UNIVERSITE DE GRENOBLE

THESE

Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE DE GRENOBLE
Spécialité : informatique

Arrété ministérial : 7 ao(t 2006

Présentée par

Pranav TENDULKAR

Thése dirigée par Oded Maler
et codirigée par Peter Poplavko

préparée au sein du laboratoire Verimag
et de Ecole Doctorale Mathématiques, Sciences et Technologies de I'In-
formation, Informatique

Mapping and Scheduling on Multi-

core Processors using SMT Sol-
vers

Thése soutenue publiquement le 13th October 2014,
devant le jury composé de :

Dr. Albert Cohen

INRIA, Paris, Rapporteur

Prof. Marc Geilen

Technical University of Eindhoven, Netherlands, Rapporteur
Prof. Dimitrios S. Nikolopoulos

Queen’s University, Belfast, UK, Examinateur

Dr. Alain Girault

INRIA, Grenoble, Examinateur

Dr. Benoit Dinechin

Kalray, Examinateur

Dr. Phil Harris

United Technologies Research Center, Cork, Ireland, Examinateur
Dr. Oded Maler

CNRS, Verimag, Directeur de thése

Dr. Peter Poplavko

Verimag, Co-Directeur de thése

ACKNOWLEDGEMENTS

Foremost I would like immensely thank Oded Maler who is my thesis supervisor, but much
more. He persistently helped me throughout my PhD. and provided motivation, research
directions to carry out my work. But more importantly he gave me unparalleled freedom to
explore my varied interests while choosing a topic for my thesis. He made me understand
research and many other things in general and broader sense. He has been a continuous source
of inspiration and motivation, to carry out the work, especially in times when things were
obscure. He always provided me more than enough time and guidance where it was utmost
necessary and ensured that I remained focussed on my topic. It was a privilege to work at
Verimag especially with Oded, since he always provided a healthy and relaxed work atmosphere.
He always blended humor with our daily chores at Verimag which teared down undesired
tensions and frustrations. I had a great time at Grenoble working under his supervision. He
was like a friend when we met over many lunches or dinners, with his entertaining and
knowledgeable discussions on diverse topics. I will forever cherish the time that we shared
during these years.

I am deeply thankful to Peter Poplavko who inspired me to work on dataflow models.
Although according to Oded, he hijacked me to this domain. Peter played a very important
role in my thesis. He was providing me a continuous feedback on my work. He enabled me to
understand how to persistently attack a problem. He was actively guiding me throughout all
my PhD. I thank him for all our discussions, code reviews, publication writing exercises etc. in
which he invested a lot of his time. Especially the feedback on my thesis even when he was on
vacation was of great help. I am confident that I would never have been able to complete this
thesis without him.

I would like to thank the jury members and the reviewers for attending my thesis defense.
I especially thank them for their valuable feedback on the manuscript. The feedback gave me
an additional perspective to my own work. I am very happy to have such a jury.

I also want to thank the group at Technical University of Eindhoven who supported me for
an internship. It was a very different and wonderful experience to work there. Prof. Sander
Stuijk and his team were immensely supportive during my work. A few names I would like
to mention are Hamid Reza Pourshaghaghi, Francesco Comaschi, Sebastian Moreno, Rosilde
Corvino, Karthik Chandrasekar. Out of my office I made many friends in Eindhoven who
accompanied me in several evenings for dinner, playing cards, skating and many other things.
I will always remember the time that I spent with Deepak Jain, Srivathsa Bhat, Sushil Shirsath,
Sandip Pawar, Aroa Izquierdo and many others.

I want to thank all my colleagues in Verimag. Sophie Quinton, Irini-Eleftheria Mens,
Abhinav Srivastav, Alexios Lekidis and many of them. We always crack jokes on PhD. life and
make fun of our situations which seemed to be going nowhere. I believe I had a great working
environment, sharing my views, talks, presentation etc. with my friends. I would like to convey
my thanks to the administrative staff which was a life-line for me in France. I still remember
my struggles as a non-french speaking foreigner and without their help I would have been
nowhere.

