 7→ z], we
can continue this process eliminating every ∧-operator in φ. Suppose that
the root level operator in φ is a ∧-operator. let zr be the variable introduced
to represent this sub-formula. We then add the conjunct zr to the trans-
lation and we are done. Otherwise, we assume without loss that the root
level operator is a negation, in which case we add the conjunct ¬zr to the
translation and we are done. Each sub-formula from the original formula φ
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is translated once, and each translation may be performed in constant time
hence the procedure is linear.

In practice, while equivalence based translations may become too large,
there is also penalty associated with introducing new variables. Hence more
sophisticated translations which attempt to balance the two methods are
also in use [EB05, EMS07].

2.2.2 Resolution

The notion of resolution [Rob65] forms a cornerstone of most modern sat-
isfiability solvers. In the context of CNF, resolution is a simple proof rule
allowing one to deduce clauses from an existing set of clauses. In particular,
resolution is the following proof rule

x ∨ C,¬x ∨D
C ∨D

Observe that if x∨C and ¬x∨D are clauses, then C ∨D is also a clause. In
an application of the resolution rule, the variable x is called the pivot and
the clause C ∨D is called the resolvent.

For CNF formulas, resolution is refutation complete. Namely, if a CNF
formula is unsatisfiable, then one can derive “false” in the form of an empty
clause by resolution alone. Resolution has been used extensively in auto-
mated theorem provers, but has also often suffered from exponential space
requirements as the number of clauses which can be derived grows as a
function of the number of clauses.

Even without considering the number of clauses stored in memory during
a proof, resolution proofs may require an exponential number of steps, as is
well documented for example with problems coding the pigeon hole principle
[Hak85]. Nonetheless, the simplicity of the proof rule and uniformity of
representation by clauses makes resolution the method of choice for many
proof systems, including satisfiability solvers.

One may view a resolution proof of a clause as a directed acyclic graph.
In particular, given a proof π, define the graph (Vπ, Eπ) where Vπ is the set
of vertices, each consisting of a clause and where Eπ is the edge relation
denoting resolution steps as follows. For each resolution step, two clauses
x ∨ C, ¬x ∨ D are used to derive a new clause C ∨ D, and this step is
represented by the edges (x ∨ C,C ∨D) and (¬x ∨D,C ∨D). An example
graph is depicted in Figure 2.1.

Viewed this way, one may define several sub-classes of resolution cor-
responding to topological constraints on proof graphs. Such requirements
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x ∨ ¬y ∨ z ¬x ∨ ¬y y ∨ z

z¬y ∨ z

Figure 2.1: An example graphical representation of a resolution proof.

may impose further limitations on proof efficiency, measured in terms of the
smallest graph capable of proving some fact. One common sub-class of reso-
lution is tree-like resolution, in which derived clauses may appear more than
once as nodes in the proof graph, but all nodes representing derived clauses
play the role of antecedents in at most one application of the resolution rule.
Another such class is regular resolution, in which no variable acts as a pivot
more than once in any path in the proof graph. The class of proofs without
topologic constraints on the proof graph is referred to as general resolution.
It is well known that the smallest tree-like resolution refutations and the
smallest regular resolution refutations can be exponentially larger than the
smallest general resolution proof [BEGJ98, AJPU07].

2.2.3 Davis-Putnam-Loveland-Logemann

The Davis-Putnam-Loveland-Logemann [DP60, DLL62] algorithm forms the
most fundamental basis for most modern SAT solvers. The main idea is one
of depth first search over the space of variable valuations. The search is
augmented with a restricted form of resolution called unit propagation, in
which clauses with only one literal, referred to as unit clauses, are automat-
ically added to the stack of assigned variables in the depth-first search. The
original procedure also made use of pure literal detection, in which variables
which never occur negated or never occur without negations are eliminated.
In modern solvers, pure literal detection is generally not implemented be-
cause it has been found unworthwhile in modern implementations of the
procedure. Pseudocode characterizing the algorithm, without pure literal
detection, is presented in Algorithm 2.2.1.

Algorithm 2.2.1. Davis-Putnam-Loveland-Logemann Algorithm for Boolean
Satisfiability
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DPLL(φ)
if ∃ an empty clause in φ return 0
if ∃ a unit clause m in φ then

if m ≡ x return DPLL(φ[x 7→ 1])
else // m ≡ ¬x

return DPLL(φ[x 7→ 0])
if ∃ a free variable in φ then

let x be a free variable in φ
return DPLL(φ[x 7→ 0]) or DPLL(φ[x 7→ 1])

else return 1

DPLL and Resolution

The DPLL algorithm above may be viewed as a restricted form of resolu-
tion. Algorithm 2.2.2 presents variant of the DPLL procedure, based on
similar work by [GNT06] which explicitly returns an empty clause derived
by resolution in the event the formula φ is unsatisfiable.

Algorithm 2.2.2. DPLL Algorithm with resolution steps and non-chronological
backtracking

DPLL-BJ(φ, α)
if ∃ a clause c in φ s.t. c[α] = 0 return (0, c)
if ∃ a clause c in φ s.t. c[α] = x then

let (a,w) = DPLL-BJ(φ, α ∪ {x 7→ 1})
if a = 1 or x not in w return (a,w)
return (0, resolve(w, c))

if ∃ a clause c in φ s.t. c[α] = ¬x then
let (a,w) = DPLL-BJ(φ, α ∪ {x 7→ 0})
if a = 1 or x not in w return (a,w)
return (0, resolve(w, c))

if ∃ a variable x unassigned in α then
let (a,w) =DPLL-BJ(φ, α ∪ {x 7→ 0})
if a = 1 or x not in w return (a,w)
let (a′, w′) =DPLL-BJ(φ, α ∪ {x 7→ 1})
if a′ = 1 or x not in w′ return (a′, w′)
return (0, resolve(w,w′))

else return (1,>)

In the above procedure, we keep track of the assignment α separately
from the formula φ so as to enable reference to clauses found in φ. The
procedure returns (1,>) if φ is satisfiable and (0,⊥), where ⊥ is the empty
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clause derived by resolution, if φ is not satisfiable. The function resolve()
simply returns the (unique) resolvent of its two arguments. The procedure
“backjumps” over variable branch points which are not involved in dead-
ends. While we do not give a formal proof here, we claim that the procedure
is correct, that all the derived clauses always contain only assigned variables,
and that they are always false under the assignment. We note also that
the resolution in the procedure DPLL-BJ is both regular and treelike. For
further analysis of this procedure and a proof of a related facts1, see [GNT06]
and [GNT01].

2.3 Modern Solvers

Although modern solvers employ many different techniques, the majority of
them are strongly based on the DPLL depth first algorithm with unit prop-
agation. Nonetheless, under the hood modern solvers are vastly more com-
plicated than would be indicated by the simple recursive DPLL procedures
above. In this section we outline some of the more important algorithmic
and architectural components of modern satisfiability solvers.

2.3.1 Basic Structures

Modern DPLL based solvers are often centered around the architecture and
data structures described in [ES03]. Modern DPLL based solvers use a
sparse representation of clauses wherein a clause is just a list of the literals
it contains. In turn, literals are often represented as integers as follows. If
there are n variables in a given problem, then each variable x is represented
by a value in [0 . . . n), and each literal m over a variable x is represented as
follows. If m is not negated, then m is represented by 2x, otherwise m is
represented by 2x+ 1.

Since the solvers are generally not written recursively, there is an explicit
representation of the call stack in the form of an array of literals. A dis-
tinction is made between assigned variables and unassigned variables, where
all assigned variables are placed on the stack in the order of assignment.
Assignments in turn are processed one at a time by scanning those clauses
which contain the negation of the assignment in a search for unit clauses.
Whenever a unit clause is found implying an unassigned literal m, m is
added to the top of the stack. Generally assignments are processed in the

1While the citations refer to work addressing arbitrarily quantified formulas, the rea-
soning is readily applied to the existential case of DPLL.
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order in which they are added to the stack. This creates a situation in which
the stack also operates as an assignment processing queue. This structure
can be represented as an array a with two pointers h, t in which a[0 . . . h)
contains assignments which have been processed and a[h . . . t) contains as-
signments which have not been processed. Additionally, t acts a pointer to
the top of the stack used for push and pop operations. When h = t, there
are no unit clauses and the process branches on a choice.

An important part of modern solvers involves analyzing the dependencies
of assignments. In particular, if a literal m is assigned because a unit clause
C ∨m is found, then m depends on the negation of the literals in C, all of
which are assigned. The clause C ∨m and sometimes also the negation of
the literals in C are called antecedents of m. With clauses represented as
lists, this dependency relation can be succinctly represented by associating
a pointer to the clause C ∨m with the literal m when m is assigned. This
creates an adjacency list representation of the dependency graph and makes
it easy to implement some graph algorithms on the dependency graph. The
resulting dependency graph is referred to as the implication graph in the
literature.

2.3.2 Learning

Beginning with [SS96], satisfiability solvers have employed a process known
as “learning”, in which new clauses are derived by resolution from the orig-
inal problem and recorded for future use. Such clauses are derived in such
a way that they increase the reach of unit propagation. Learning has a
significant impact on practical performance, and also theoretical impact on
the worst case complexity of the DPLL procedure. On the theoretic front,
learning removes the restriction that resolution be tree-like or regular. In
fact, it has been shown that DPLL with learning can simulate general reso-
lution [HBPG08]. As a consequence, it is possible for a solver which learns
to refute some problems exponentially faster than the best possible run of
a solver which does not employ learning. On the practical side, it has been
our experience that a solver which makes a good choice of which clauses to
learn and which is able to limit the total number of learned clauses kept
in memory effectively almost always greatly outperforms any solver without
learning.

One of the well-researched [BKS04, ABH+08, DHN07, ZMMM01] prob-
lems concerning learning is exactly what clauses to learn. Currently almost
all DPLL based solvers learn a clause most often described as a first unique
implication point (1UIP) [MSS99] and much literature supports the notion
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that a 1UIP clause is indeed a good choice. Referring to the DPLL-BJ
procedure above, we can define the 1UIP clause derived from a conflict as
follows. Let the choice depth of an assigned variable x denote the number
of times the procedures has selected a free variable in the call stack at the
time x is assigned. Now the 1UIP clause is the first clause, in the order of
derivation by resolution, which contains exactly one variable with maximal
choice depth. On any conflict occurring with positive choice depth, such
a clause is guaranteed to exist because eventually the resolution steps will
lead to a clause include the last chosen variable.

With a 1UIP clause in hand, the procedure may backtrack to a lesser
choice depth than otherwise, and will never backtrack to a greater choice
depth. This is a result of the fact that derivation steps can add variables
with a new choice depth, but can never remove all variables of a given
choice depth once they are present in a derived clause. With the 1UIP
clause, the procedure may backtrack to the second greatest choice depth
and then make a new assignment by unit propagation justified by the 1UIP
clause. An interesting side effect of making this assignment is that the
DPLL procedure no longer has any reason to explicitly test both truth values
of an unforced variable. Rather, the procedure can assign an arbitrary
truth value to unforced variables and simply backtrack over them. Such an
altered procedure still terminates because it always induces strictly more
unit propagation on the initial segment of the assignment [ZM03].

Other types of learned clauses also have the property that there is only
one literal of maximal choice depth and they are referred to as asserting
clauses in the literature. It is worth noting that control flow of a solver which
systematically learns asserting clauses is quite different than the control flow
indicated in the procedure DPLL-BJ above. In general, one finds algorithms
with structure similar that indicated in the pseudocode below.

Algorithm 2.3.1. Control Flow of a Modern DPLL Solver

loop:
if propagate() = 0

if choice-depth = 0 then
return 0

derive-asserting-clause()
backtrack()

else if ∃ an unassigned variable x
assign(x)

else
return 1
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The function propagate() assigns all unit implied variables and returns 0 if
there is a conflict or empty clause. The function derive-asserting-clause()
derives and records any asserting clause. The function backtrack() back-
tracks to the 2nd deepest choice depth of a variable in the derived clause.
The function assign() may pick an arbitrary truth value for the variable
x.

In summary, the incorporation of learning into the DPLL algorithm is
a fundamental development in satisfiability solving which significantly en-
hances practical performance and theoretically can refute problems more
quickly by virtue of removing some of the restrictions on the underlying
resolution.

2.3.3 Efficient Unit Propagation

Modern sat solvers tend to spend the majority of their time performing unit
propagation, and have developed efficient data structures for accomplishing
this task. The idea of two literal watching (2LW) was first introduced in
[MMZ+01], improving on the use of head-tail pointers [MSS96, ZS96]. Minor
variations of 2LW are present present in most modern solvers. The idea is to
limit the number of clauses that the solver must check for unit propagation as
a result of an assignment. With two literal watching, two special “watched”
literals are associated with each clause and an assignment of a literal m is
associated with a scan of the clauses which contain the watched literal ¬m.
By examining the other watched literal of such a clause, one may determine
if the clause is solved. If the clause is not solved, a scan looks for a new
watched literal, which must be either unassigned or true. If none is found,
the clause is either unit or a conflict clause, depending on the value of the
other watched literal. An important feature of two literal watching which
sets it apart from head-tail pointers is that watched literals don’t need to
be updated as a result of backtracking.

In [JC07, SLKB07], mechanisms are proposed which allow scanning the
watched literals of clauses without loading the list of literals for a given clause
into memory in the event that the “other” watched literal is true. BarceLogic
Tools [Oli08] furthers this idea by eliminating a degree of indirection in the
scanning mechanism. MiniSAT [Sör08] moreover removes the need for the
“other” blocking literal to be kept in the watchlist by associating it with each
clause, thus removing the need to update associated watchlist information.
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2.3.4 Variable Heuristics

A variable ordering heuristic is a mechanism by which variables are chosen
when the DPLL procedure branches. Different variable orderings can make
a big difference in solving time, or even solvability. Variable heuristics may
be categorized as static or dynamic. Static variable orders are determined
before the search process and tend to have very little computational over-
head in the search process. However, static variable ordering are not in
general as effective as dynamic variable orderings which glean information
from the search process to determine better variable ordering based on the
current state of the search process [Sil99]. Dynamic variable ordering ranges
from simple literal counting schemes to expensive mechanisms such as unit
propagation lookahead in which all variables are tried and one which prop-
agates the most literals is selected. While unit propagation lookahead has
proven effective on some hard problems it also is quite slow compared to
more lightweight mechanisms [GMT03, Ber01].

Most modern solvers employ the MiniSAT implementation [ES03] of the
idea of variable state independent decay (VSID) heuristics [MMZ+01]. The
basic idea is to give variables a score based on the number and recency of
conflicts in which the variable’s assignment implied the conflict. Following
[Bie08a], we may view the score of a variable in normalized form. Given
some parameter p ∈ (0 . . . 1), which typically takes a value of about 0.95,
the score sv,k of a variable v after the kth conflict may be expressed as

sv,k $

{
p · sv,k−1 + (1− p) if v helps to imply the conflict
p · sv,k−1 otherwise

In practice, this value is approximated in a way that allows the solver to up-
date only the scores of those variables which are antecedents of the conflict.
In [ES03], this is accomplished by incrementing the score of such “involved”
variables by a quantity inck where inck+1 ≈ inck

p , and this mechanism is now
commonly found in solvers. Also in practice, not every variable which con-
tributes to a conflict has its score incremented. Often, only those which act
as pivots in the resolution used to derive a learned clause are incremented.

2.3.5 Clause Minimization

Effective minimization of learned clauses was an unrealized objective until
MiniSAT [ES05] which employs the notion of “self-subsumption” to mini-
mize clauses. In particular, a clause c subsumes a clause d if all the literals
in c are also found in d. Learned clauses are never subsumed by existing
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clauses, however the idea can be extended to include a resolution step and
be used for minimization. In particular, given a resolution step

x ∨ C,¬x ∨D
C ∨D

The resolvent C ∨D may subsume an antecedent to the rule. If a learned
clause plays the role of the antecedent, then a smaller learned clause will
have been found. If the resolvent does not subsume the learned antecedent,
resolution can be applied again, using any literal m found in the resolvent
but not in the learned clause as the pivot. In [ES05], these resolution steps
are taken with clauses responsible for the unit propagation of the value ¬m.

This mechanism is often implemented using a series of depth first reso-
lution steps, one based on each literal in the original clause to see if it could
be eliminated from the learned clause, yielding a theoretically quadratic
worst case minimization algorithm. In [SB09], experiments demonstrate
that clause minimization can be an effective tool for pruning the search
space, and that recursive application of resolution steps generally performs
better than restricting the resolution steps to literals appearing in a learned
clause.

2.3.6 Solution Caching and Restarts

For many years satisfiability solvers have been employing the practice of
restarting, wherein a solver simply backtracks to the root choice depth and
then continues. Generally, while this practice makes some problems more
difficult and can even render the method incomplete, it also tends to some-
how guide the solver to a result in a substantial number of benchmark prob-
lems, when otherwise no result would be found. The mechanism behind this
tendency is not well understood but has been justified intuitively as a coun-
termeasure to the tendency of depth first search to become stuck in a bad
portion of the search space [Bie08a, PD07]. That there can be bad portions
of the search space corresponds to the idea that solvers tend to have high
runtime variation across the parameter space, even when the parameters
aren’t terribly meaningful, for example as with a random seed [GS09].

One of the limitations to the effectiveness of restarting is the need for a
solver to repeatedly find solutions to hard subproblems of a given problem.
The solver RSAT [PD07] found a way to allay this problem with very little
overhead. In particular, whenever a variable is assigned by choice, it is
simply given the same truth value it had the last time it was assigned, while
first-time assignments may be chosen by any means. Although the practice
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of restarting still forms an impediment for some problems, this mechanism
and variations are now prevalent amongst recent satisfiability solvers.

Currently, solvers employ a variety of restart strategies, in which the
frequency of restarts is varied according to some scheme. The two most
often employed strategies make use of the Luby series [M. 93], first employed
in RSAT, and a two-level geometric series proposed in [Bie08c] and first
employed in picosat. Both strategies have the property that on average
restarts become less frequent over time while locally the restart frequency
oscillates.

2.3.7 Preprocessing

Most modern satisfiability solvers employ some form of preprocessing which
complements the strengths of the DPLL framework. A common preproces-
sor is SatELite [EB05], which attempts to minimize the CNF formula in
a way particularly geared towards CNF formulas created from circuits by
Tseitin’s translation. Other methods employed include failed literal detec-
tion [Bie08b], in which literals are assigned at the root level and if they lead
to a conflict their negations are added to the root level assignment.

2.4 Non-standard satisfiability solving

For completeness, we mention some of the more prevalent satisfiability solv-
ing techniques which are not based on DPLL or resolution.