A special thanks goes to Dorit Maler. I enjoyed the time that we spent with her in informal
meetings. We shared such memorable discussions, that I would cherish for rest of my life. I

ii

still remember how confident I felt after I talked with her just before my defense. She is a
wonderful person, and I feel lucky to know her closely.

Finally, I want to thank most supportive and loveable parents, who have been there for
me always, irrespective of all the things. I am indebted to them to the last bit for being there
and bringing the best out of me. Along with them, I thank my sisters and extended family
for their support even if [am far away for a long time. I want to thank my wife "Vrushali",
for her constant support in good and bad times. She accompanied me without any complain
irrespective of my negligence towards her. I am grateful to have such companion. I dedicate
this thesis to my parents and my wife.

ABSTRACT

In order to achieve performance gains in the software, computers have evolved to multi-core
and many-core platforms abounding with multiple processor cores. However the problem
of finding efficient ways to execute parallel software on these platform is hard. With a
large number of processor cores available, the software must orchestrate the communication,
synchronization along with the execution of the code. Communication corresponds to the
transport of data between different processors, which either can be handled transparently
by the hardware or explicitly managed by the software. Synchronization is a requirement of
proper selection of start time of computations e.g. the condition for software tasks to begin
execution only after all its dependencies are satisfied.

Models which represent the algorithms in a structured and formal way expose the available
parallelism. Deployment of the software algorithms represented by such models needs a
specification of which processor to execute the tasks on (mapping) and when to execute them
(scheduling). Mapping and scheduling is a hard combinatorial problem to solve with a huge
design space containing exponential number of solutions. In addition, the solutions are
evaluated according to different costs that need to be optimized, such as memory consumption,
time to execute, static power consumption, resources used etc. Such a problem with multiple
costs is called a multi-criteria optimization problem. The solution to this problem is not a
unique single solution, but a set of incomparable solutions called Pareto solutions. In order to
track multi-criteria problems, special algorithms are needed which can approximate the Pareto
solutions in the design space.

In this thesis we target a class of applications called streaming applications, which process a
continuous stream of data. These applications typically apply similar computation on different
data items. A common class of models called dataflow models conveniently expresses such
applications. In this thesis, we deal with mapping and scheduling of dataflow applications on
many-core platforms. We encode this problem in form of logical constraints and present it to
satisfiability modulo theory (SMT) solvers. SMT solvers, solve the encoded problem by using
a combination of search techniques and constraint propagation to find an assignment to the
problem variables satisfying the given cost constraints.

In dataflow applications, the design space explodes with increased number of tasks and pro-
cessors. In this thesis, we tackle this problem by introducing symmetry reduction techniques
and demonstrate that symmetry breaking accelerates search in SMT solvers, increasing the size
of the problem that can be solved. Our design-space exploration algorithm approximates the
Pareto front of the problem and produces solutions with different cost trade-offs. We validate
these solutions by executing them on a real multi-core platform.

Further we extend the scheduling problem to the many-core platforms which are assembled
from multi-core clusters connected by network-on-chip. We provide a design flow which
performs mapping of the applications on such platforms and automatic insertion of additional
elements to model the communication. We demonstrate how communication with bounded
memory can be performed by correctly modeling the flow-control. We provide experimental
results obtained on the 256-processor Kalray MPPA-256 platform.

iii

iv ABSTRACT

Multi-core processors have typically a small amount of memory close to the processor.
Generally application data does not fit in the local memory. We study a class of parallel
applications having a regular data access pattern, with large amount of data to be processed by
a uniform computation. Such applications are commonly found in image processing. The data
must be brought from main memory to local memory, processed and then the results written
back to main memory, all in batches. Selecting the proper granularity of the data that is brought
into local memory is an optimization problem. We formalize this problem and provide a way
to determine the optimal transfer granularity depending on the characteristics of application
and the hardware platform. Further we provide a technique to analyze different data exchange
mechanisms for the case where some data is shared between different computations.