2.4.1 Local Search

Some local search mechanisms, such as WalkSAT [SKC93] are effective mech-
anisms for finding satisfying assignments. Interestingly, local search can far
outperform DPLL based algorithms for hard, satisfiable, uniformly gener-
ated random problems. However, not only do these processes fail when a
problem is unsatisfiable, it is also known that local search is quite ineffec-
tive on problems with lots of dependent variables, a side-effect of functional
structure. Although many methods have been proposed to overcome this
problem [KMS97, Seb94], such adaptations have not kept up with DPLL-
based developments.

The WalkSAT algorithm is parameterized by a probability p, which
typically takes a value of about 1

2 . It keeps a valuation of the variables
α : X → {0, 1} and it keeps track of all clauses which are false or unit under
α. Its basic operation is to choose, with probability p a random variable
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which appears in a false clause and then flip its value in α. With probability
1− p a variable which, if flipped, will solve the most clauses is chosen (with
negative counts for the clauses that will be falsified as a result included).
This process repeats for as long as desired, possibly restarting periodically,
until a satisfying assignment is found.

2.4.2 St̊almark’s Method

St̊almarks method [SS90] is a breadth-first search mechanism which can
be very effective at refuting problems. The algorithm makes use of simple
propagation rules similar to unit propagation while maintaining equivalence
classes over the variables. In addition, the dilemma proof rule:

p ` a,¬p ` a
a

is used as the basis for branching. Here the predicates p and a take the form
of an equivalence assertion x ↔ y where x, y are variables or constants,
and the ` relation indicates propagation. Once all possible combinations
(modulo the equivalence classes) yield no new conclusions, the dilemma rule
is applied recursively under the branches p and ¬p. In general, the recursion
depth is only incremented once all possible applications of the dilemma rule
have been exhausted.

The method refutes a formula when it derives a fact and its negation.
While the method can arrive at a satisfying assignment in the event that
the formula is satisfiable, it is generally not used in this manner because
the recursion depth can be high and exhausting the dilemma rule at any
given level is rather expensive. On the other hand, since the method ex-
hausts the dilemma rule prior to engaging in deeper recursion, any resulting
proofs of unsatisfiability are guaranteed to involve only a minimal amount
of branching; this can lead to short refutations.

2.5 Experiences

This section provides informal summaries of a few ideas we explored relating
to the standard mechanisms employed in modern DPLL solvers.

Linear Time Clause Minimization

The minimization of learned clauses in [ES05] is often implemented with a
quadratic algorithm. In our experience, some large problems would induce
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behavior approaching the quadratic worst bounds. It is possible to accom-
plish the minimization in linear time, resulting in a more robust solver in the
sense that no problems would cause the solver to get bogged down in mini-
mization, while all learned clauses would be fully minimized. The algorithm
is described below in pseudocode.

Algorithm 2.5.1. Linear time learned clause minimization.

minimize(C)
N ← ∅
R← ∅
for each literal m ∈ C

if isRedundant(¬m,C) then
C ← C \ {m}

return C

isRedundant(m,C)
if m ∈ N return 0
if m ∈ R return 1
if m is unit-implied then

let a be the clause which implied m
for every n ∈ a, n 6= m

if ¬isRedundant(¬n,C) ∧ n 6∈ C then
N ← N ∪ {m}
return 0

R← R ∪ {m}
return 1

else
N ← N ∪ {m}
return 0

The algorithm is very similar to the MiniSAT minimization code referred
to in [ES05]. However, there and in other solvers, there is no explicit distinc-
tion made between the sets C,R, and N . Rather, a single set of “seen” lit-
erals is kept, initialized to C, and isRedundant() is applied to not-yet-seen
literals which appear in antecedents of C. Without storing the distinction
between redundant and irredundant literals, the depth first isRedundant()
procedure may have to re-initialize the set “seen” before every root level call
to isRedundant(), because it cannot be known whether a “seen” literal is
redundant. It is possible to re-initialize only in the case that the literal is
not redundant, but the procedure is still quadratic in the worst case.
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By contrast, the procedure above classifies all reachable literals in the
implication graph as either redundant (R) or not redundant (N). A literal
m is not redundant if there is a path in the implication graph which leads to
a guessed value (not forced by unit propagation) without passing through
the negation of some literal in the initial clause C. All other literals have the
property that they are consequences, by means of unit propagation, of an
assignment ¬C ′ where C ′ is some sub-clause of C. The critical observations
to make in order to see the correctness of the algorithm follow.

1. The initial clause C and all the literals therein are false, while all unit
implied literals in the graph are true.

2. A literal is classified as being in R or N only after all literals implying
it via a unit clause have been classified.

3. If there is no path from a literal m to a guessed literal without passing
through the negation of some literal in the initial clause C, then m
is implied by unit propagation under an assignment ¬C ′ where C ′ is
some sub-clause of the initial clause C.

4. If every antecedent of a literal m is classified as R or is in C, then there
is no path from m to a guessed literal which does not pass through
the negation of some literal in the initial clause C.

The original procedure, as result of the re-initializations, has roughly
quadratic worst case behavior, or more precisely O(n · |C|) where n is the
number of literals contributing to the conflict. By contrast with the formu-
lation above, every literal is visited at most once and the performance is
linear.

In practice, the algorithm above is implemented using bits associated
with each variable corresponding to membership in R or N , and also with
a non-recursive implementation of isRedundant(). In addition, the proce-
dure isRedundant() may terminate early with a negative result if it comes
across a literal whose choice depth is different from any choice depth of any
literal in the learned clause C, or a literal whose choice depth is 0. Our
experience shows that these algorithmic and implementation level changes
yielded a more robust minimization procedure. Prior to the changes, occa-
sionally large problems would result in the solver spending most of its time
minimizing learned clauses. With the changes suggested here, profiling in-
dicated the solver never spent more than 15% of its time in minimization,
and usually spent far less.
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There are other options available to limit the time spent in clause mini-
mization; and moreover a solver developer may prefer a quadratic algorithm
if it has better average-case behavior. From personal communication with
Armin Biere, we were informed that such a linear time implementation was
slightly slower than the quadratic implementation in picosat. Our own expe-
rience showed that carefully implemented linear time minimization gave an
overall improvement in robustness when compared with a recursive quadratic
implementation. Independently, a linear time implementation is presented
in [Gel09] and shown to improve proof traces with modest overall speedup
when dropped into MiniSAT.

Restarts and VSIDs

An effective choice for the recency parameter p in VSID heuristics may be
directly related to restart frequency. Observe that in the presence of RSAT
style solution caching, restarts only change the order in which variables are
chosen. If p ≈ 1, then a restart will essentially do nothing, since the variable
order will not change. Interestingly, we were able to solve a number of
problems, both satisfiable and not, from the SAT Race 2008 with a solver
that restarts at every decision immediately following a conflict under very
low recency settings such as p ≈ 1

2 . In our experiments, this configuration
even significantly outperformed the more conservative traditional restart
strategies on a variety of satisfiable and unsatisfiable instances, which we
found surprising because the strategy makes no real effort to exhaust the
search space. However, while this strategy could solve many problems faster,
there were always at least equally many problems it solved much more slowly
– or not at all, making the configuration unworthwhile overall.

This suggests the possibility that solvers may benefit from correlating
restart frequencies with recency parameters. Our own attempts to do this
with dynamic restart frequencies led to significant numerical problems as-
sociated with updating the recency parameter which we were unable to
overcome. However, we did find that the correlation seems to hold when
comparing different solvers of fixed restart frequency. Namely solvers that
restarted less frequently benefitted from higher values for the recency pa-
rameter p, levelling off at about 0.95 for solvers which did not restart. How-
ever, no fixed restart strategy and recency parameter proved worthwhile in
comparison to the traditional dynamic restart strategies with a fixed p.
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Restarts and Solution Caching

It is possible to use a heavy weight solution caching mechanism with restarts.
Consider a partial solution as an maximally consistent ordered sequence
of literals corresponding to choice points together with the learned clauses
necessary to induce unit propagation under the literals. Consider now a
solver which restarts by tracing a prefix of the best cached solution and
choosing a point at which to deviate on every choice point which immediately
follows a conflict. We implemented this idea by associating a parameter pd
at each choice depth d. While tracing the prefix of the best solution, the
solver may deviate with probability pd, in which case a VSID choice is made.
Otherwise the pd decays by some global factor f ∈ (0 . . . 1), the solver makes
the best choice and moves to the next position of the best cached solution,
if it exists. If it does not exist, a VSID choice is made and the best solution
is guaranteed to improve. If a VSID choice is made and it strictly improves
on the best cached solution at depth d, then pd is reset to some initial value.

This induces a search which is biased towards bettering the best solu-
tion but also always exploring new space at every choice depth. Using this
mechanism, we were able to solve in about half an hour a problem from
SAT-Race 2008 that was not solved in the competition, namely the problem
aloul-chnl11-13 with 286 variables. The solvers picosat-846 and a 2007
version of MiniSAT were not able to solve the problem given 2 hours. By
varying the restart frequency as a function of the depth of deviation, as
well as with parameter tuning, we were able to cut the time down to under
5 minutes. This problem is a wire routing problem which is essentially a
hidden pigeonhole problem, and other methods are able to solve it [Sab05,
Chapter 6]. Nonetheless, we found this method overall unworthwhile on the
entire SAT-Race 2008 problem set. The overhead of the solution caching
mechanism is significant, and the method may have interfered with the ef-
fectiveness of VSID heuristics. At the same time, this suggests that restart
strategies which are biased towards globally optimal measures may be ex-
ploited.

Another restart mechanism based on restarting at different choice depths
with varying frequencies was proposed in [RS08] and shown to be effective
for unsatisfiable problems when applied to a 2007 version of MiniSAT.

2.6 Conclusion

While Boolean satisfiability does not comprise the main topic of this thesis,
it does play a central role in all of what follows. Enormous progress has
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been in satisfiability solving in the last 15 years, and satisfiability solvers
have become both indispensable engines for numerous applications.
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Chapter 3

Satisfiability Modulo
Theories

Satisfiability modulo theories (SMT) extends propositional satisfiability solv-
ing to formulas which include non-propositional variables. For example, an
SMT solver may be capable of determining the satisfiability of a proposi-
tional combination of linear constraints Σiaixi ≤ b. In this case, the vari-
ables xi are numeric, and the background theory may be the theory of real
or integer linear arithmetic. In the SMT literature, theories are generally
treated at two levels. On the abstract level, a decision procedure is devel-
oped which handles a propositional combination of theory atoms, making
as few assumptions as possible about the theory to which the atoms happen
to belong. Given such a parameterized decision procedure, a concrete in-
stantiation will interpret the atoms in the background theory, fulfilling any
interface requirements imposed by the parameterized procedure. This chap-
ter addresses topics concerning the abstract level. As such our exposition
omits many interesting ad hoc methods for specific theories which have not
been generalized.

This chapter is organized as follows. In Section 3.1, we recall basic logical
notions used in the rest of this chapter, define and discuss intersecting SMT
frameworks, including DPLL(T), and present Nelson-Oppen combination of
theories. Section 3.2 presents a simple refinement of DPLL(T) [GHN+04]
based on decoupling consistency checks and theory propagation. Section
3.3 presents a non-intersecting SMT method based on GDPLL [MKS09].
Section 3.4 concludes.

23
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3.1 Traditional SMT Methods

3.1.1 Logical Background

Syntactically, a formula consists of a set of symbols, which we characterize
as either variables, logical symbols (∨,∧,¬, ∀, ∃,=), or non-logical symbols
such as constants (such as 0, 1), relation symbols (such as <), or function
symbols (such as +, ·). A signature is a set of non-logical symbols. A
structure may be associated with a signature and consists of set referred to
as the domain together with an interpretation for each non-logical symbol
in the signature. The interpretation of a constant is just an element of the
domain. The interpretation of an n-ary relation is a subset of Dn where D
is the domain. Likewise, the interpretation of an n-ary function is a subset
of Dn → D.

A model of a variable free formula φ is a structure for some signature
which includes all the non-logical symbols in φ and which makes φ true1. A
variable-free formula is satisfiable if there exists a model for it; we say that
the model satisfies the formula. If a formula contains variables, one may
consider the variables as extra constant symbols, in which case the above
definition of satisfiability readily applies. A model for a set of formulas S is
a model which satisfies every s ∈ S.

In the following, an atom or atomic predicate is a formula whose root
symbol is either a relation symbol or equality. In other words, an atom
corresponds to constraint which contains no Boolean connectives, such as
2x < y. A literal is either an atom or its negation. As in propositional logic,
a clause is a disjunction of literals. A theory T is then a set of formulas
closed under first order logical deduction. A formula φ is satisfiable modulo
a theory T if there is a model which satisfies both φ and T .

3.1.2 Propositional Abstraction

The notion of the propositional abstraction of a formula φ is a fundamental
tool in SMT solving. Propositional abstractions allow us to speak meaning-
fully of interpreted and uninterpreted theory atoms appearing in a formula.
Interpreted theory atoms are syntactic objects (theory atoms) associated
with an interpretation in an appropriate structure; whereas uninterpreted
theory atoms are syntactic objects which may be given a truth value inde-
pendent of any interpretation.

1For establishing whether a variable-free formula is true, we assume the classical se-
mantics of first order logic
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We now define this idea formally. Let Pφ be the set of theory atoms
occurring in φ, and let vp be a fresh propositional variable for every p ∈ Pφ.
The propositional abstraction of φ is the formula

prop(φ) $ φ[p 7→ vp]

The key point of prop(φ) is the correspondence between its models and
conjunctions of theory literals. In particular, let α |= prop(φ) and consider
the conjunction

φα $
∧
{p | α(vp) = 1} ∧

∧
{¬p | α(vp) = 0}

It should be clear that any model of φα can be extended to a model of φ.
Moreover, as there are a finite number of models of prop(φ), it is possible to
determine the satisfiability of φ by checking the satisfiability of φα for every
α such that α |= prop(φ).

Example 3.1.1 (Propositional Abstraction). Consider the formula

φ $ (x+ 2y ≤ 3) ∨ (x = y)

To construct prop(φ), we generate propositional variables corresponding the
constraints in φ, namely (x + 2y ≤ 3) and (x = y). Let p1, p2 respectively
correspond to these two literals. Then

prop(φ) $ p1 ∨ p2

Consider the truth assignment

α $ {p1 7→ 0, p2 7→ 1}

This assignment induces the conjunction

φα $ (x+ 2y > 3) ∧ x = y

Observe that α |= prop(φ), since α(p2) = 1. Also observe that φα is satisfi-
able, taking for example x = y = 2. As a result, x = y = 2 is a satisfying
assignment for the original formula φ.

Most established SMT methods may be classified as intersecting meth-
ods, which is based on the notion of propositional abstraction. Given a
formula φ, let Lφ denote the set of theory literals whose atoms occur in
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φ. An intersecting method intersects the set of satisfiable conjunctions of
interpreted theory literals:

{X | X ⊆ Lφ,
∧
X is satisfiable }

with all the conjunctions of uninterpreted theory literals whose truth values
satisfies prop(φ):

{X |∃α . α |= prop(φ) and X = φα}

Most SMT methods are based entirely or largely on this principle of in-
tersection. However, a variety of different implementations of intersecting
methods have been studied.

3.1.3 Eager Encodings

Eager SMT solving consists of encoding a theory-atom-laden formula φ into
an equisatisfiable propositional formula φ′, and then running a SAT solver
on φ′. Generally, φ′ is generated in the form prop(φ)∧φT , where φT describes
the set of feasible truth valuations of atoms appearing in φ. For example,
an eager encoding of

φ $ (x ≥ 2) ∨ (x ≤ 0)

may replace (x ≥ 2) with p, (x ≤ 0) with q, and generate a formula

φ′ $ (p ∨ q) ∧ φT

where φT describes the set of theory feasible combinations of x ≥ 2 and
x ≤ 0 in terms of p and q. In the example above, φT would take the form
¬p ∨ ¬q.

More formally, let P be the set of theory atoms found in a formula φ(x, y),
where x is a set of propositional variables and y is a set of non-propositional
variables. We can translate φ to an equisatisfiable propositional formula
φ′ $ prop(φ) ∧ φT so long as φT is such that

α |= φT ⇐⇒ ∃y . φα

The biggest challenge in the eager SMT method is designing an efficient
procedure for generating φT . Some theories admit such procedures. For
example, 2’s complement arithmetic over fixed-width integers can be readily
coded using standard circuit descriptions of arithmetic operators. Eager
encodings have also been proposed for a number of infinite domain theories
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[SSB02, Str06, Str02]. However, the generation of a propositional formula
from an arbitrary set of models can be computationally difficult and so some
ingenuity is often required in the coding. Nonetheless, eager methods allow
off-the-shelf use of propositional SAT solvers and independent treatment of
propositional and theory-specific reasoning.

3.1.4 Lazy SMT

In the literature, the term “lazy SMT” generally refers to the use of a SAT
solver as a driver of a theory solver. Namely, a SAT solver calls a theory
solver while it is running. There are many different ways such a process
can be implemented and indeed many ways have been examined. Unfortu-
nately, these variations are often best characterized by their own spectrum of
laziness, leading at times to confusion over the meaning of the term “lazy”.

At the lazy end of the spectrum, a SAT solver is used as an enumera-
tor of full truth assignments to the atoms found in a formula φ. The sat
solver generates full truth assignments α such that α |= prop(φ). Then φ
is satisfiable if there is an α such that φα is feasible in the background the-
ory. An important aspect of this mechanism addresses what to do if φα is
not feasible. In this case, a clause which excludes an infeasible subset of
the assignment is added to the SAT solver. Most often, the SAT solver is
modified to allow the addition of such clauses so as to avoid solving a whole
new SAT problem each time a clause is added. This modification is not
very involved, and generally simply involves backtracking to an appropriate
point and noting any unit propagation which might occur as a result of the
new clause at that point. In addition, generating a clause which excludes
a minimal infeasible subset of the assignment is often desirable, much as
clause minimization plays an important role in propositional SAT solvers.
While the mechanism for generating minimal infeasible sets varies quite a
bit from theory to theory, it is also possible to find minimal infeasible sets
for an arbitrary theory using a decision procedure for conjunctions [MR02].
Perhaps due to the relative ease of implementation, fully lazy SMT solving
was the first reported in the literature [MR02, WW99].

At the more eager end of the spectrum of lazy SMT solvers, conjunctions
of literals are checked for feasibility by a theory solver in lock step with
the partial truth assignments built up by the SAT solver. Every time a
SAT solver extends its assignment with a truth value for an atom, a theory
solver is notified and a feasibility check occurs. This has the advantage of
directing the SAT solver to new assignments sooner but generally requires
more feasibility checks. The majority of current SMT solvers work at this
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more eager end of spectrum, at least when interpreting relatively simple
theories. The cost of the increased number of feasibility checks is typically
offset to some degree or other with the use of an incremental and backtrack-
able theory solver.