Applications in modern embedded systems can start and stop dynamically. In order to exe-
cute all these applications efficiently and to optimize global costs such as power consumption,
execution time etc., the applications must be reconfigured at runtime. We present a predictable
and composable way (executing independently without affecting others) of migrating tasks
according to the reconfiguration decision.

Keywords: Multi-core, many-core, dataflow, mapping, scheduling, SMT solver

REsuME

Dans l'objectif d’augmenter les performances, I’architecture des processeurs a évolué vers
des plate-formes "multi-core" et "many-core" composées de multiple unités de traitements.
Toutefois, trouver des moyens efficaces pour exécuter du logiciel parallele reste un probleme
difficile. Avec un grand nombre d’unités de calcul disponibles, le logiciel doit orchestrer la
communication et assurer la synchronisation lors de I’exécution du code. La communication
(transport des données entre les différents processeurs) est gérée de fagon transparente par le
matériel ou explicitement par le logiciel.

Les modeles qui représentent les algorithmes de fagon structurée et formelle mettent en
évidence leur parallélisme inhérent. Le déploiement des logiciels représentés par ces modeles
nécessite de spécifier placement (sur quel processeur s’exécute une certaine tache) et l'ordon-
nancement (dans quel ordre sont exécutées les taches). Le placement et 'ordonnancement sont
des probléemes combinatoires difficile avec un nombre exponentiel de solutions. En outre, les
solutions ont différents cotits qui doivent étre optimisés : la consommation de mémoire, le
temps d’exécution, les ressources utilisées, etc. C’est un probléeme d’optimisation multi-criteres.
La solution a ce probleme est ce qu’on appelle un ensemble Pareto-optimal nécessitant des
algorithmes spéciaux pour 'approximer.

Nous ciblons une classe d’applications, appelées applications de streaming, qui traitent
un flux continu de données. Ces applications qui appliquent un calcul similaire sur différents
éléments de données successifs, peuvent étre commodément exprimées par une classe de mo-
deles appelés modeles de flux de données. Le probléme du placement et de 'ordonnancement
est codé sous forme de contraintes logiques et résolu par un solveur Satisfaisabilité Modulo
Théories (SMT). Les solveurs SMT résolvent le probleme en combinant des techniques de
recherche et de la propagation de contraintes afin d’attribuer des valeurs aux variables du
probleme satisfaisant les contraintes de coit données.

Dans les applications de flux de données, ’espace de conception explose avec l'augmen-
tation du nombre de taches et de processeurs. Dans cette theése, nous nous attaquons a ce
probléme par l'introduction des techniques de réduction de symétrie et démontrons que la
rupture de symétrie accélere la recherche dans un solveur SMT, permettant ainsi 'augmenta-
tion de la taille du probleme qui peut étre résolu. Notre algorithme d’exploration de I'espace
de conception approxime le front de Pareto du probléme et produit des solutions pour diffé-
rents compromis de cotts. De plus, nous étendons le probleme d’ordonnancement pour les
plate-formes "many-core" qui sont une catégorie de plate-forme multi coeurs ou les unités sont
connectés par un réseau sur puce (NoC). Nous fournissons un flot de conception qui réalise le
placement des applications sur de telles plate-formes et insert automatiquement des éléments
supplémentaires pour modéliser la communication a I’aide de mémoires de taille bornée. Nous
présentons des résultats expérimentaux obtenus sur deux plate-formes existantes : la machine
Kalray a 256 processeurs et les Tilera TILE-64.

Les processeurs multi-coeurs ont typiquement une faible quantité de mémoire proche du
processeur. Celle ci est généralement insuffisante pour contenir toutes les données necessaires
au calcul d’une tache. Nous étudions une classe d’applications paralléles présentant un pat-

v

vi RESUME

tern régulier d’accés aux données et une grande quantité de données a traiter par un calcul
uniforme. Les données doivent étre acheminées depuis la mémoire principale vers la mémoire
locale, traitées, puis, les résultats retournés en mémoire centrale, tout en lots. Fixer la bonne
granularité des données acheminées en mémoire locale est un probleme d’optimisation. Nous
formalisons ce probleme et proposons un moyen de déterminer la granularité de transfert
optimale en fonction des caractéristiques de 'application et de la plate-forme matérielle.

En plus des probléemes d’ordonnancement et de gestion de la mémoire locale, nous étu-
dions une partie du probleme de la gestion de 1’exécution des applications. Dans les systemes
embarqués modernes, les applications peuvent démarrer et s’arréter dynamiquement. Afin
d’exécuter toutes les applications de maniere efficace et d’optimiser les cotts globaux tels
que la consommation d’énergie, temps d’exécution, etc., les applications nécessitent d’étre
reconfigurées dynamiquement a ’exécution. Nous présentons une maniere prévisible et com-
posable (exécution indépendamment sans affecter les autres) de réaliser la migration des taches
conformément a la décision de reconfiguration.

CONTENTS

ABSTRACT
REsuME
1 INTRODUCTION
1.1 Multi-core Processor System Architecture
1.1.1 HostProcessors e
1.1.2 Peripheral Devices
1.1.3 Multi-core Fabric
1.1.4 Memory Organization
1.1.5 Network Interconnect
1.2 Multi-core Software L
1.2.1 Theoreticalissues
1.2.2 Practical Issues
1.3 Software Design Flow,
1.4 Related Tools e
1.4.1 SDF3 . . . o
1.4.2 MAMPS e e
1.4.3 MP-Opt e
1.4.4 StreamlIT e
1.4.5 StreamRoller o
1.4.6 Discussion e e e e
1.5 Organizationof Thesis

PROGRAMMING MODEL

2.1 Dataflowgraphs.
2.1.1 StaticDataflow oo o oo o
2.1.2 DynamicDataflow

2.2 Synchronous Dataflow L

2.3 Split-JoinGraphs L
2.3.1 The Semantics of Split-join Graphs
2.3.2 Derived TaskGraph
2.3.3 Marked Splitjoin Graphs

2.4 Splitjoin Graph Application Example : JPEGdecoder

2.5 Conclusion.

ARCHITECTURE MODEL

3.1 Multi-core and Many-core processors
3.1.1 Clusters
3.1.2 Shared Memory

vii

iii

viii CONTENTS

3.1.3 Network-On-Chip 27
3.1.4 DMA .« . . e 27
3.2 TileraTileb4 o o 27
3.3 Kalray MPPA-256 e 29
3.4 CompSOCPlatform 30
3.5 IBMCell BEProcessor 31
3.6 DMA Controller in Cell Processor 33
3.6.1 Strided DMA e 34
3.6.2 DMAlist. e 35
3.7 Modeling DMA Controller 36
3.8 PlatformModel L 37
3.9 Conclusion 37
SATISFIABILITY SOLVERS AND MULTI-CRITERIA OPTIMIZATION 39
4.1 Satisfiability Solvers L 39
4.2 An Example of SMT constraints 41
4.2.1 Non-retractable and retractable constraints 41
4.3 Multi-Criteria Problem 42
4.4 Cost-Space Exploration o oo o 43
4.5 Distance based Exploration 44
4.6 Grid Based Exploration. o Lo 45
4.7 Conclusions 46
DEPLOYMENT AND EVALUATION METHODOLOGY 49
5.1 TheTool 50
5.2 Profiling the application 51
5.3 Run-timeenvironment o oo o o 51
5.3.1 Initialization of the application 51
5.3.2 Execution of the application. L. 52
5.3.3 Release of theresources 52
5.3.4 Hardware Specific Implementation. 52
5.4 Communication Buffers o0 L 53
5.4.1 FIFObufferexample 54
5.4.2 Inter-cluster FIFO bufferinKalray 55
5.5 Conclusions 56
SCHEDULING IN SHARED MEMORY 57
6.1 Symmetry in Split-join Graphs L 57
6.2 SMT Constraints e e 61
6.3 Experiments e 62
6.3.1 Finding Optimal Latency 63
6.3.2 Processor-Latency Trade-offs 64
6.3.3 AVideodecoder 66
6.3.4 JPEGdecoder 67
6.4 Conclusions e e e 68
MULTI-STAGE SCHEDULING FOR DISTRIBUTED MEMORY PROCESSORS 71
7.1 DesignFlow 72
7.1.1 Software partitioning 73