3.1.5 DPLL(T)

DPLL(T) [GHN+04] is a notable framework for intersecting lazy SMT solvers
which operates at the more eager end of the lazy SMT spectrum. DPLL(T)
has become a common method of integrating a propositional SAT solver
with a theory solver. In particular, the DPLL(T) framework defines an in-
terface for a theory solver and its usage with a SAT solver in such a way as
to allow modular integration of an arbitrary theory solver with a SAT solver.
This interface may be viewed as an implementation of modular proof system
presented in [NOT04]. The interface provides for a degree of on-the-fly ea-
gerness under the name theory propagation2. We describe this framework in
some detail here to provide context for the next chapter, where we present
a DPLL(T) theory solver for the theory of difference constraints.

The theory solver implements the following functions

assign(p, l) The function assign takes a literal p in the underlying theory
and a list l as an arguments. The function adds p to the set of truth-
assigned atoms and performs a feasibility check on that set. It returns
true if the assertion of p succeeds. In this case, the list l is populated
with literals whose atoms are found in the formula, each of which is
entailed by the set of truth-assigned atoms under the given theory.
Otherwise, the function returns false and the list is populated with
an infeasible, assigned set of literals and containing p. Also, in the
case of feasibility, the list need not be fully populated, allowing the
theory solver to perform some propagation without requiring that it
be complete, or even present.

explain(p) The function explain takes a literal p which was entailed by
previously assigned atoms and returns an infeasible set of assigned
literals X which contains ¬p. The set X is referred to as an explanation

2While the term theory propagation originated from the DPLL(T) work, the idea was
reported in [CAB+02]. Earlier work incorporated propagation of theory specific conse-
quences into a DPLL-like process [BSU97]; but the notion of separating the DPLL process
from the theory and then communicating theory consequences in the form of lemmas ap-
pears to have been realized later.
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and may be readily translated into a valid clause ¬
∧
X for use by the

DPLL procedure.

unassign(p) The function unassign takes the most recently assigned literal
p as an argument, and the theory solver removes p from its assignment
stack.

As originally presented in [GHN+04], a theory solver S works in lock step
with a DPLL propositional SAT solver while the truth assignment is being
extended. In particular, a DPLL sat solver is instrumented so that every
assignment of a variable vp standing for atom p is associated with a call
to assign(). In our presentation, every unassignment during backtracking
is associated with a call3 to unassign(). In the event that the assign
function propagates theory literals, the entailed literals are added to the
assignment in the same way that literals entailed by unit clauses are added to
the assignment. Performing theory propagation thus enables an interleaving
of propositional reasoning and theory specific reasoning. However, in the
context of a modern DPLL based SAT solver, this poses a problem for
learning and non-chronological backtracking. Namely, learning normally
would take place by means of resolving clauses which are already present
in the formula; but when the truth value of a literal p is entailed by the
theory, it may be that no such clause exists. The infeasible sets of literals X
returned by the function explain solve this problem since they are readily
converted to valid clauses

∨
{¬x | x ∈ X}. These clauses are transient,

temporary, and are only referenced when the SAT solver is learning.

Exhaustive Theory Propagation

The DPLL(T) framework is often applied to simple theories with relatively
inexpensive decision procedures. These in turn often allow relatively inex-
pensive exhaustive theory propagation, in which the assign method always
propagates every implied truth value for an atom occurring in the formula.
A nice side effect of exhaustive theory propagation is that it is no longer
necessary to perform a feasibility check, since the DPLL driver will never
pass the negation of an implied literal to the assign function. This idea
was first exploited in [NO05].

3In the original, the theory solver would be asked to perform an entire backtrack
sequence in one step. We prefer this fine-grained presentation for expository purposes
and note that a theory solver capable of backtracking many steps at once can readily
implement the unassign() procedure as a backtrack of length 1.
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3.1.6 Multiple Theories and Nelson-Oppen

Another problem addressed in the SMT literature is the problem of theory
combination, in which relations and functions belonging to multiple theories
may be present in a given formula. Theory combination can be particularly
useful when SMT problems are generated to analyze complex systems involv-
ing multiple functionalities. For example, a program analyzer may generate
an SMT problem involving a theory of arrays and the theory of integer linear
arithmetic. Such a formula may look something like

(ia[x] < ia[2x] + 3) ∨ (2x = y + 1)

To address the problem of theory combination, it is useful to first define
some notions. The language of a theory T , denoted L(T ) is the set of for-
mulas constructed with symbols in the signature, logical symbols, equality,
or parentheses. The combination of two theories T $ T1 ⊗ T2 refers to the
theory (set of valid formulas) defined in terms of the union of the respective
parts of T1 and T2:

• The signature of T is the union of the signatures of T1 and T2.

• The set of axioms of T is the union of the axioms of T1 and the axioms
of T2.

The combination defines a set of valid formulas, namely those formulas which
can be derived from the combined axioms. Note that the formulas in the
combined theory may mix symbols from the respective component theo-
ries. For example, if T1’s signature contains a function symbol f and T2’s
signature contains g, then f(g(x)) is a term in the combined theory.

Nelson-Oppen

The Nelson-Oppen[NO79] method (hereafter NO) is a standard mechanism
for deciding formulas in a combination T1 ⊗ T2 ⊗ . . . ⊗ Ti of theories. The
procedure makes use of a decision procedure for conjunctions of atomic pred-
icates in each theory Ti, and is applicable under the following conditions:

1. The formulas treated by the procedure fall in the quantifier free frag-
ment of first order logic.

2. There is a decision procedure for conjunctions of quantifier-free atomic
predicates for each theory Ti.

3. The signatures of each theory are disjoint.
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4. There is a cardinal κ such that every satisfiable formula in each the-
ory has a model of cardinality κ. (This condition differs from the
traditional NO procedure and some of the implications of using this
condition are discussed later in this section).

Purification

The NO procedure begins with an encoding step called purification, which
is similar in spirit to the Tseitin CNF translation discussed in Chapter 2.
The basic idea is to give a fresh variable to each application of a function. In
particular, given a formula φ, purification selects any smallest sub-formula t
rooted with a function symbol of arity > 0 appearing in φ and then rewrites
φ into the form

φ[t 7→ xt] ∧ xt = t

where xt is a fresh variable. Repeating this process recursively on φ[t 7→ xt]
yields a purified formula. For example, purifying the formula

φ $ f(x) + g(y, z) < 2

may yield
z0 = f(x)

∧ z1 = g(y, z)
∧ z2 = z0 + z1

∧ z2 < 2

Observe that every atomic predicate in a purified formula contains at most
one function symbol. Since the NO method applies to theories with disjoint
signatures, it follows that every atomic predicate belongs to a single theory.
In the example above, φ may be viewed as a combination of the logic of
uninterpreted functions with equality4 arithmetic. In the purified formula,
each atomic predicate belongs to exactly one of these theories.

Combination

We finally are ready to state a decision procedure for combined theories.
For simplicity, we assume that we work over a combination of two theories

4The logic of uninterpreted functions with equality allows function symbols to be ap-
plied to variables and equality tests between terms. The function symbols are uninter-
preted, which is to say that the only assumptions made about them is that the result of a
function application f(a1, a2, . . . , ak) is unique. In other words, for all function symbols
f , x̄ = ȳ → f(x̄) = f(ȳ).
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T $ T1 ⊗ T2. Let φ be a quantifier free formula in the language of T . The
NO method first purifies φ, resulting in a formula of the form F1 ∧ F2 ∧ φ′,
where

• φ′ is a propositional combination of relation symbols applied to vari-
ables.

• F1 (F2) is a conjunction of equalities of the form xt = s with s a T1

(T2) function symbol.

The next step is to non-deterministically choose a truth assignment α
to the atoms found in φ′. If φ′[p 7→ α(p)] is false, then a new assignment is
chosen. If no new assignments exist, the formula is declared unsatisfiable.
Otherwise, assume φ′[p 7→ α(p)] is true. Now define the formulas

Ti(α) $
∧
{p | α(p) = 1, p ∈ L(Ti)} ∧

∧
{¬p | α(p) = 0, p ∈ L(Ti)}

for i ∈ {1, 2}.
The procedure then non-deterministically chooses a partition P over the

variables occurring in the purified formula φ′∧F1∧F2. For each equivalence
class in P, choose a variable as a representative. For any variable x, let x̂
refer to the representative of the equivalence class to which x belongs. We
then define the formula

Ar(P) $
∧
{x = y |x̂ = ŷ} ∧

∧
{x 6= y | x̂ 6= ŷ}

We are ready to use the decision procedures for T1 and T2. In particular,
we check the satisfiability of Ti for the formula ψi $ (Ti(α) ∧ Fi ∧ Ar(P))
using the decision procedure for Ti. If both such formulas are satisfiable,
then φ is declared satisfiable. Otherwise, we choose another partition of the
variables if one exists. If not, then we choose another assignment if one
exists. Otherwise, φ is declared unsatisfiable.

Theorem 3.1.2 (NO is Correct).

Proof. (Sketch) We begin by observing that F1 ∧F2 ∧φ′ is equisatisfiable to
φ.

Suppose the procedure returns unsatisfiable, and assume for a contra-
diction that φ is satisfiable. Then F1 ∧ F2 ∧ φ′ is satisfiable. Let α be a
satisfying assignment to the variables in F1 ∧ F2 ∧ φ′. Observe that there is
a truth assignment α′ to the atoms in φ′ which satisfy φ′. Now we define
a partition P with the property that Ti(α′) ∧ Fi ∧ Ar(P) is satisfiable in
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each corresponding Ti. Namely, P is the partition consisting of equivalence
classes

〈x〉 $ {x′ | α(x′) = α(x)}

for each variable x. Since such α′ and P exist, the procedure must have
returned satisfiable, a contradiction.

For soundness, let Mi be a Ti-model of ψi, i ∈ {1, 2}. Assume without
loss that each Mi is of the same cardinality. Let αi be an assignment map-
ping the variables in ψi to the domain of Mi witnessing the satisfiability of
each ψi, i ∈ {1, 2}. We now construct a one-to-one mapping λ from the
domain of M1 to the domain of M2:

λ(a) $

{
α2(x) if α1(x) = a
a distinct element of dom(M2) otherwise

Observe that such a λ exists because M1 and M2 are of the same cardinality
and each αi is a witness to Ar(P). With λ in hand, we may then give
an interpretation to the symbols in the signature of T1 over the domain of
M2. For example, if s is a symbol in the signature of T1 with semantics
S1 ⊆ dom(M1)w, then we give it semantics

S2 $ {a ∈ dom(M2)w | (λ−1(a1), λ−1(a2), . . . , λ−1(aw)) ∈ S1}

Let M? be the the structure M2 extended to include interpretations of all
symbols in the signature of T1 in this way. Since M? extends M2, M? |= ψ2.
Since M1 is isomorphic to the reduct of M2 to the T2 symbols, we have
M? |= ψ1. Hence M? |= ψ1 ∧ ψ2.

Since Fi is a conjunct of ψi, we have that M? |= F1∧F2. It remains only
to show that M? |= φ′, since F1 ∧ F2 ∧ φ′ is equisatisfiable to φ. Since Ti(α)
is a conjunct of ψi, M? |= T1(α) ∧ T2(α). From the definition of Ti(α), we
have that T1(α) ∧ T2(α) |= φ′, completing the proof of soundness.

Finally, we observe that since there are a finite number of truth as-
signments to the atoms in φ′ and and a finite number of partitions of the
variables in φ′ ∧ F1 ∧ F2, the procedure terminates.

Convexity

A theory T is convex if for every finite set of atomic predicates A and every
pair of equalities x = y, x′ = y′ over variables if A |= x = y ∨ x′ = y′, then
either A |= x = y or A |= x′ = y′. Convexity may be used to optimize the
NO method. In particular, if we require that each Ti decision procedure
performs complete equality propagation, then there is no longer a need to
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select a partition over the variables. This observation fits in nicely with the
DPLL(T) framework mentioned above. Namely, a DPLL(T) SMT solver can
work directly with a combination of theories on a purified formula simply
by using a Ti-solver for each theory which propagates all equalities.

However, not all theories are convex. The following example shows that
the ordered theory of integers with equality is not convex.

φ $ x ≤ 1 ∧ x ≥ 0 ∧ y = 0 ∧ z = 1

In particular, we have that φ |= x = y∨x = z but φ 6|= x = y and φ 6|= x = z.
Traditionally, non-convex theories are handled by propagating disjunctions
of equalities. However, it has also been shown that using a SAT solver to
branch on equalities and dis-equalities can be effective, even when theories
are convex [BCGS06]. More recently in [dMB07], a model reconciliation
approach in which models of component theories are used as a heuristic to
incrementally build up a partition was shown to be effective and also allows
for the generation of theory literals on the fly. This method defaults to
[BCGS06] when the heuristic fails to find new guiding information.

Discussion

Though somewhat idiosyncratic in detail, the Nelson-Oppen methodology
can be a powerful tool to increase the expressivity of theories handled by
SMT solvers. Our presentation of the method has replaced the requirement
that component theories be stably infinite5 with the requirement that all
satisfiable formulas in all component theories have a model of a given car-
dinality. The condition of being stably infinite implies the existence of a
cardinal κ such that all component theories have models of cardinality κ by
means of the upward Lowenheim-Skolem theorem. Our restriction allows
component theories to have finite models and appears to simplify the cor-
rectness proof. The correctness proof for the requirement of being stably
infinite may be found in [TH96]. The original proof [NO79] was incorrect in
that it did not recognize the requirement of being stably infinite, and also
replaced the idea of an arrangement of a variable partition with equality
propagation on the part of the component theories. The idea of using ar-
rangements of a variable partition was also presented in [TH96]. In addition,
that work incorporates some easy optimizations which we have left out for
simplicity. In particular, the variable partition may be restricted to shared

5A theory is stably infinite if every satisfiable formula has an infinite model.



3.2. FLEXIBLE PROPAGATION 35

variables and represented in a more compact manner by eliminating redun-
dant (dis)equalities where the redundancy is due to the inherent transitivity
and symmetry of the theory of equality.

3.2 Flexible Propagation

In this section we present simple mechanisms for optimizing SMT solvers by
allowing more flexibility in the relative timing of theory-specific and propo-
sitional reasoning and subsequently exploiting this flexibility. We begin with
the observation that different types of constraint propagation have different
computational costs, and often performing one type of propagation or feasi-
bility check can preclude the need to to perform operations of another type.
For example consider the unsatisfiable formula

p ∧ (¬p ∨ q) ∧ (¬q ∨ r) ∧ ¬r

where p, q, r are atoms in some theory. Unit propagation leads to a conflict,
but a theory solver may check the feasibility and/or consequences of the
truth assignments to p, q, r as their values are forced by the DPLL proce-
dure. If the theory specific reasoning is significantly more expensive than
unit propagation, the solver will have wasted some resources. Conversely,
consider the unsatisfiable formula

(x ≤ 0) ∧ (x ≥ 1) ∧ p0 ∧ (¬p0 ∨ p1) ∧ (¬p1 ∨ p2) ∧ . . . ∧ (¬pn−1 ∨ pn)

Here, the theory component is trivially unsatisfiable while unit propagation
is irrelevant and more expensive. While both examples are quite contrived
and have little interest in and of themselves, a solver can encounter similar
situations quite often in the form of sub-problems while it is executing.

We are interested in establishing a more flexible strategy of interleaving
theory and propositional reasoning which allows a solver to better handle
both kinds of situations. This is accomplished on two levels, within the SAT
solver and within the theory solver.

3.2.1 SAT Solver Instrumentation

One may view a DPLL based SAT solver as process which combines two
types of reasoning: unit propagation and branching. Unit propagation is
less expensive than branching, and is thus given preference in the DPLL
framework. In the DPLL(T) framework, additional types of reasoning are
added to this combination; namely theory consistency checks and theory
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propagation. To prioritize the processing of the theory solver with respect
to the processing of the DPLL process, we instrument the SAT solver to
send events to the theory solver and listen for events from the theory solver
at certain points in the DPLL process. This instrumentation is relatively
simple, and does not interfere with the various modern techniques described
in chapter 2.

In particular, we have the DPLL process send notification of the following
events to the theory solver:

• Assignment. When variables representing theory atoms are given a
truth value.

• Unassignment. When variables representing theory atoms are unas-
signed (during backtracking).

• NoBCP. When the DPLL process is ready to branch non-deterministically
on a truth value, i.e. when there are no unit clauses.

Each one of these events corresponds to a method implemented by a theory
solver, specified below.

The theory solver in turn sends event notifications to the sat solver in
the form of theory implications

∧
Rp → p, where p is a literal and Rp is a

set of literals each of which is asserted under the current truth assignment.
These events may either indicate inconsistency, in which case p 7→ 0 is part
of the truth assignment and assigned later than all predicates in Rp; or they
may indicate propagation, in which case p is unassigned. The SAT solver lis-
tens for these T -implication events after every assignment and also at nobcp
events. As in the DPLL(T) framework, in the event of an inconsistency, the
SAT solver will backtrack and in the event of a T -implication, the implied
predicate will be added to the truth assignment, possibly inducing more unit
propagation. The resulting control flow is indicated in Figure 3.2.1.

3.2.2 Theory Solver Processing

The communication of choice points from the SAT solver to the theory solver
allows the theory solver to make a more informed decision about what kind
of processing should be applied. In particular, the theory solver may im-
plement light-weight operations on every assignment and implement more
costly operations at choice points. The two-level processing in this frame-
work induces a situation in which theory atoms undergo different degrees
of interpretation by the theory solver. This leads to the question of what
types of theory reasoning are appropriate for these minor and major degrees
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Figure 3.1: Control flow of a SAT solver instrumented for flexible theory
propagation. The SAT solver sends assignment events and nobcp events
to the theory solver and listens for theory implications from the theory
solver. The theory solver may delay more expensive consistency checks or
propagation until it receives a nobcp event notification.

of interpretation. One simple answer to this question is to have consistency
checks play the role of minor reasoning (interleaved with Boolean constraint
propagation) and to reserve theory propagation for major reasoning to help
reduce the number of choice points.

While associating a full consistency check with every assignment is prob-
ably too expensive for some theories, this scenario has several benefits for
theories with efficient incremental consistency checking algorithms. First,
theory propagation is more expensive than consistency checking, since the-
ory propagation may be reduced to a set of consistency checks6. Thus this
division of labor conforms to the idea of delaying expensive reasoning while
cheaper reasoning is relevant. Second, establishing consistency may facili-
tate theory propagation7. Third, theory propagation can reduce the cost of
consistency checking simply because theory-implied predicates are already
known to be consistent, and so fewer consistency checks are required.

Here we present a simple literal labelling mechanism which helps to re-
alize the benefits of this scenario. In particular, we have the theory solver
associate an annotation lp with each literal p over an atom which appears
in a given problem. The annotation can take any value from {Π,Σ,∆,Λ}

6In this context, we have a finite set of theory predicates, each which may or may not be
a candidate for propagation. For every predicate p which is to be tested for propagation
under an assignment A, the theory solver determines the validity of A |= p, which is
equivalent to testing the consistency of A ∧ ¬p.

7We show an example of this in Chapter 4.
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with the following intended meanings.

Π: Literals whose consequences have been found (propagated constraints).
These literals have undergone both light-weight and heavy-weight pro-
cessing.

∆: Literals which have been identified as consequences of constraints la-
belled Π.

Σ: Literals which have been assigned, but whose consequences have not
been found yet. These literals have undergone light-weight processing,
but not heavy-weight processing.

Λ: Literals which have not undergone any processing and are not identified
as consequences of literals labelled Π.

For convenience, we use the labels Π,∆,Σ and Λ interchangeably with the
set of literals which have the respective label.

It is straightforward to maintain labels with these properties via methods
assign, tprop and unassign, which correspond to the assignment, nobpc,
and unassignment event notifications received from the driving DPLL pro-
cess: Whenever a literal p is passed to assign which is labelled Λ, the
theory solver performs a consistency check. If consistent, we re-label p with
Σ, otherwise an appropriate theory implication is generated and returned.
Whenever tprop() is called, literals labelled Σ or ∆ are labelled Π, one
at a time. After each such relabelling, a search for theory consequences
Π |= p takes place where p ∈ Λ. If some such consequences are found, they
are re-labelled ∆ and theory implications are generated and returned to
the driving DPLL process. Whenever backtracking occurs, all constraints
which become unassigned are labelled Λ. The functions are detailed in pseu-
docode under Algorithm 3.2.1. Figure 3.2.2 shows the corresponding state
transitions. The resulting control flow is indicated in Figure 3.2.1.

Algorithm 3.2.1. Theory Solver Relabelling
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Λ

∆

Σ

Π

Figure 3.2: Transition diagram for literals during flexible propagation. Ini-
tially, literals are labelled Λ. Upon assignment, literals are labelled Σ. The-
ory propagation labels literals one of Π or ∆ depending on whether ∆ is a
consequence of Π. When literals are unassigned, they are labelled Λ.

assign(p)
if lp = Λ then

if sat(Π ∪ Σ ∪ {p}) then
lp ← Σ
return >

else
return explain (¬p)

else return >
unassign(p)

lp ← Λ
tprop()

loop
let C = {q | q ∈ Λ,Π ` q}
if C 6= ∅ then

lq ← ∆,∀q ∈ C
return {explain(q) | q ∈ C}

else if Σ ∪∆ 6= ∅ then
let p ∈ Σ ∪∆
lp ← Π

else
return >

Pseudocode for literal relabelling in a theory solver. The methods assign,
unassign, and tprop correspond to event notifications from the driving
DPLL solver. The function explain generates a theory implication which
justifies a literal. The method tprop implements theory propagation with
a theory consequence finder, whose consequence relation is denoted `. The
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value > is used to indicate an empty theory implication.

The labelling mechanism enforces the following properties.

1. The set Π ∪ ∆ ∪ Σ is theory consistent. It is easy to see that Σ is
consistent, because literals are added to this set only after consistency
checks occur. Also, we observe that if Π is consistent, then Π ∪∆ is
consistent since Π |= ∆ in the given theory. Observing that literals
are only labelled Π if they are first labelled Σ or ∆, the result follows
by induction.

2. Consistency checking is only applied to literals labelled Λ. This guar-
antees a minimal number of calls for consistency checking.

3. If non-empty, the set Π is consistent with respect to unit propagation
in the driving DPLL process. Since literals in Π are the only ones
which act as antecedents in theory propagation, enforcing this property
effectively filters calls to theory propagation.

4. The consequence relation Π |= ∆ holds in the given theory.

3.2.3 Relabelling with Exhaustive Propagation

In Section 3.1.5 we observed a possible optimization for the DPLL(T) frame-
work in the event the theory solver implements exhaustive propagation.
Similarly, some optimizations are possible within the relabelling framework.
First, we observe that since Π |= ∆ we have that

{p | Π |= p} = {p | Π ∪∆ |= p}

Since exhaustive propagation finds all consequences of Π, there is no need to
search for new consequences arising from literals labelled ∆. This fact can
be used to reduce the number of calls to an exhaustive consequence finder,
and also allows the consequence finder to find consequences of a smaller set
of literals. We detail the corresponding pseudocode in Algorithm 3.2.2.

Algorithm 3.2.2. exhaustive tprop
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tprop-exhaustive()
loop

let C = {q | q ∈ Σ ∪ Λ,Π ` q}
if C 6= ∅ then

lq ← ∆,∀q ∈ C
return {explain(q) | q ∈ C}

else if Σ 6= ∅ then
let p ∈ Σ
lp ← Π

else
return >

Exhaustive theory propagation with relabelling. Consequences within the
set Σ ∪Λ are found, rather than the set Λ. Additionally, literals labelled ∆
are never labelled Π, leading to a smaller number of calls to the consequence
finder.

3.2.4 Discussion

Flexible propagation may be viewed as a variant of the DPLL(T) framework
in which a global propagation strategy may exploit differences in the cost
of various types of reasoning to arrive at a solution faster. In addition to
the work presented here, in which all theory specific reasoning falls in one
theory, an extension of this idea which addresses the case of progressively
richer theories has been detailed in [CM06]. The framework described here
is also put to use in Chapter 4 for the case of difference constraints. An
experimental evaluation in that context shows that flexible propagation can
provide significant performance improvements over the standard DPLL(T)
framework. The idea of delaying theory propagation and consistency checks
was also put forth in [CAB+02]. However, in that work it is suggested
that consistency checks or other light-weight theory processes are not inter-
leaved with unit propagation, and there is no mention of optimizations for
the case of exhaustive propagation or for treatment of literals identified as
consequences. The work [WGG06] also demonstrates that delaying theory
processing until choice points is effective. In general, our use of labels facili-
tates reasoning about and specification of the interface between the driving
DPLL solver and the theory solver.
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3.3 Unate Consistent Model Search

In this section, we present a method for SMT solving which, in contrast to
the intersecting methods described above, searches directly for a model of a
given formula. Our method may be seen as a generalization of DPLL which
searches in the space of variable valuations. It is most closely related to
GDPLL [MKS09], but differs in that the abstract algorithm is formulated
in terms of variable valuations, and is analyzed in terms of proof graphs
in a manner similar to DPLL resolution proofs. Consequently our method
extends GDPLL with the important notion of forgetting deduced facts. For
convenience, we call this class of search algorithms unate consistent search
(UCS), since it is based on 1-variable local consistency.

To describe UCS, consider a quantifier free CNF formula φ

φ ≡
∧
{c1, c2, . . . , ck}

where each ci is a clause. Now given a variable x, we denote by

φ|x $
∧
{ci | vars(c) = {x}}

That is, φ|x is the set of all x-unate clauses. We say φ is unate consistent if
for every variable x ∈ vars(φ) it is the case that ∃x.φ|x. Unate consistency
is simply variable-local consistency.

With these notions at hand, we are ready to define an abstract algorithm
for deciding quantifier free conjunction of clauses which is parameterized by
three procedures, select, isUC and resolve. The procedures are theory-
specific and must implement the following interface

select(φ, α). This procedure takes a formula φ and a partial assignment
α as arguments and returns a pair (x, a) where a is in the domain of
x, x ∈ vars(φ[α]) and (φ[α]|x)[x 7→ a] is true.

isUC(φ) This procedures tests the unate consistency of a conjunction of
clauses. It returns true if the formula φ is unate consistent and false
otherwise.

resolve(φ, α, x) This procedure takes a formula φ, a partial assignment α
and a variable x such that φ[α]|x is unsatisfiable, and returns a clause
w such that

1. φ |= w

2. w[α] contains no variables and evaluates to false.
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The abstract algorithm UC-Search is detailed in pseudocode under Al-
gorithm 3.3.1. It takes two arguments, φ, α, where φ is a formula and α is a
partial assignment to the variables in φ. It returns either a pair (1, α) where
α is a satisfying assignment for φ or a pair (0, w) where w is a false clause
i.e a clause whose every literal has no variables and such that each literal
evaluates to false.

Algorithm 3.3.1. Unate Consistent Search Algorithm

UC-Search(φ, α)
1 if isUC(φ[α]) then
2 let (x, a) = select(φ, α)
3 if vars(φ[α]) = {x} then
4 return (1, α ∪ {x 7→ a})
5 let (r, w) = UC-Search(φ, α ∪ {x 7→ a})
6 if r = 1 or x 6∈ vars(w) then
7 return (r, w)
8 else
9 return UC-Search(φ ∧ w,α)
10 else
11 let x be s.t. φ[α]|x is unsat
12 let w = resolve(φ, α, x)
13 return (0, w)

UC-Search is much like DPLL-BJ except that the recursion depth does
not correspond to the size of the variable assignment, and variables which
are constrained are not automatically assigned. These facts highlight that
UC-Search is in some ways fundamentally different than DPLL. Nonetheless
many similarities exist, such as being a depth first search over the space
of variable valuations coupled with a proof generation procedure. As such
UC-Search qualifies as an extended class of instantiations of GDPLL.

Example 3.3.2 (UC-Search run). Consider the propositional formula φ

φ $ (x ∨ y) ∧ (¬y ∨ z) ∧ (¬x ∨ z) ∧ (¬z ∨ y) ∧ (¬x ∨ ¬y)

A diagram of a possible trace of the algorithm deciding φ follows.
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(φ, ∅)1

(φ, {x 7→ 1})2

(φ, {x 7→ 1, y 7→ 0})3

(φ ∧ (¬x ∨ y), {x 7→ 1})4

(φ ∧ ¬x, ∅)5

(φ ∧ ¬x, {x 7→ 0})6

(φ ∧ ¬x, {x 7→ 0, y 7→ 1})7

(¬x ∨ y)⊕ (¬x ∨ ¬y)

(¬x ∨ z)⊕ (y ∨ ¬z)

SAT: {x 7→ 0, y 7→ 1, z 7→ 1}

The nodes in the graph are annotated with subscripted pairs (φ, α)n
representing a sequence of calls to the procedure UC-Search. The recursion
depth in which each call occurs is represented by horizontal position. Each
call opens a new scope which in turn triggers at most 2 calls directly con-
tained in that scope. The first such call occurs at line 5 and the second at
line 9 in the pseudocode listing. No calls are triggered when the formula
φ[α] is not unate consistent nor when the assignment satisfies the formula.
Outgoing edges of calls which fail the consistency check are labelled with
resolution operations c⊕d. Observe that the clause (¬x∨y) derived between
calls 3 and 4 is subsequently forgotten because it falls out of the scope of
call 2.

We prove some basic facts about UC-Search.

Theorem 3.3.3. UC-Search Soundness

Proof. UC-Search returns either a value (1, α), or a value (0, w). In the first
case, the procedure must have returned (1, α ∪ {x 7→ a}) at line 5 when
φ[α] is unate consistent and x 7→ a is a satisfying assignment for φ[α]|x and
{x} = vars(φ[α]). Hence the assignment α ∪ {x 7→ a} satisfies the formula.

In the second, case, w is a clause made up of theory literals over con-
stants, i.e. w is variable-free. The procedure resolve() produces w, and
guarantees that w is a consequence of φ and that w evaluates to false.
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The following theorem shows that the UC-Search procedure is guaran-
teed to make progress in the sense that the search space becomes more and
more constrained over time.

Theorem 3.3.4. UC-Search Progress
Let U(φ, α) denote the set of all unate-feasible 1-extensions of α

U(φ, α) $ {(x, a) | x ∈ vars(φ[α]), (φ[α]|x)[x 7→ a] is true}

Let (φ1, α1)(φ2, α2) . . . (φk, αk) denote a sequence of calls to UC-Search
during a run of the procedure. Consider a cycle with two calls i, j, such that
i > j and αi = αj . Let α $ αi. Then U(φi, α) ⊂ U(φj , α).

Proof. Without loss of generality, we consider only a minimal sequence such
that i > j and αi = αj , since any subsequent cycles will only further con-
strain the space. Consider the following two cases.

1. Case 1. α ⊆ αk, for all j ≤ k ≤ i. In this case, call i occurs at line 9,
and φi ≡ φj ∧w for some clause w returned by resolve. The procedure
resolve() returns a clause which excludes an assignment x 7→ a such
that x does not have an assignment in α. Moreover x 7→ a was a
feasible assignment under φj [α]. Hence U(φi, α) ⊂ U(φj , α).

2. Case 2. There is a k with j ≤ k ≤ i such that αk ⊂ α. This case
is impossible because when the procedure backtracks over α, it either
terminates or a clause w′ is conjoined which excludes some subassign-
ment α′ of α. Moreover, once this clause is conjoined, all subsequent
calls either fall in a call scope in which φ contains the clause w′ or
the procedure backtracks out of this scope with a new clause v′ which
excludes some subassignment of α′.

Progress is an analog of the termination argument for a DPLL solver
which learns asserting clauses [ZM03]. Of course, one cannot guarantee ter-
mination without specifying something more about the theory or the resolu-
tion procedure. However, progress is more subtle in UCS because of the fact
that when a variable is unate constrained it may or may not be assigned
under α. This situation leads to the possibility of the procedure cycling
with respect to a partial assignment. Progress simply says that whenever
this happens, the procedure is in a state in which the search space is prop-
erly constrained with respect to the variable order in which the variables
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are assigned. Note that progress takes place even though UC-Search forgets
clauses from deeper in the call stack. Thus progress allows a solver to safely
forget clauses, but still there is no limit on the minimum number of clauses
necessary to guarantee progress because many learned unate clauses can be
recorded under a given assignment before the procedure backtracks over that
assignment. Also note that as stated, progress requires that upon learning
a clause w, UC-Search backtracks to the maximal assignment under which
w is unate. A similar notion of progress holds if UC-Search backtracks to
the minimal assignment, which we omit for simplicity.

The notion of progress is extremely weak by comparison to termination
of DPLL by asserting clauses; which brings us directly to the question of
exactly when UC-Search terminates. Having established progress, it is not
hard to see that if the closure of a finite set of clauses under resolve()
is finite, then the procedure terminates. However, for arbitrary variable
domains, resolve() is not necessarily finite. For example, from

(x > 1) ∧ (y > x+ 1) ∧ (x > y + 1)

resolve may produce y > 2 and subsequently x > 3, y > 4, etc.
To better address this issue, we introduce the following notion.

Definition 3.3.5 (Specificity). We say that resolve is specific if

resolve(φ, α, x) = resolve(
∧
{w | w ∈ φ, vars(w[α]) = {x}}, α, x)

Specificity ensures that resolve in effect only takes into account x-unate
clauses when resolve eliminates x. If resolve() is specific, it becomes
useful to think of a proof as a graph whose nodes are clauses similar to a
propositional proof graph as presented in Section 2.2.2 (page 6).

We define the proof graph traced by UC-Search in terms of the input-
output relation of the procedure resolve. If resolve is specific, then for
each call

v = resolve(
∧
W,α, x)

v is a consequence of some subset of clauses W ′ ⊆W where each w ∈W ′ is
x-unate under α. We assume that for a given implementation of resolve(),
W ′ is a concrete set. The proof graph then consists of one edge (w, v) for
each w ∈ W ′. For example, consider a call to resolve(c ∧ d ∧ e ∧ f, α, x)
which results in the conclusion g. Then the proof graph representing this
step may consist of the edges (d, g), (e, g), (f, g), provided resolve() found
that d, e, f |= g. The pivot variable corresponding to each edge would be x.
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Consider the topologic properties of a proof graph generated by calls to
resolve() in UC-Search. The graph is not necessarily tree-like nor nec-
essarily regular, because the variables are chosen in any order. One may
restrict the form of resolution using the following notion.

Definition 3.3.6 (Exhaustively Asserting). We say that UC-Search is ex-
haustively asserting if any variable chosen after a conflict is the variable
constrained by the last learned clause.

To illustrate this property, consider a backtrack sequence. Every time
there is an inconsistency, UC-Search returns a clause w derived by resolve.
Either w has no variables, and the problem is unsatisfiable, or the clause
w has a variable x which is maximal in the search, and w excludes an
assignment α ∪ {x 7→ a}. In this later case, (φ ∧ w)[α] may or may not
be unate consistent. If it is not unate consistent, the backtrack sequence is
not maximal and resolve is called again. Otherwise, (φ ∧ w)[α] is unate
consistent and a free variable is selected. In the case that UC-Search always
selects x within such a context, we say it is exhaustively asserting.

Theorem 3.3.7 (Restricted Resolution). If UC-Search is exhaustively as-
serting and resolve is specific then the proof graph traced by UC-Search
is tree-like and regular.

Proof. (sketch) The key insight is to divide learned clauses into two cases.
Every added learned clause w is associated with a call to UC-Search which
triggers a consistency check. If the check succeeds, then the learned clause is
immediately satisfied by some assignment α∪{x 7→ a} because UC-Search is
exhaustively asserting. Since resolve is specific, w cannot be an antecedent
of any other learned clause as long as the search explores a proper extension
of α (including with assignments to x). When the search backtracks to a
proper sub-assignment of α, w falls out of scope and may be an antecedent
of a single subsequent learned clause, by a resolution step which pivots on
x.

If the check fails for some variable x, resolve is called again resulting
in a clause w′, and w together with any other learned clauses constraining
x may be an antecedent of w′.

In both cases, the learned clauses are forgotten once they fall out of
scope, so they give rise to at most one consequence. Regularity then follows
because the pivot variables always follow the reverse order in which they are
assigned.

Restricted resolution, in turn, allows us to relax the requirements on
resolve() necessary for termination. Consider the property of finite width:
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Definition 3.3.8 (Finite Width). Given a formula φ and a distinguished
variable x ∈ vars(φ), let

r(x) $ {w | ∃α . φ[α]|x is unsat, and w = resolve(φ, α, x)}

denote the set of all derivable clauses under any variable valuation around
x. We say that resolve has finite width for a formula φ, if r(x) is finite for
all x ∈ vars(φ).

Theorem 3.3.9. Termination Sufficiency
UC-Search terminates if

1. resolve is specific; and

2. resolve has finite width; and

3. UC-Search is exhaustively asserting

Proof. Having established progress (Theorem 3.3.4), it will suffice to show
that the set of learned clauses is finite. Since resolve has finite width it will
suffice to show that every learned clause falls in the k-closure of resolve
for some bound k. By Theorem 3.3.7, the proof graph is regular, and so
for a formula of n variables, every learned clause falls in the n-closure of
resolve.

Since progress and termination implies completeness, we have a conve-
nient criterion for establishing completeness provided an appropriate imple-
mentation of resolve(). Note however that the proof relies indirectly on
the fact that the resolution graph is tree-like, i.e that UC-Search forgets
clauses on backtracking. This is contrary to the intuition that the more
clauses one adds to the formula, the “closer” to proving unsatisfiability.
The potential problem introduced by keeping clauses if resolve has finite
width but infinite closure is that one risks creating infinitely long chains of
resolution steps.

We now briefly address the question of the range of possible theories
which may be treated by UCS. Obviously UCS cannot treat any theory
which is unate-undecidable; we are unaware of any such theories. The real
question is whether or not a theory admits a resolve() procedure. Aside
from the requirements on resolve for progress and termination, a poten-
tially limiting factor is that resolve() must return a quantifier free clause.
One possible avenue of further analysis on this limitation is the relationship
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between resolve() and interpolation. Namely, resolve(φ, α, x) may be
seen as computing an interpolant of the incompatible pair

(
∧
{c ∈ φ | x ∈ vars(c)},

∧
{x = a | x 7→ a ∈ α})

Thus we can conclude that UCS may be applied to theories which admit
quantifier-free interpolation in the form of a clause whenever one formula
from the incompatible pair is a conjunction of variable-constant equalities
and the other is a conjunction of clauses. This criterion seems arbitrary, but
it is sufficiently lax to allow for many interesting theories.

3.3.1 Discussion

Much work has been done generalizing DPLL to richer logics [BSU97, BT03,
BvdPTZ07, MKS09]. Unlike many generalizations of DPLL, UCS (and sev-
eral instantiations of GDPLL) do not case split on truth values of atoms,
but rather on variable valuations. These methods thus search more directly
for a model than intersecting methods. GDPLL is more general than UCS;
it does not require the use of variable valuations. By focusing on variable
valuations, we arrive at termination conditions for UCS based on the topol-
ogy of the proof graph and along the way identify which derived clauses may
be forgotten. Neither method has been extended to incorporate intersect-
ing methods. However, it is noteworthy that some work has already been
done which mixes model search with intersecting methods. In [GSF08] the
model from a theory solver is used to guide literal selection in the driving
DPLL process; in [BDdM08], new literals are derived by join operations,
constraining the space of partial models which can be visited in the search.
These works show that consideration of the interpreted models can both
guide a DPLL search over the space of uninterpreted literals and be used to
constrain it.

3.4 Conclusion

SMT solving vastly expands the expressivity of propositional satisfiability
solvers, and in doing so also expands its applicability to verification. The
major developments in the field vary in content from the purely theoret-
ical, such as the principles behind Nelson-Oppen theory combination, to
the practical. In intersecting frameworks, practical considerations at the
abstract level largely address the problem of integrating a propositional sat-
isfiability solver with one or more theory solvers. To date, all the practical
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works we are aware of propose a relatively static balance between proposi-
tional and theory specific reasoning components. However, it is clear that
there is no best static balance between these components. For this reason,
we anticipate future work to address the issue of balancing components more
dynamically. Direct methods side-step the problem of dynamically balanc-
ing propositional and theory-specific reasoning and facilitate direct model
search unencumbered by a search over truth values. Such methods are not as
well studied as intersecting methods but seem to possess some potential and
studying them allows us to try to apply the principles underlying effective
propositional solving more directly to the case of richer logics.



Chapter 4

A Difference Logic Engine

In this chapter we present a theory solver for the theory of difference con-
straints for use in a lazy SMT solver, organized as follows. In section 4.1
we place our solver in the framework of flexible propagation with exhaus-
tive propagation and set forth some basic concepts regarding difference con-
straints. In sections 4.2 and 4.3 we describe our implementation of incre-
mental consistency checks, and exhaustive theory propagation respectively.
In section 4.4 we present experimental results and we conclude in section
4.5.

4.1 Background

4.1.1 Solver Instantiation

Referring to the flexible propagation framework described in Section 3.2,
our solver requires concrete instantiations of

• Incremental consistency checks, as detailed in the assign function
of Algorithm 3.2.1. To fulfill this requirement, we will present an
algorithm implementing the call to sat() within the function assign.

• Incremental exhaustive theory propagation, as detailed in Algorithm
3.2.2. We will present an implementation of consequence finding,
which in the pseudocode is indicated by defining the set of conse-
quences C (line 3).

In both of these endeavors, we will make use the predicate labels {Π,Σ,∆,Λ}
described in Section 3.2 to denote the set of propagated, assigned, implied,
and unassigned constraints respectively. In this chapter we do not address

51
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the implementation of relabelling, as this has been sufficiently detailed in
Section 3.2.

4.1.2 Difference Constraints and Graphs

Difference constraints are simple linear constraints of the form

x− y ≤ c

where x, y are variables, and c is a constant. This class of constraints is
of particular interest for timing related problems including schedulability,
circuit timing analysis, and bounded model checking of timed automata
[NMA+02, Cot05]. In addition, difference constraints can be used as an ab-
straction for general linear constraints and many problems involving general
linear constraints are dominated by difference constraints.

Constraint Graphs

A well-known graphical representation of conjunctions of difference con-
straints provides a structure on which we can derive an efficient decision
procedures and theory propagation:

Definition 4.1.1 (Constraint graph). Let S be a set of difference constraints
and let G be the graph comprised of one weighted edge x

c→ y for every
constraint x− y ≤ c in S. We call G the constraint graph of S.

An example constraint graph is shown in Figure 4.1. The following well-
known theorem characterizes the relationship between conjunctions of dif-
ference constraints and shortest paths in constraint graphs.

Theorem 4.1.2. Let Γ be a conjunction of difference constraints, and let
G be the constraint graph of Γ. Then Γ is satisfiable if and only if there is
no negative cycle in G. Moreover Γ |= x− y ≤ c if and only if y is reachable
from x in G and c ≥ dxy where dxy is the length of a shortest path from x
to y in G.

The correspondence between constraint graphs and sets of constraints
is clear, making it possible to refer unambiguously to a set of constraints
by its constraint graph and vice versa. As a result and in the interest of
simplifying notation, we do not distinguish between constraint graphs and
sets of constraints. For example given a set of constraints S we may refer to
the graph S, and likewise given a constraint graph G we may refer to the set
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Figure 4.1: A constraint graph for the difference constraints x − y ≤ 1,
y − z ≤ 1, z − x ≤ −3, z − y ≤ 2.

of constraints G. Similarly, we may refer to the constraint x c→ y even though
the notation refers to an edge in a constraint graph. This practice allows
convenient (and further) abuse of the notation associated with predicate
labels {Π,Σ,∆,Λ}, which in the context of this chapter stand for sets of
difference constraints as well as their respective constraint graphs.

Expressivity

One may encode a slightly broader class of constraints in the form of dif-
ference constraints. In particular, x− y ≥ c can take the form y − x ≤ −c.
Additionally, x ≤ y takes the difference constraint form x− y ≤ 0.

Constant bounds on variables x ≤ c can be handled as follows. Let φ be
a formula containing difference constraints and constant bounds on variables
xi ≤ ci for i ∈ I. We consider the formula

φ′ $ ∃z.φ[(xi ≤ ci) 7→ (xi − z ≤ ci), i ∈ I]

Clearly any satisfying assignment to φ can be extended to a satisfying as-
signment for φ′ by letting z = 0. Conversely, any satisfying assignment α′

to φ′ induces a satisfying assignment α to φ where α(x) $ α′(x)− α′(z).
Finally, we address the issue of strict inequalities x− y < c, which are a

necessary result of negating non-strict inequalities. First, we observe that if
the numerical domain consists of the integers, we can just replace x− y < c
with x−y ≤ c−1. For a continuous domain such as the rationals, we need a
more general treatment of upper bounds, which can be accomplished using
Minkowski sums. With each constraint x − y ≤ c, we associate an interval
[−∞ . . . c] and likewise with x − y < c we associate [−∞ . . . c). We then
adapt Theorem 4.1.2 to use constraints graphs whose edges are labelled
with constraints’ intervals rather than constraints’ constants. Using the
Minkowski sum of two intervals i, j as follows

i⊕ j $ {x+ y | x ∈ i, y ∈ j}
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we may associate an interval to every path in the constraint graph. The
theorem may be readily applied by defining a negative path as one whose
interval contains only negative members. For notational clarity in the re-
mainder of this chapter, we will only consider the case that all constraints
are non-strict with the understanding that strict constraints can be treated
as described here.

4.2 Consistency Checks

In light of Theorem 4.1.2, one way to show that a set of difference constraints
Γ is consistent is to show that Γ’s constraint graph G contains no negative
cycle. This in turn can be accomplished by establishing a valid potential
function, which is a function π on the vertices of a graph satisfying π(x) +
c − π(y) ≥ 0 for every edge x c→ y in G. A valid potential function may
readily be used to establish lower bounds on shortest path lengths between
arbitrary vertices (v1, vn):

Σn−1
i=1 π(vi) + ci − π(vi+1) ≥ 0
π(v1)− π(vn) + Σn−1

i=1 ci ≥ 0
Σn−1
i=1 ci ≥ π(vn)− π(v1)

If one considers the case that v1 = vn, it follows immediately that the
existence of a valid potential function guarantees that G contains no negative
cycles. In addition, a valid potential function for a constraint graphG defines
a satisfying assignment for the set Γ of difference constraints used to form
G. In particular, if π is a valid potential function for G, then the function
v 7→ −π(v) is a satisfying assignment for Γ.

In the flexible propagation framework, consistency checks occur during
calls to assign, when a constraint u d→ v is added to the set of assigned con-
straints. If the constraint is labelled ∆, then there is no reason to perform
a consistency check. Otherwise, the constraint is labelled Λ. In this latter
case, assign must perform a consistency check on the set Π∪Σ∪ {u d→ v}.
To solve this problem, we make use of an incremental consistency check-
ing algorithm based largely on an incremental shortest paths and negative
cycle detection algorithm due to Frigioni et al [FMSN98]. The algorithm
and its presentation here are much simpler primarily because Frigioni et
al. maintain extra information in order to solve the fully dynamic shortest
paths problem, whereas this context only demands incremental consistency
checks. In particular, we do not compute single source shortest paths, but
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rather a potential function. This simplification as well as an exposition on
dynamic consistency checking can be found in [RSJ95], which was brought
to our attention after having completed this work.

Before detailing this algorithm, we first formally state the incremental
consistency checking problem in terms of constraint graphs and potential
functions:

Definition 4.2.1 (Incremental Consistency Checking). Given a directed
graph G with weighted edges, a potential function π satisfying π(x) + c −
π(y) ≥ 0 for every edge x c→ y, and an edge u d→ v not in G, find a potential
function π′ for the graph G′ = G ∪ {u d→ v} if one exists.

The complete algorithm for this problem is given in pseudocode in Algo-
rithm 4.2.2. The algorithm maintains a function γ on vertices which holds
a conservative estimate on how much the potential function must change if
the set of constraints is consistent. The function γ is refined by scanning
outgoing edges from vertices for which the value of π′ is known.

Algorithm 4.2.2. Incremental Consistency Check

γ(u)← π(u) + d− π(v)
γ(w)← 0 for all w 6= v
while min(γ) < 0 ∧ γ(u) = 0

s← argmin(γ)
π′(s)← π(s) + γ(s)
γ(s)← 0
for s c→ t ∈ G do

if π′(t) = π(t) then
γ(t)← min{γ(t), π′(s) + c− π(t)}

Incremental consistency checking algorithm, invoked by assign for a con-
straint u d→ v labelled Λ. If the outer loop terminates because γ(u) < 0,
then the set of difference constraints is not consistent. Otherwise, once the
outer loop terminates, π′ is a valid potential function and −π′ defines a
satisfying assignment for the set of difference constraints.

4.2.1 Proof of Correctness and Run Time

Lemma 4.2.3. The value min(γ) is non-decreasing throughout the proce-
dure.
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Proof. Whenever the algorithm updates γ(z) to γ′(z) 6= γ(z) for some vertex
z, it does so either with the value 0, or with the value π′(s)+c−π(t) for some
edge s c→ t in G such that t = z. In the former case, we know γ(z) < 0 by the
termination condition, and in the latter we have γ′(z) = π′(s) + c− π(t) =
(π(s) + c− π(t)) + γ(s) ≥ γ(s), since π(s) + c− π(t) ≥ 0.

Lemma 4.2.4. Assume the algorithm is at the beginning of the outer loop.
Let z be any vertex such that γ(z) < 0. Then there is a path from u to z
with length L(z) = π(z) + γ(z)− π(u).

Proof. By induction on the number of times the outermost loop is executed
At the beginning of the first step, we only need to consider L(v), and the
result obviously holds. We now need to show that if L(z) holds for steps
1..n, then it is true after step n + 1 as well. Towards this end, we call sn
the vertex s as found in the nth refinement step; likewise, we call Ln, π′n,
and γn the values of L, π′, and γ respectively as found at the beginning of
the nth step. By the induction hypothesis, the invariant holds for vertex sn
at the beginning of step n, and moreover we may restrict our attention to
those vertices z such that γn+1(z) 6= γn(z). Now let sn

c→ z be an edge such
that γn+1(z) = π′n+1(sn) + c− π(z) < 0. By the induction hypothesis, there
is a path of length Ln(sn) + c from u to z. Moreover,

Ln+1(z) = π(z) + γn+1(z)− π(u)
= π(z) + π′n+1(sn) + c− π(z)− π(u)
= π′n+1(sn) + c− π(u)
= π(sn) + γn(sn)− π(u) + c

= Ln(sn) + c

Hence L is correct at the beginning of step n+ 1 as well.

Theorem 4.2.5. The algorithm correctly identifies whether or not G′ con-
tains a negative cycle. Moreover, when there is no negative cycle the algo-
rithm establishes a valid potential function for G′.

Proof. We consider the various cases related to termination.

• Case 1. γ(u) < 0. From this it follows that L(u) < 0 and so there is
a negative cycle. In this case, since the DPLL engine will backtrack,
the original potential function π is kept and π′ is discarded.
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• Case 2. min(γ) = 0 and γ(u) = 0 throughout.
In this case we claim π′ is a valid potential function. Let γi be the
value of γ at the beginning of the ith iteration of the outer loop. We
observe that ∀v . π′(v) ≤ π(v) and consider the following cases.

– For each vertex v such that π′(v) < π(v), π′(v) = π(v) +γi(v) for
some refinement step i. Then for every edge v c→ w ∈ G, we have
that γi+1(w) ≤ π′(v)+c−π(w) and so π′(w) ≤ π(w)+γi+1(w) ≤
π(w) +π′(v) + c−π(w) = π′(v) + c. Hence π′(v) + c−π′(w) ≥ 0.

– For each vertex v such that π′(v) = π(v), we have π′(v) + c −
π′(w) = π(v) + c − π′(w) ≥ π(v) + c − π(w) ≥ 0 for every v

c→
w ∈ G

We conclude π′ is a valid potential function with respect to all edges
in G′.

In all cases, the algorithm either identifies the presence of a negative
cycle, or it establishes a valid potential function π′. As noted above, a valid
potential function precludes the existence of a negative cycle.

Theorem 4.2.6. The algorithm runs in time1 O(m+ n log n).

Proof. The algorithm scans every vertex once. If a Fibonacci heap is used
to find argmin(γ) at each step, and for decreases in γ values, then the run
time is O(m+ n log n).

4.2.2 Experiences and Variations

For simplicity, we did not detail how to identify a negative cycle if the set of
constraints is inconsistent. A negative cycle is a minimal inconsistent set of
constraints and is returned by assign in the case of inconsistency. Roughly
speaking, this can be accomplished by keeping track of the last edge x c→ y
along which γ(y) was refined for every vertex. Then every vertex in the
negative cycle will have such an associated edge, those edges will form the
negative cycle and may easily recovered.

In practice we found that the algorithm is much faster if we maintain
for each vertex v a bit indicating whether or not its new potential π′(v)
has been found. With this information at hand, it is straightforward to
update a single potential function rather than keeping two. In addition, this

1Whenever stating the complexity of graph algorithms, we use n for the number of
vertices in the graph and m for the number of edges.
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information can readily be used to skip the O(n) initialization of γ and to
keep only vertices v with γ(v) < 0 in the priority queue. We found that the
algorithm ran faster with a binary priority queue than with a Fibonacci heap,
and also a bit faster when making use of Tarjan’s subtree-enumeration trick
[Tar81, CG96] for SSSP algorithms. Profiling benchmark problems each of
which invokes hundreds of thousands of consistency checks indicated that
this procedure was far less expensive than constraint propagation, although
the two have similar time complexity.

4.3 Propagation

The method tprop described in Section 3.2 is responsible for constraint
propagation. The procedure’s task is to find a set of consequences C of the
current assignment A, and a set of reasons Rc for each consequence c ∈ C.
For difference constraints, by Theorem 4.1.2, this amounts to computing
shortest paths in a constraint graph.

We present a complete incremental method for difference constraint
propagation which makes use of the constraint labels Π,Σ,∆, and Λ. The
constraint propagation is divided into incremental steps, each of which se-
lects a constraint c labelled Σ, relabels c with Π, and then finds the conse-
quences of those constraints labelled Π from the set Σ∪Λ, labelling them ∆.
A single step may or may not find unassigned consequences. On every call
to tprop, these incremental steps occur until either there are no constraints
labelled Σ, or some unassigned consequences are found. Any unassigned
consequences are returned to the DPLL engine for assignment and further
unit propagation. We state the problem of a single incremental step in terms
of constraint graphs and shortest paths below.

Definition 4.3.1 (Incremental complete difference constraint propagation).
Let G,H be two edge disjoint constraint graphs, and let x c→ y ∈ H be a
distinguished edge. Suppose that for every edge u

d→ v ∈ H, the length of
a shortest path from u to v in G exceeds d. Let G′ = G ∪ {x c→ y} and
H ′ = H \ {x c→ y}. Find the set of all edges u d→ v in H ′ such that the
length of a shortest path from u to v in G′ does not exceed d.

The preconditions relating the graphs G and H are a result of labelling
and complete propagation. If all consequences of G are found and removed
from H prior to every step, then no consequences of G are found in H and
so the length of a shortest path from x to y in G exceeds the weight of any
edge u d→ v ∈ H.
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YX Z

Figure 4.2: An example graph showing δ-relevant vertices with respect to
the edge (x, y). For simplicity, all edges are assumed to have weight 1. The
relevant vertices are white and the irrelevant vertices are shaded. As an
example, the vertex z is not δ→x -relevant because there is a shortest path
from x to z which does not pass through y. As a result, any constraint
u

d→ z ∈ H ′ is not member of the incremental complete propagation solution
set.

As presented by Nieuwenhuis et al. [NO05], this problem may be reduced
to solving two SSSP problems. First, for the graph G′, the SSSP weights
δ→y from y are computed and then SSSP weights δ←x to x are computed,
the latter being accomplished simply by computing δ→x in the reverse graph.
Then for any constraint u d→ v ∈ H ′, the weight of the shortest path from u
to v passing through x

c→ y in G′ is given in constant time by δ←x (u) + c+
δ→y (v). In accordance with Theorem 4.1.2, the weight of this path determines

whether or not the constraint u d→ v is implied, in particular by the condition
δ←x (u) + c + δ→y (v) ≤ d. It then suffices to check every constraint in H ′ in
this fashion. We now present several improvements to this methodology.

4.3.1 Completeness, Candidate Pruning, and Early Termi-
nation

A slight reformulation of the method above allows for early termination of
the SSSP computations under certain conditions. That is, nodes for which
it becomes clear that their minimal distance will not be improved due to
the insertion of x c→ y to the constraint graph will not be explored. We
introduce the idea of relevancy below to formalize how we can identify such
vertices and give an example in Figure 4.2. For a new edge x c→ y, relevancy
is based on shortest path distances δ→x (from x) and δ←y (to y), in contrast
to the formulation above. Under this new formulation, if the shortest path
from u to v passes through x c→ y, then the path length is δ←y (u)+δ→x (v)−c.
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Definition 4.3.2 (δ-relevancy with respect to x
c→ y). A vertex z is δ→x -

relevant if every shortest path from x to z passes through x
c→ y; similarly,

a vertex z is δ←y -relevant if every shortest path from z to y passes through

x
c→ y. A constraint u d→ v is δ-relevant if both u is δ←y -relevant and v

is δ→x -relevant. A set C of constraints is δ-relevant if every u
d→ v ∈ C is

δ-relevant.

Lemma 4.3.3. The solution set for complete incremental difference con-
straint propagation is δ-relevant.

Proof. Let x c→ y be the new edge in G, and suppose for a contradiction that
some constraint u d→ v ∈ H ′ in the solution set is not δ-relevant. Then the
length of a shortest path from u to v in G′ does not exceed d. By definition
of δ-relevancy, some path p from u to v in G′ which does not pass through
x

c→ y is at least as short as the shortest path from u to v passing through
x

c→ y. Observe that p is a path in G. By the problem definition, u d→ v 6∈ H
and H ′ ⊂ H. Hence u d→ v 6∈ H ′, a contradiction.

Corollary 4.3.4 (Early Termination). It suffices to check every δ-relevant
member of H ′ for membership in the solution set. As a result, each SSSP
algorithm computing δ ∈ {δ→x , δ←y } need only compute correct shortest path
distances for δ-relevant vertices.

Early termination is fairly easy to implement with most SSSP algorithms
in the incremental constraint propagation context. First, for δ ∈ {δ→x , δ←y },
we maintain a label for each vertex indicating whether or not it is δ-relevant.
We then define an order ≺ over shortest path distances of vertices in a way
that favors irrelevancy:

δ(u) ≺ δ(v) ⇐⇒ δ(u) < δ(v) or


δ(u) = δ(v)
u is δ-irrelevant
v is δ-relevant

Since the new constraint x c→ y is a unique shortest path, we initially give
y the label δ→x -relevant and x the label δ←y -relevant. During the SSSP com-

putation of δ, whenever an edge u d→ v is found such that δ(u) ≺ δ(v) + d,
the distance to v is updated and we propagate u’s δ-relevancy label to v. If
at any point in time all such edges are not δ-relevant, then the algorithm
may terminate.

To facilitate checking only δ-relevant constraints in H ′, one may adopt
a trick described in [NO05] for checking only a reachable subset of H ′. In
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particular, one may maintain the constraint graph H ′ in an adjacency list
form which allows iteration over incoming and outgoing edges for each vertex
as well as finding the in- and out-degree of each vertex. If the sets of δ→x -
relevant and δ←y -relevant vertices are maintained during the SSSP algorithm,
the smaller of these two sets, measured by total in- or out-degree in H ′, may
be used to iterate over a subset of constraints in H ′ which need to be checked.

4.3.2 Choice of Shortest Path Algorithm

There are many shortest path algorithms, and it is natural to ask which one
is best suited to this context. An important observation is that whenever
shortest paths δ→x or δ←y are computed, the graph G has been subject to
a consistency check. Consistency checks establish a potential function π
which can be used to speed up the shortest path computations a great
deal. In particular, as was first observed by Johnson [Joh77], we can use
π(x)+c−π(y) as an alternate, non-negative edge weight for each edge x c→ y.
This weight is called the reduced cost of the edge. The weight w of path p
from a to b under reduced costs is non-negative and the original weight of
p, that is, without using reduced costs, is easily retrieved as w + π(b) −
π(a). Our implementation of constraint propagation exploits this property
by using an algorithm for shortest paths on graphs with non-negative edge
weights. The most common such algorithm is Dijkstra’s [Dij59], which runs
in O(m+n log n) time. This is an improvement over algorithms which allow
arbitrary edge weights, the best of which run in O(mn) time [CLRS90]. A
direct result follows.

Theorem 4.3.5. Complete incremental difference constraint propagation
can be accomplished in O(m + n log n + |H ′|) time where m is the num-
ber of assigned constraints, n the number of variables occurring in assigned
constraints, and H ′ is the set of unassigned constraints.

Proof. The worst case execution time of finding all consequences over a
sequence of calls to assign and tprop, is O(m+ n log n+ |H ′|) per call to
tprop and O(m+ n log n) per call to assign. Thus if every call to assign
is followed by a call to tprop, then the combined time for both calls is
O(m+ n log n+ |H ′|).

4.3.3 Adaptation of a Fast SSSP Algorithm

In order to fully exploit the use of the potential function in constraint prop-
agation, we make use of a state-of-the-art SSSP algorithm for a graph with
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non-negative edge weights. In particular, we implemented (our own inter-
pretation of) Goldberg’s smart-queue algorithm [Gol01]. The application
of this algorithm to difference constraint propagation context is non-trivial
because it makes use of a heuristic requiring that we keep track of some in-
formation for each vertex as the graph Π and its potential function changes.
Even in the face of the extra book-keeping the algorithm turns out to run
significantly faster than standard implementations of Dijkstra’s algorithm
with a Fibonacci heap or a binary priority queue.

The smart-queue algorithm is a priority queue based SSSP algorithm for
a graph with non-negative edge weights which maintains a priority queue
on vertices. Each vertex is prioritized according to the shortest known path
from the source to it. The smart-queue algorithm also makes use of the
caliber heuristic which maintains for each vertex the minimum weight of
any edge leading to it. This weight is called the caliber of the vertex. After
removing the minimum element of distance d from the priority queue, d
serves as a lower bound on the distance to all remaining vertices. When
scanning a vertex, we know the lower bound d, and if we come across a
vertex v with caliber cv and tentative distance dv, we know that the distance
dv is exact if d+ cv ≥ dv. Vertices whose distance is known to be exact are
not put in the priority queue, and may be removed from the priority queue
prematurely if they are already there. The algorithm scans exact vertices
greedily in depth first order. When no exact vertices are known it backs
off to use the priority queue to determine a new lower bound. The priority
queue is based on lazy radix sort, and allows for constant time removal of
vertices. For full details, the reader is referred to [Gol01].

In this context, the caliber of a vertex may change whenever either the
graph Π or its potential function changes. This in turn requires that the
graph Π be calibrated before each call to tprop. Calibration may be accom-
plished with linear cost simply by traversing the graph Π once prior to each
such call. However, we found that if, between calls to tprop, we keep track
of those vertices whose potential changes as well as those vertices which have
had an edge removed during backtracking, then we can reduced the cost of
re-calibration. In particular, the re-calibration associated with each call to
tprop can then be restricted to the subgraph which is reachable in one step
from any such affected vertex.
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4.4 Experiments

We present various comparisons between different methods for difference
constraint propagation. With one exception, the different methods are im-
plemented in the same basic system: a Java implementation of flexible prop-
agation which we call Jat. The underlying DPLL solver is fairly standard
with two literal watching [MSS96], 1UIP clause learning and VSID+stack
heuristics [GN02] as in the current version of ZChaff [MMZ+01], and conflict
clause minimization as in MiniSat [ES05]. Within this fixed framework, we
implemented reachability-based and relevancy-based early termination. We
also implemented the eager, exhaustive propagation strategy of DPLL(T)
for comparison with our lazy, flexible propagation strategy. We present a
comparison of reachability-based and relevancy-based early termination in
Figure 4.3 as well as a comparison of lazy and eager strategies in Figure
4.4. These comparisons are performed on scheduling problems encoded as
difference logic satisfiability problems on a 2.4GHz intel based box running
Linux. The scheduling problems are taken from standard benchmarks, pre-
dominately from the SMT-LIB QF RDL section [RT03]. In Figure 4.5, we
also present a comparison of our best configuration, implemented in Java,
against BarceLogicTools (BCLT) which is implemented in C and which, in
2005, won the SMT competition for difference logic.

Job-shop scheduling problems encoded as difference logic satisfiability
problems, like the ones used in our experiments, are strongly numerically
constrained and weakly propositionally constrained. These problems are
hence a relatively pure measure of the efficiency of difference constraint
propagation. While it seems that our approach outperforms the others on
these types of problems2, this is no longer the case when Boolean constraints
play a stronger role. In fact, BCLT is several times faster than Jat on many
of the other types of difference logic problems in SMT-LIB. Upon profiling
Jat, we found that on all the non-scheduling problems in SMT-LIB, Jat was
spending the vast majority of its time doing unit propagation, whereas in the
scheduling problems Jat was spending the vast majority of its time doing dif-
ference constraint propagation. Although it is at best difficult to account for
the difference in implementations and programming language, this suggests
that the techniques for difference constraint propagation presented in this
paper are efficient, in particular for problems in which numerical constraints
play a strong role.

2Although we have few direct comparisons, this is suggested by the fact that BCLT did
outperform the others in a recent contest on scheduling problems, and that our experiments
indicate that our approach outperforms BCLT on the same problems.
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Figure 4.3: A comparison of relevancy based early termination and reach-
ability based early termination. The relevancy based early termination is
consistently faster and the speed difference is roughly proportional to the
difficulty of the underlying problem.
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4.5 Conclusion

Our optimal difference logic engine incorporates efficient shortest paths al-
gorithms in the framework of flexible propagation. Previously, exhaustive
propagation in the DPLL(T) framework was the best known method for this
class of problems. That work was based partly on the fact that consistency
checks may be avoided as a result of exhaustive propagation. However,
we demonstrated that in the case of difference logic, consistency checks in
fact speed up propagation – both in theoretical worst-case terms and prac-
tically. Additionally, experiments demonstrated a significant performance
advantage of using two-level flexible propagation to delay more expensive
operations.
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Figure 4.4: A comparison of laziness and eagerness in theory propagation
for difference logic. Both lazy and eager implementations use relevancy
based early termination and the same underlying SSSP algorithm. The
lazy strategy is in general significantly faster than the eager strategy. This
difference arises because the eager strategy performs constraint propagation
more frequently.
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Figure 4.5: Jat with lazy propagation and relevancy based early termina-
tion compared with BarceLogicTools [NO05] on job-shop scheduling prob-
lems. The Jat propagation algorithm uses consistency checks and Goldberg’s
smart-queue SSSP algorithm as described in this paper, and is implemented
in Java. Assuming BarceLogicTools hasn’t changed since [NO05], it uses
no consistency checks, eager propagation, a depth first search SSSP based
O(mn) propagation algorithm, and is implemented in C. The Jat solver is
generally faster.
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Chapter 5

On Model Search with
Linear Arithmetic

In this chapter we present a case study of the extent to which various proper-
ties of DPLL search are applicable to direct model search for infinite domain
problems, in particular with respect to the UCS algorithm. The object of
this study is the domain of linear arithmetic, which is sufficiently rich to
offer a range of problematics and widely applicable enough to be well worth
study in its own right.

This chapter is organized as follows. Section 5.1 defines the problems
we wish to solve and discusses related work. Section 5.2 outlines the ma-
jor gaps between UCS and DPLL in order to establish a focus on these
issues. Sections 5.3 presents resolution. Section 5.4 considers branch selec-
tion and backtracking, which are tied together for technical reasons. Section
5.5 presents an implementation of UCS for continuous linear arithmetic, in-
cluding backtrack-friendly lazy mechanisms for consistency checking and
evaluation. Section 5.6 presents a number of experiments on a limited set
of problems. Section 5.7 concludes.

67



68 CHAPTER 5. ON MODEL SEARCH WITH LINEAR ARITHMETIC

5.1 Problem Statement

UCS addresses problems presented in conjunctive normal form. For linear
arithmetic, such problems may look like

((2x− 7y ≤ 43) ∨ (2x+ 7y + z > 42) ∨ (x > 9))
∧
((2x− 7y ≤ 41) ∨ (2x+ 7y + z > 49) ∨ (z ≤ 0))
∧
. . .
((x < 0 ∨ x > 0))

This is strictly a subset of what is handled by most SMT linear arithmetic
solvers such as Yices and Z3, since there are no propositional variables. How-
ever, one can code propositional variables v as linear predicates by creating
an associated numeric variable vn and introducing new satisfiable predicates
pv(vn), qv(vn) such that pv∧qv is unsatisfiable; taking pv for the literal v and
qv for the literal ¬v, the resulting formula is equisatisfiable to the original.
However, SMT solvers usually treat propositional variables in a more opti-
mized fashion as they are treated in modern DPLL solvers. Thus we would
expect different behavior resulting from this encoding. At the same time,
working with this restricted format helps focus our attention on instantiat-
ing UCS for linear arithmetic rather than on how to combine different types
of variables, which is a topic of future work.

More formally, we will assume that our problem format is a conjunction∧
D where each d ∈ D is a disjunction

∨
P and each p ∈ P is a linear

predicate. For convenience, we also assume that each linear predicate p is
either in the form Σiaixi ≤ b or the form Σiaixi < b and moreover that
all the coefficients ai and b are integers which share no common divisor. In
Section 5.5.1, we describe how we normalize predicates to this form using a
standard method.

5.1.1 Related Work

A model search algorithm (GDPLL-QFLRA) for the class of problems de-
fined above was presented in [MKS09]. UCS may be viewed as a variant
of GDPLL-QFLRA with dynamic variable orderings and clause forgetting.
While the formal UCS algorithm achieves termination with dynamic variable
orderings by tree-like resolution, we experiment primarily with dynamic vari-
able orderings with clause recording, which is incomplete. In our experience
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this usually performs better than the complete formal algorithm. Nonethe-
less, UCS provides one basis on which dynamic variable orderings may be
applied without sacrificing termination.

Most solvers capable of dealing with this class of problems fall in the
category of lazy SMT solvers. Most of these, in turn, follow the architec-
ture spelled out in [DdM06], which uses an incremental simplex method
together with preprocessing and bounds propagation. This general frame-
work has proven more effective than most and some of the available solvers
are highly optimized. The method reported in [KV05] performs on-the-fly
Fourier-Motzkin elimination of an interpreted literal with respect to the un-
interpreted literals. This work is closer to ours in that theory deductions are
performed and also in that to a limited extent their method allows search
over models.

5.2 Differences between UCS and DPLL

In this section we discuss the differences between UCS and DPLL. We invite
the reader to recall Section 3.3, in particular with respect to Algorithm 3.3.1
and the requirements for the procedures select(), isUC() and resolve().

Space Efficiency

Perhaps the most important aspect of DPLL based solvers in comparison to
other methods in propositional reasoning is the fact that such solvers can
be space efficient. While solvers often do make use of a lot of space, they
have the capacity to operate with very limited space. This allows one to
control the amount of used space in an effort to find solutions quickly, for
example by effective clause garbage collection. The unate consistent search
algorithm provides a hint of how one may accomplish space efficiency in a
given instantiation but it provides no such guarantee. In particular, Theo-
rem 3.3.4 demonstrates that the algorithm makes progress even though it
forgets learned clauses. Nonetheless UCS provides no bounds on the number
or size of clauses. We present cubic space bounds in the number of variables
for the worst case minimal number of coefficients necessary to represent
clauses and guarantee progress. This is accomplished by a cooperation be-
tween resolution and branching. We note that unlike in propositional logic,
where small clauses are stronger than large ones, our space bounds are de-
rived in part by making learned clauses smaller in a fashion which weakens
them. This highlights that space efficiency does not readily generalize from
DPLL to UCS.



70 CHAPTER 5. ON MODEL SEARCH WITH LINEAR ARITHMETIC

Learning and Branching

Modern DPLL solvers benefit largely not only from learning clauses, but
also from the careful construction of learned clauses. In particular, con-
flict analysis attempts to find a succinct reason behind a dead end in the
search. We thus would like our solver to clearly identify a minimal set of
resolution steps necessary to derive such a succinct clause. In Section 5.3.2,
we present a conflict analysis mechanism which efficiently produces a min-
imal number of clause resolution steps to derive learned clauses. However,
in the UCS algorithm, clause resolution steps are abstracted away and are
determined on the fly during backtracking. With DPLL solvers, clause reso-
lution steps correspond to variable resolution steps and a global implication
graph is available for exploiting topological properties (such as 1UIP and
self-subsumption minimal clauses). It is not yet clear how such properties
may generalize to the case of UCS algorithms, as the issue of global topo-
logical properties is complicated by the fact that more than one clause may
play a role in constraining a variable.

More importantly, DPLL solvers can make use of unconstrained resolu-
tion without sacrificing termination because only a finite number of clauses
can be derived. In the case of linear arithmetic, termination requires some
form of constraint on resolution. In GDPLL-QFLRA, resolution is directed
and so termination is guaranteed. In UCS, if the resolution is regular, then
termination is guaranteed, but the most straightforward ways of accomplish-
ing this are by using a fixed variable ordering or tree-like resolution, both
of which are severely restrictive.

Restricting resolution in these ways complicates the question of the role
of variable selection. Nonetheless, variable selection is meaningful in the
context of an incomplete solver (with clause recording) or in the context of
a complete solver which forgets clauses (with treelike resolution).

Lazy Evaluation and Consistency Checking

The ideas behind backtrack-friendly data structures such as two literal
watching may be extended to the UCS context. Section 5.5.4 presents a
method for performing numerical evaluation lazily without updating the
clause or predicate databases during backtracking. Section 5.5.2 presents a
method for maintaining unate consistency inspired by two literal watching.
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Control Flow

The control flow of UCS differs from DPLL primarily in that it is nec-
essary to interleave consistency checks with backtracking and resolution.
We illustrate the problem by considering a point in UC-Search at which a
learned clause w containing some variables is derived. Since w is false un-
der the assignment at this point, there is some variable x ∈ vars(w) which
is assigned deepest in the search, and there is a corresponding assignment
α ∪ {x 7→ a} passed as an argument to UC-Search. Referring to Algorithm
3.3.1 (page 43), this call occurs at line 5. The subsequent call (line 9) takes
the form UC-Search(φ ∧ w,α). This in turn induces a unate consistency
check on (φ ∧ w)[α], which may or may not succeed. If it does not suc-
ceed, a new clause will be derived and the backtrack sequence will continue.
This variable-wise daisy-chaining of resolution, backtracking and consistency
checks degenerates in the propositional case to a search over the implication
graph; allowing the procedure to unassign variables after the final learned
clause is derived. In UC-Search, this mechanism is more complicated.

5.3 Resolution

The most substantive challenge to instantiating linear arithmetic for UCS
is the design of the procedure resolve(). Resolution occurs under the
following conditions

1. There is a working set of clauses φ ≡
∧
D.

2. There is a partial variable assignment α.

3. There is a variable x ∈ vars(φ[α]) such that φ[α]|x is unsatisfiable.

We are charged with producing a clause w such that

1. φ |= w

2. w[α] contains only constants and evaluates to false.
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5.3.1 Unate Resolution

To address this problem, consider an unsatisfiable set of unate clauses about
the variable x. For example,

(x > 1) ∨ (x > 2)
∧ (x < 9) ∨ (x < 0)
∧ (x < 0) ∨ (x > 3)
∧ (x < 2) ∨ (x > 5)
∧ (x < 4) ∨ (x > 6)
∧ (x < 5) ∨ (x > 8)
∧ (x < 7) ∨ (x > 10)

In the example, each clause d excludes an interval [ld..ud] from the set of
feasible assignments for x, even though the clause may contain several upper
or lower bounded predicates. In particular, one may simplify any clause d
containing only strict predicates to the following form

d ≡ x < max({u | (x < u) ∈ d} ∪ {−∞})
∨
x > min({u | (x > u) ∈ d} ∪ {∞})

where x >∞ and x < −∞ are taken to be false. More generally, for mixed
strict and non-strict comparison, one can disjoin a weakest representative
of all the lower bounds (or just false if there are no lower bounds) with a
weakest representative of all the upper bounds (or just false if there are no
upper bounds).

Once clauses have been so normalized, it is useful to identify a minimal
subset of them which eliminates the variable x. Towards that end, consider
the following

Proposition 5.3.1. Minimal Unate Unsatisfiability
Let C ≡

∧
D be a set of unate clauses. Then C is unsatisfiable if and only

if there is a chain of non-trivial clauses

d1, d2, . . . dn

such that

1. n ≥ 2

2. d1 contains no lower bound predicates.

3. dn contains no upper bound predicates.
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Figure 5.1: A pictorial representation of an unsatisfiable set of unate clauses.
Each horizontal line represents a clause as the interval forbidden by a clause.
Clauses which do not forbid an interval are considered trivial and are not
represented. The endpoints of the lines have the following meanings. If
there is no endpoint on the left (resp. right) then the clause has no upper
bound (resp. lower bound). If an endpoint is filled, then the bound is strict
and the forbidden interval includes the endpoint. If an endpoint is not filled,
then the bound is not strict and the forbidden interval does not include the
endpoint. The set of bold lines represents a (in this case unique) minimal
set of unsatisfiable clauses.

4. The weakest upper bound of di is incompatible with the weakest lower
bound of di+1 for 1 ≤ i < n.

Moreover, the set {d1, d2, . . . , dn} is minimal if the weakest upper bound of
di+1 is stronger than the weakest upper bound of di for 1 ≤ i < n and the
weakest lower bound of di+1 is not incompatible with the weakest upper
bound of di−1.

Rather than give a formal proof of Proposition 5.3.1, we refer the reader
to Figure 5.1.

5.3.2 Resolution with Predicates

The task of deriving a resolvent for predicates which have multiple vari-
ables may be divided into 3 components: transitivity, pairs of clauses, and
eliminating a variable from a chain of clauses.

Transitivity

Consider the following proof rule

f < x, x < g

f < g
(T )
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The rule simply enforces transitivity of <. One can easily generalize the rule
to incorporate mixed strict and non-strict predicates: if both predicates are
non-strict, then the result is non-strict and otherwise the result is strict.
This proof rule forms the foundation of Fourier-Motzkin elimination, a well
known doubly exponential method for eliminating a set of variables from a
conjunction of linear predicates.

Referring again to the unate case, one always derives a comparison of
constants, which always evaluate to true or false. For example

3 < x, x < 2
3 < 2

This provides a basis for which we can derive predicates from pairs of in-
compatible predicates which are weakest in each clause. To accommodate
the non-unate case, we simply think of the constants from the unate case
as functions which happen to give rise to inconsistent constants under the
current assignment. For example, let α = {x 7→ 0} and consider the con-
junction

(x− y < −3) ∧ (x+ y < 1)

Under the assignment, this simplifies to y > 3 ∧ y < 1. Centering the
predicates above around y gives

x+ 3 < y, y < 1− x
x+ 3 < 1− x

which simplifies to x < −1.

Resolving 2 Clauses

Let l, u be two clauses, let x be a variable and α a partial assignment.
Suppose that l[α] and u[α] have no true predicates, are unate about x, and
that a weakest lower bound on x in l[α] is incompatible with a weakest
upper bound on x in u[α], as in Proposition 5.3.1. As in GDPLL-QFLRA
[MKS09], one may apply the transitivity rule to all pairs of x-lower bounds
in l and x-upper bounds in u, resulting in a set of predicates Tx. Let l′ be
the subclause of l which contains no x-lower bounds and u′ be the subclause
of u which contains no x-upper bounds. It is straightforward to derive a
clause resolution rule which concludes

∨
Tx ∨ l′ ∨ u′ from l and u, which we

denote by l ⊗x u. This leads to the following

Theorem 5.3.2. Correctness of Clause Resolution
Let l, u be two clauses, and x a variable such that l contains a lower bound
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on x while u contains an upper bound on x. Then

l ∧ u |= l ⊗x u

Proof. Take the DNF of l ∧ u, apply transitivity to all terms containing
mixed upper and lower bounds on x, translate back to CNF.

Example 5.3.3. Clause Resolution
Consider the clauses

l $ (x > 4) ∨ (x < 17)
u $ (x < y) ∨ (x < z) ∨ (x > 32) ∨ (z < 0)

Then l ⊗x u is

(y > 4) ∨ (z > 4) ∨ (x < 17) ∨ (x > 32) ∨ (z < 0)

Eliminating a variable

Eliminating a variable x occurs when there is a set of unate clauses φ[α]|x
which is unsatisfiable. One can think of φ[α]|x as evaluation under the
assignment α, where this evaluation is a sort of a mask over the real set of
clauses which are unsatisfiable. Namely, suppose φ[α]|x =

∧
D. Each d ∈ D

corresponds to a clause d′ occurring in φ which is unate around x under α.
Note that we can assume that d′[α] contains no true predicates; otherwise
it would not contribute to the unsatisfiability of φ[α]|x.

Proposition 5.3.1 identifies a minimal set of unsatisfiable unate clauses
in the form of a chain

(c1, c2, . . . ck)

of mutually incompatible forbidden intervals such that c1 contains only up-
per bounds over x and ck contains only lower bounds over x To eliminate a
variable we simply resolve along this chain as follows. Let r1 $ c′1⊗x c′2 and
ri $ ri−1 ⊗x c′i+1 for 1 < i < k. We then claim the following theorem.

Theorem 5.3.4. Sufficiency of Elimination for Progress
Let φ, α, x be such that φ[α]|x is unsatisfiable. Let (c1, c2, . . . , ck) be the
minimal chain of unsatisfiable unate clauses defined in Proposition 5.3.1 and
let ri be defined as above for 1 ≤ i < k. Then rk−1 is sufficient for progress
(Theorem 3.3.4) .

Proof. (sketch) We need to show that

1. φ |= rk−1.
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2. rk−1[α] is variable free and evaluates to false.

The first item follows from Theorem 5.3.2 and the fact that rk−1 is the
resolvent of clauses found in φ.

To show that rk−1[α] is variable free, we first observe that vars(c′i[α]) =
{x}, 1 ≤ i ≤ k since the ci are unate about x by assumption. Since resolution
does not introduce variables, we need only to show that x 6∈ vars(rk−1).
We consider the chain c1 . . . ck and observe that since c1 contains no lower
bounds on x, r1 contains no lower bounds on x. The same holds true for
all ri by induction. Hence we need only show that rk−1 contains no upper
bounds on x. Since ck contains no upper bounds, the final resolution step
eliminates x. Thus rk−1 is variable free.

To show that rk−1 evaluates to false under α, it suffices to consider case
by case all the possible predicates which are added to rk−1 in the definition
of resolution.

Observe that variable elimination is specific in the sense of Definition
3.3.5, namely resolution only takes into account x-unate clauses in eliminat-
ing x. We also want to establish that elimination has finite width. Towards
that end, consider that the set of possible unsatisfiable chains of clauses, as
in Proposition 5.3.1 is finite, and so we can establish finite width by showing
that clause resolution is finite. Since the transitivity rule has exactly one
result for every pair of x-predicates of opposite sign for x, the number of
predicates that can be generated in one step is finite. We can then con-
clude that variable elimination is a sufficient implementation of resolve for
termination, as in Theorem 3.3.9.

5.3.3 Space Efficiency

Resolution leads to the possibility of clause growth. To address this issue,
we consider a simple notion of clause normalization. Consider two linear
predicates f < a, f < b where a, b are constants such that a < b. Then the
disjunction (f < a)∨ (f < b) is equivalent to (f < b). Assuming clauses are
simplified according to this observation, the only way that clauses can grow
beyond some bound n is when there are more than n predicates f < a, each
with a distinct f . As a result, some classes of linear constraints cannot grow
exponentially. For example, in a problem with simple unate bounds x < a
or x > a, there will be at most two predicates over each variable in a clause.
Similarly, in a difference logic problem, no clause will contain more than the
square of the number of variables. However, it is straightforward to create
a problem with arbitrary linear constraints which may induce exponential
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clause growth. In situations where clause growth becomes a problem, it may
be advantageous to consider a method for deriving smaller clauses. To this
end, we present the notion of weakening.

Weakness

For generating a proof that a predicate is a weakest predicate in a clause,
one may begin with the unate case and then generalize it by substituting
constants with functions. Consider the following proof rules

x < a ∨ x < b
x < a ∨ a < b

(wk<) x > a ∨ x > b
x > a ∨ a > b

(wk>)

For example in the unate case, consider the clause

x < 3 ∨ x < 5

From this clause we can derive

x < 5 ∨ 5 < 3

or we can derive
x < 3 ∨ 3 < 5

The former simplifies to x < 5 while the later simplifies to true.
To extend the weakness rules to address mixed strict and non-strict

bounds, observe that the rules are essentially stating “either predicate p(x)
is true or it is not the weakest predicate on x in the disjunction”. In applying
these rules, the strictness of p carries to the conclusion, but strict comparison
is always used to say that p is not the weakest predicate. For example,

x ≤ f ∨ x ≤ g
x ≤ f ∨ f < g

or likewise
x < f ∨ x ≤ g
x < f ∨ f < g

Given a clause l, an assignment α, and a variable x such that l[α] is unate
about x and contains a lower bound on x, we write wk>(l, α) to denote the
clause l′ resulting from all possible applications of the rule wk> about x,
where a weakest predicate is selected with respect α. Similarly, we write
wk<(u, α) to denote the clause u′ resulting from all possible applications of
the rule wk< about x to the clause u where a weakest predicate is selected
with respect to α.
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Example 5.3.5. Applying Weakness
Consider the clause

w $ (x < 0) ∨ (x < 3) ∨ (x < y) ∨ (x > 7) ∨ (z > f)

and the assignment α $ {y 7→ 5} then

wk<(w,α) = (x < y) ∨ (y < 3) ∨ (y < 0) ∨ (x > 7) ∨ (z > f)

and
wk>(w,α) = w

One can apply the weakness rules one variable at a time to learned
clauses with respect to the current assignment. Once the rules have been
applied with respect to one variable x, there are at most two associated
predicates hx, lx which still contain that variable. It is then possible to
apply the weakness rules to all the predicates in the clause except hx, lx with
respect to a new variable. This process may continue recursively on smaller
and smaller subclauses until there are at most two predicates attributed to
each variable.

As a result, we have a tool at our disposal which can limit the size of
learned clauses so that they contain at most twice as many predicates as
variables. Note that this still does not address the issue of the total number
of learned clauses, which can also grow exponentially in the UCS framework
despite the fact that it forgets learned clauses. Section 5.4 addresses this
issue.

Generally, there is a time-space tradeoff involved in applying the weak-
ness rules, since the rules do in fact weaken clauses. As a result, we expect
that weakening should be used sparingly in any implementation.

5.3.4 Strict Bounds Again

Working with strict bounds with continuous variable domains is problematic
for branching on extreme points. In [DdM06], this issue is addressed by
extending the domain of the variables from rationals to pairs of rationals
(v, e), where e is the coefficient of a symbolic positive infinitesimal ε. One can
define ordering over this extended domain in the natural way, where e always
is less important than v. Also, one can define addition (v, e) + (v′, e′) $
(v + v′, e + e′) and likewise multiplication by a rational r(v, e) $ (rv, re).
With this extended domain semantics, it is straightforward to evaluate a
linear expression and then compare the result to a constant. Consider also
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that f < g is equisatisfiable to f + ε ≤ g for some positive ε. This property
lifts to systems of inequalities and further to arbitrary Boolean combinations
by translation to DNF. Hence, it is also possible to translate a formula to
an equisatisfiable formula without strict inequalities.

In [DdM06], these two observations are put together to allow simplex
pivots on extreme points without the need to keep the variable ε explicit in
the simplex tableau. One may similarly consider an extended variable do-
main semantics together with non-strict inequalities which may contain the
special variable ε in a UCS instantiation for continuous linear arithmetic.
This idea is attractive because it can be used to guarantee that the clauses
which constrain a variable chain together. However, one needs to re-consider
the transitivity and weakness proof rules in light of this representation. In
particular, the transitivity rule no longer distinguishes between strict and
non-strict predicates and instead computes the coefficient of ε in the conclu-
sion in the same manner one computes the coefficient of any other variable.
As presented above, the weakness rules explicitly introduce strict predicates.
Rather than introducing strict predicates, we have these rules increment the
ε coefficient. This representation is only necessary for branching on corners,
and branching on corners in turn is only necessary to guarantee that the
mechanism we describe to limit the number of learned clauses per variable
works without any a priori numeric analysis.

5.4 Branching, Backtracking, Learning, and Ter-
mination

The selection of a variable and its associated value may be considered as a
branch, the intuition being that the underlying search tree has a potentially
infinite number of branches. Branching selection is of course very important
in terms of heuristics. However, the problem of branching is also related to
the problem of completeness. Recall that Theorem 3.3.9 (page 48) demands
that the process be exhaustively asserting. In addition, a subtle point about
branching and the property of exhaustive assertiveness arises when we con-
sider a process that backtracks more deeply than indicated in the formal
UCS algorithm. In particular, suppose that upon learning a clause w∨p, we
backtrack to the smallest assignment α under which w[α] is false and p[α] is
x-unate. In this case, the practice of always choosing x for the next branch
resembles exhaustive assertiveness. However, with this type of assertion-
level backtracking, it is possible to derive another clause w ∨ q where q[α] is
y-unate for some variable y distinct from x. If we choose y at this point, then



80 CHAPTER 5. ON MODEL SEARCH WITH LINEAR ARITHMETIC

the process may use w ∨ p as an antecedent of subsequent learned clauses
and similarly if we choose x the process may use w ∨ q as an antecedent of
subsequent learned clauses. Both cases introduce the possibility of infinite
chains of deduction.

Consider a branching mechanism which allows assertion level backtrack-
ing whenever possible and slowly builds up fixed-order variable selection
chains whenever the above situation occurs. In particular, we can ensure
that upon backtracking to α, we always select x and whenever we arrive at
α ∪ {x 7→ a} we always select y. This can be easily implemented by associ-
ating an exhausting variable with each branch depth. Whenever the process
selects a variable, it first checks to see whether there is an exhausting vari-
able associated with the current branch depth. If so, the exhausting variable
is selected and if not a dynamic variable choice may be made. Whenever the
process unassigns a variable at a given depth, the exhausting variable asso-
ciated with that depth becomes nullified. To compute a deeper-than-natural
backtrack level, first compute the asserting backtrack depth and then follow
any chain of exhausting variables to the end, yielding an extended assert-
ing backtrack level. This mechanism retains the necessary properties for
restricted resolution (Theorem 3.3.7), and so termination follows if the pro-
cess forgets clauses.

The problem of restricting resolution to a bounded set while retaining
progress is difficult. There are many possible methods of accomplishing this,
often requiring dedicated implementations while there is no guarantee the
result will prove worthy. It is possible, for example, to retain progress while
bounding the derivation height of the proof graph. It is also possible to
derive a fixed variable order during the solution process, for example by
dampening the effect of VSIDs over time.

Limiting the Number of Learned Clauses

Consider what happens when a clause w is recorded after a maximal back-
track sequence. The clause w excludes some portion of the feasible space for
some variable x. We branch with the variable x on the corner of the max-
imal forbidden interval containing the space forbidden by w. Denote by Iw
this interval. Consider a subsequent learned clause w′ which also constrains
x. Since w′ excludes a point which is adjacent to Iw, the resulting maximal
forbidden interval Iw′ contains Iw. As a result, we can replace w and w′

with the resolvent associated with a chain of clauses excluding Iw′ . Using
this mechanism, it is possible to retain only one learned clause per assigned
variable. Taken together with weakening rules described in Section 5.3.3,
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we arrive at cubic space bounds for the total number of coefficients required
to maintain progress.

5.5 Implementing UCS

We describe here the implementation of our UCS LA solver used in the ex-
periments below. There is a wide space of possibilities for the design of basic
data structures and algorithms used in this context. We have certainly only
explored and experimented with a small fragment of the available options.

Our solver has an expression graph front end which allows one to pro-
duce Boolean combinations of linear predicates and propositional variables
via a programming interface. These expression graphs are translated by
encoding Boolean values such as the propositional variables and Tseitiniza-
tion variables as predicates over continuous variables. Given an expression
graph with a root expression, one can create a solver and ask it to solve
the formula. Our solver cannot treat propositional variables in the way
that a DPLL solver would. This is impractical but allows for much simpler
implementation and for a more focused study of the problems involved in
generalizing DPLL.

5.5.1 Representing Predicates and Clauses

Predicate Representation

We maintain predicates in the form

Σiaixi + b+ cε ≤ 0

where ai, b, and c are integer coefficients. Rather than distinguish b and c,
we consider a predicate simply as a coefficient vector (d1d2 . . . dn+2) where
di = ai for 1 ≤ i ≤ n, di+1 = b and di+2 = c.

One can easily normalize predicates with rational coefficients to this
form. In particular, suppose there are n variables and the coefficients are
given as a vector (p1q1

p2
q2
. . . pn+2

qn+2
) Let m = lcm({qi | i ∈ [1..n+ 2]}), the least

common multiple of all the denominators of the coefficients and constants.
Then multiply all the coefficients by m and observe that the resulting pred-
icate is equivalent to the original and each mpi

qi
is an integer ni. Finally,

compute the greatest common divisor d of all ni and divide all ni by d. The
resulting predicate only uses integer constants and is unique. Of course, one
can treat predicates over arbitrary expressions f ≤ g in the form f − g ≤ 0.
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The coefficient list is maintained in sparse form, keeping only non-zero
coefficients. The list is not pre-sorted but the constant and epsilon coeffi-
cients are always kept at the end to ease the task of scanning for unassigned
variables a bit. The coefficient list takes the form of an array and allows
swapping of coefficient positions to aid the lazy evaluation mechanism de-
scribed below in Section 5.5.4.

In addition, each predicate is attributed with a valuation summary in
the form of a pair of rational numbers representing the value of a variable
together with an ε coefficient as described above in Section 5.3.4. The valu-
ation summary holds the result of lazy evaluation, which only occurs when
the predicate has no unassigned variables or exactly one unassigned vari-
able. If the predicate has no unassigned variables, then a comparison of the
valuation summary with 0 tells whether the predicate is true or false. If
the predicate has one unassigned variable, the valuation summary is used to
represent the bound induced on the free variable, and the coefficient of the
free variable is swapped with the coefficient in the initial position so that
the free variable’s coefficient is always in first position. With this mecha-
nism, one can always find the direction of the bound by the sign of the first
coefficient and the constant of the bound in the evaluation summary.

We use a simple hashing and reference-counting mechanism to ensure
that we only ever create one copy of any given predicate. This turns out to
be important with regards to the lazy evaluation mechanism.

Clause normalization

As noted in Section 5.3.3, we normalize clauses as follows. For any predicates
in the form f + b + cε ≤ 0, we may keep only the weakest such predicate
over f in a given clause. We found that this mechanism reduced the size of
learned clauses and solving time significantly.

5.5.2 Consistency Checking

Variable consistency checking, i.e. an implementation of isUC() plays an
important role in the UC-Search algorithm because it occurs very frequently.
In UC-Search, the method isUC() is called initially and in response to
variable assignments as well as in response to clause learning. Each call to
the method checks the unate consistency of all free variables. Of course, one
may simply consider the constraints placed on each variable x independently.
Over the course of a UC-Search run, the constraints over a variable x are
asserted incrementally and may be subsequently un-asserted if the procedure
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backtracks or forgets a clause.
Thus consistency checking begs a per-variable incremental and backtrack

friendly implementation. Section 5.5.4 describes data structures centered
around identifying when clauses become unate, free of true predicates, and
non-trivial on the fly. Accordingly, we will assume that consistency checks
occur upon the assertion of one non-trivial x-unate clause at a time, for
every variable x. More particularly, we consider a sequence of clause asser-
tions cx,1cx,2 . . . cx,k where each clause cx,i is a non-trivial x-unate clause. A
convenient means to maintain consistency for x incrementally is to under-
approximate the feasible set with lower and upper bounds lx, ux such that

lx ∧ ux |=
∧

1≤i≤k
ci

It is possible to maintain such an under-approximation with constant time
updates to the values lx, ux upon assertion of an x-unate clause c as follows.
Initially, we let lx = ux = >. Let lx(c) and ux(c) denote the weakest lower
and upper bounds for x found in c, defaulting to ⊥ in the case that there
is no respective bound in c. After assertion of c, the next state l′x, u

′
x of the

under-approximation may be computed as

(l′x, u
′
x) $



(lx, ux) if lx ∧ ux |= c
(lx(c), ux) else if ux(c) = ⊥
(lx, ux(c)) else if lx(c) = ⊥
(lx(c), ux) else if lx(c) |= lx
(lx, ux(c)) else if ux(c) |= ux
(⊥,⊥) otherwise

If l′x∧u′x is satisfiable, the under-approximation may defer a real consistency
check until a new x-unate constraint is asserted. Otherwise, a real consis-
tency check needs to take place with respect to the current set of clauses to
find whether there is a chain of unsatisfiable clauses as described in Propo-
sition 5.3.1. In the event that there is, resolution takes place. Otherwise, a
new under-approximation needs to be computed.

While it is certainly possible to do consistency checking without an
under-approximation, it would necessitate maintaining a sorted structure of
x-unate clauses for every x on every clause assertion or un-assertion. Since
UC-Search is a depth-first backtracking algorithm, an under-approximation
based mechanism can filter out a lot of the potential work required to main-
tain such a sorted structure. Our initial experience indicates that this under-
approximation mechanism is efficient in the sense that profiling always in-
dicated that very little time overall was spent in consistency checks.
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5.5.3 Value Selection

Value selection offers a richer array of possibilities in the case of numeric vari-
ables than in the case of propositional variables. We identify and compare
various value selection strategies which are based on the idea of branching
on corners of forbidden intervals. We break down value selection according
to when a corner was identified. For each time that a corner may be selected,
there is a potential degree of freedom as to whether we select upper or lower
extreme points of forbidden intervals. We associate with each variable a bias
which determines whether an upper or lower extreme point is preferred. We
examine the practice of bias toggling at different points in the solution pro-
cess. We have not yet considered different constant selection strategies for
the case where a variable is unconstrained.

Selection Time

In our experiments, we examine the following timings of corner selection.

1. Current corners. A branch value is selected on some corner of an
interval under the current partial assignment, if there is a forbidden
interval for the variable.

2. Recent corners. A branch value is selected based on the consistency
checking mechanism of Section 5.5.2. One may choose a value based
on the under-approximation of the feasible set. This allows finding
values which are often current corners and sometimes cached partial
solutions without the overhead of finding a current corner.

3. Last corners. Since the consistency checking mechanism uses under-
approximations, it may exclude the last assignment value. It is well
known in the propositional case that branching on last values can be
helpful.

Bias Toggling

For each possible timing of corner selection, we vary bias toggling according
to the following.

1. Fixed Bias. The biases toward upper or lower corners are set to a
fixed value initially, according to the parity of an integer identifier
associated with each variable.
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2. Assertion Bias Toggling. Upon learning a new asserting clause, the
constrained variable’s bias is toggled. All other biases are fixed.

3. Assignment Bias Toggling. Prior to every assignment, the bias of the
variable towards upper or lower values is toggled.

5.5.4 Lazy data structures

Lazy Evaluation

A combination of a fairly straightforward and small extension of 2LW with
predicate evaluation caching gives a backtrack-friendly lazy evaluation mech-
anism. In particular, a 2LW mechanism determines when a clause becomes
unate as follows. Every variable maintains a list of watched clauses and ev-
ery clause is watched by two variables. Upon assignment of variable x 7→ a,
the watched clauses associated with x are scanned. If some clause c has the
other watched variable assigned, then we know that x 7→ a is unate consis-
tent since a was chosen from a unate consistent set. Otherwise, the other
watched variable x′ of clause c is unassigned. In this case, we need to find
out if c is x′-unate. In this case, we scan the predicates in c to see if there
is another unassigned variable y. If there is one, then we remove c from the
watchlist of x and add c to the watchlist of y.

If there is no other unassigned variable, then the clause is x′-unate,
but may contain a true predicate and we perform numerical evaluation.
Predicates are scanned again to see whether the solver has backtracked over
the variable in the predicate which is assigned deepest in the search tree. If
not, we use that evaluation summary rather than re-evaluating the predicate.
Otherwise, the predicate needs to be evaluated. Evaluation is the most time
consuming activity in our solver. The check for the deepest assigned variable
occurs in constant time because on every predicate evaluation we place the
deepest assigned variable first in the list of terms appearing in the predicate.

If a predicate p does not contain x then it must be either true or false. If
p is true, then we find the most recently assigned variable z in p and add c
to the watchlist of z and remove c from the watchlist of x. This guarantees
that c will be scanned upon any assignment which might make it unate after
z is unassigned. Until that point, c will never be unate because it contains
a true predicate.

If a predicate contains x, then we evaluate the bound on x and check
and see if it is a weakest bound. In case it is weakest, we record the position
of p in c’s list of predicates as the location of the weakest lower or weakest
upper bound depending on the sign of x’s coefficient in p. To accommodate
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this mechanism, each clause maintains two indices indicating the location
of the predicate defining weakest upper and lower bounds when c is unate.
Since the predicates keep an evaluation summary, this allows us to access
the weakest upper and lower bounds of a unate clause in constant time,
which helps the consistency checking mechanism.

Profiling has indicated that predicate evaluation has dominated the run-
time of all non-trivial problems we have tested. The evaluation caching
mechanism helped a great deal, and could be further refined without too
much effort. Model mutation as in [MKS09] has the advantage that only
changes in variable valuations trigger numerical processing, and for linear
expressions, this can be accomplished with a few simple operations. How-
ever, model mutation may require evaluation of predicates which play no
role in any unate clauses. It remains unclear whether model mutation or
lazy evaluation with evaluation caching is more helpful or whether they can
be combined.

Unate Index

Upon an assignment x 7→ a, the watched clauses associated with x are
scanned and each such clause c may or may not be a non-trivial unate clause
for some variable y. In the event that c is non-trivial y-unate, we want to
add c to a list of unate clauses associated with y. At the same time, when the
solver backtracks and x becomes unassigned, we want to remove c from y’s
list of unate clauses. To accomplish both these operations in constant time,
we associate two lists of clauses for each variable v. One list indicates v-
unate clauses and the other list indicates clauses which became unate upon
assignment of v. The lists are maintained by attributing two additional
pointers to each clause and both are structured as stacks. Hence when v
becomes unassigned, we can pop the clauses which became unate upon v’s
assignment and each such clause is guaranteed to be on the top of the stack
associated with the variable for which the clause is unate. This variable is
in turn accessible from the first position of a weakest upper or lower bound
predicate. Note however, that this also is related to the backtracking choice.
In particular, if one does not backtrack to the asserting level, then the unate
index needs to be updated as if the unate clause were propagated further
back in the assignment stack.

These data structures allow the solver to backtrack without ever scanning
the predicates of a clause or the coefficients in a predicate. The removal of
clauses which became non-trivial unate clauses upon an assignment x 7→ a
is the only task which needs to be performed upon unassigning x.
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5.5.5 Numerical Considerations

Our solver uses a pair of fixed width 64-bit integers to represent rationals
and correspondingly a 64-bit representation of integers. This has sufficed
for initial experimentation.

5.6 Experimentation

We ran experiments on 3 subsections of SMT-LIB [BRST08]: QF RDL/scheduling,
QF IDL/diamonds, and QF IDL/parity. These subsections consist of differ-
ence logic, do not cause any numerical problems and are straightforward
to code as linear real arithmetic. All experiments were run on a Sun Java
VM version 1.6.0 11 on a Debian Linux machine with dual Xeon 3.20 GHz
processors and 4GB RAM.

5.6.1 Job Shop

Job shop scheduling problems are formulated as a set of jobs, each of which
is a sequence of tasks. Each task makes use of a pre-specified resource for
some fixed duration. With a fixed set of resources, a query is generated
as to whether all tasks can complete within some given time, referred to
as the makespan. These problems become exponentially more difficult as
the query approaches the optimal makespan from above or below. These
problems fall within the difference logic fragment of linear arithmetic and
intersecting SMT solvers usually make use of dedicated algorithms such as
those we presented in Chapter 4.

Wide Net Experiment

Our first experiment consisted of casting a wide net over the configuration
space for jobshop problems. We identified a set of configurations for exper-
imentation; namely all reasonable combinations of variable selection, value
selection, and backtrack depth selection. The fixed variable ordering does
not make sense with varying backtracks, and so we only tested one fixed
variable selection configuration. Otherwise, all combinations were tried,
yielding a total of 19 configurations to run on 105 benchmark problems. To
limit total computation time, we limited each try of a configuration on a
benchmark to 15 seconds. There were a total of 1995 problem/configuration
tries, of which only 576 were solved in the 15 second time limit.
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configuration solved time (s) sat time unsat time
var val bias toggle

evsid cur all 31 78.1 18 58.0 13 20.1
evsid cur asrt 30 100.9 14 50.2 16 50.7
evsid cur no 28 68.2 15 43.1 13 25.1
evsid last all 33 93.7 17 63.9 16 29.8
evsid last asrt 38 87.9 21 59.3 17 28.6
evsid last no 31 69.3 16 57.5 15 11.8
evsid rec all 33 75.3 17 26.6 16 48.8
evsid rec asrt 29 52.2 14 21.9 15 30.3
evsid rec no 28 49.6 13 29.5 15 20.1

fix last no 9 23.6 2 7.0 7 16.6
vsid cur all 32 81.4 16 44.1 16 37.3
vsid cur asrt 30 91.2 15 72.9 15 18.4
vsid cur no 24 97.5 9 54.6 15 42.9
vsid last all 33 86.4 16 50.9 17 35.5
vsid last asrt 36 85.8 19 53.8 17 32.1
vsid last no 35 84.6 19 66.4 16 18.3
vsid rec all 32 74.3 16 44.9 16 29.3
vsid rec asrt 31 58.1 16 43.4 15 14.7
vsid rec no 33 95.0 17 71.0 16 24.0

The variable selection entries may be one of

1. fix. The solver uses a fixed variable ordering based on variable identi-
ties1.

2. vsid. All variables are selected according to VSID heuristics, and all
variables are incremented on every clause resolution step.

3. evsid. The solver does extended assertion level backtracking as de-
scribed in Section 5.4 and selects variables based on VSIDs.

The most important configuration choice appears to be whether or not a
fixed variable order is used. Apart from this, we observe that value selection
plays a very important role and that the “last” configuration outperforms
the “recent” configuration which in turn generally outperforms the “current”
configuration. The bias flipping mechanism also appears to have a significant
impact on performance. Generally, bias toggling on assignments seems to
work best. But in the best overall configuration, bias toggling on assertion
appears to work best. There is a large span of improvement over the space of

1We also implemented the structural heuristic mentioned in [MKS09], but in this case
the result was worse than the variable-id based ordering.
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configurations: the best configuration solves more than 4 times the problems
of the worst.

Best Configuration

We ran the best configuration with extended asserting backtrack levels,
VSIDs, and assertion bias toggling with a timeout of 300 seconds on the
same set of problems and with the same machine. A side-by-side of the
results against Z3 are summarized below. Z3 is vastly faster than UCS on
scheduling problems.
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5.6.2 Diamonds

In [MKS09], it was observed that the resolution proof rule can produce
exponentially shorter proofs for diamond shaped problems. We confirm this
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observation for the diamond problems in SMT-LIB with a comparison of
our best configuration to Z3.
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5.6.3 Parity Games

Another class of difference logic problems from SMT-LIB contains a mix
of propositional and integer variables. These problems are in CNF form,
with only at most one difference constraint per clause. For these problems,
a modification of our solver allowed coding propositional variables and per-
forming unit propagation on them. Otherwise, our best configuration for
the job shop problems was used. The largely off-diagonol results indicate
that the relative strengths of UCS and Z3 are somewhat orthogonal.
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5.7 Conclusion

DPLL-like direct model search poses a number of problems which do not
appear in the propositional case. A careful examination reveals that many
mechanisms in and properties of propositional SAT solvers have some ana-
logues in the case of linear arithmetic with UCS; but they also tend to in-
troduce a degree of complexity. We have identified and presented solutions
for some of the problems, such as a theoretic solution to dynamic variable
ordering with tree resolution, a lazy evaluation mechanism, and consistency
checking. Our experimental observations suggest that for difference logic,
the method has a very different performance profile than traditional SMT
solvers. While the method performs well on diamond problems, the job shop
problems suggest that there may exist problems with exponentially longer
shortest proofs in UCS than using traditional DPLL(T) based methods. The
parity problems show a highly variant performance profile in comparison to



92 CHAPTER 5. ON MODEL SEARCH WITH LINEAR ARITHMETIC

Z3. We conjecture that this has to do with the degree of acyclicity found in
the difference constraint graphs.

Much more work remains to be done. In particular, we found that pure
tree resolution is impractical for a complete algorithm, hence the problem
of dynamic variable ordering remains incompletely addressed. However, in
the context of an incomplete algorithm with clause recording, our analysis
of tree resolution aids in identifying useless clauses which can be forgotten
and shows considerable improvement over fixed variable orderings for the
job shop problems. For a better understanding of how the method works,
an experimental examination of full linear constraints is necessary. Finally,
the question of integration with a search in an extended model with proposi-
tional variables associated with each predicate has not yet been addressed.



Chapter 6

Conclusion

Satisfiability solving is fundamental problem whose potential for application
grows as more efficient means are found. Some principles in satisfiability
solving have emerged as fundamental and effective across a full spectrum of
types of problems, such as conflict directed learning and dynamic variable
ordering. At the same time, some problems, such as effective mixing of
different kinds of reasoning, have remained resistant to principled solutions.
In this thesis, we have contributed to several aspects of satisfiability and
SMT solving.

Our first set of contributions addresses propositional satisfiability. We
have presented a linear time algorithm for recursive self-subsumption based
clause minimization. We have reported a direct relationship between restart
frequency and VSID recency parameters, and we have presented a novel
restart strategy which results in the ability to solve some hard problems
which remain out of the reach of other general purpose methods.

The main focus of this thesis has been in the domain of satisfiability
modulo theories. This thesis contributes to SMT on two levels, abstract
and concrete. On the abstract level, we have presented a proof the Nelson-
Oppen combination procedure based on a different condition. Secondly,
we have formalized an extension of DPLL(T), flexible propagation, which
supports decoupling and combining different degrees of theory-specific rea-
soning. Finally, we introduced a formal DPLL-like algorithm, UCS, with
conditions and proofs of correctness and termination based on a formaliza-
tion of the resulting underlying proof graph. This formal algorithm may be
viewed as an extension of a family of GDPLL processes which allows for-
getting clauses while retaining important notions related to correctness and
termination.

93
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On a more concrete level, our SMT contributions address two topics.
First, we present a fast DPLL(T) theory solver for difference logic. The
DL solver introduces a fast theory propagation algorithm which exploits
consistency checks with the ideas behind flexible propagation and describes
how to adapt a fast shortest paths algorithm to the problem. The ideas
behind this solver have been adapted to various competitive SMT solvers
and consistently proven effective in competition.

Second, this thesis studies the problem of instantiating UCS for real
linear arithmetic. A comparison with the propositional case is presented,
showing analogs of many mechanisms commonly found in modern DPLL
propositional solvers. These analogs introduce a degree of complexity in
implementation as well as restrictions in the form and efficiency of proofs
required for termination. We have presented efficient methods of implemen-
tation which address some of the problems specific to UCS. Initial exper-
imentation was presented for the case of difference logic, showing a very
different performance profile than is found in traditional SMT solvers.

In sum, this thesis has addressed several problems related to satisfiability
solving.
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