7.1.2 Mapping software to hardwarecluster 75

CONTENTS
7.2 Inter-cluster FIFO
7.3 Modeling Communication L o Lo
7.3.1 Partition-Aware Graph L
7.3.2 Buffer Aware Graph
7.3.3 Communication Aware Graph,
7.4 Scheduling
7.4.1 ScheduleGraph
7.4.2 Mapping and scheduling using SMT
7.5 Schedule improvement o Lo oo
7.5.1 Improvementoflatency,
7.5.2 Processor Optimal Schedule
7.6 Experiments
7.7 Conclusions

8 OprTiMIZING THE DMA COMMUNICATION

8.1 Data-parallel applications
8.1.1 Bufferingschemes
8.1.2 Data distribution, block Shape and Granularity

8.2 Optimal Granularity for Data Transfers
8.2.1 SingleProcessor o o
8.2.2 Multiple Processors

8.3 Shared Data Transfers

8.4 DMA Performance of the Cell processor

8.5 Experimental Results
8.5.1 Independent Data Computations
8.5.2 Shared Data Computations
8.5.3 Convolution Benchmark (FIR filter)
8.5.4 Mean Filter Algorithm

8.6 Conclusions

9 RUN-TIME APPLICATION MANAGEMENT AND RECONFIGURATION

9.1 Runtime Resource Manager
9.1.1 System-level resource manager

9.2 Implementation
9.2.1 Application-level resource manager
9.2.2 MigrationPoint o oo o o
9.2.3 Actor and FIFO Migration on CompOSe

9.3 Application-level manager oo Lo
9.3.1 Run-Time Actor and FIFO Migration
9.3.2 Results

9.4 Conclusions

10 CoNncrLusIONS AND FUTURE WoORK

APPENDICES

A ScHuepuLe XML

BiBLIOGRAPHY

91
91
92
94
94

100
102
102
104
104
105
106
107
108

111
112
112
114
114
114
115
116
116
120
120

123

127

129

133

List OF FIGURES

1.1
1.2
1.3
1.4

1.5
1.6

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
33
3-4
3-5

3-7

4.1
4.2
4.3
4.4

5.1
5.2

6.1
6.2

Evolution of multi-core processors 2
MPSoC architecture L 3
Multi-core architecture e e 4
Executionof aprogram 5
Parallelisminaprogram 7
Software designflow 10
Basic dataflow graph L 16
Simple SDF with two actors 18
SDF with backwardedge 19
Timed Synchronous DataFlow Graph 19
Example schedule of a Synchronous DataFlow graph 20
Split-Join graph 21
JPEG decoder e 23
Tilera Tile-64 processor e 28
Kalray MPPA-256 platform 30
CompSOC platform 31
IBM Cell BE processor o i ittt 32
IBM Cell processor DMA controller 34
Image stored inmemory L 35
DMA transfers e e e e e e e e e e e e 36
Paretopoints L e 42
Forward and backwardconeso o oL 43
Satand Unsatsets e e e 44
Grid based exploration L o o 45
Structure of StreamExplorer Lo oo 50
FIFO token example for actors A and B with buffersize=2 54
Illustration of the lexicographic ordering theorem 61
Time to find optimal latency as a function of the number of tasks for 5 and 20

PIOCESSOIS. « v v v v v v i e e et e e e e e e e e e e e e 63
Exploration time to find optimal latency as a function of the number of tasks and

PIOCESSOIS. © v v v v v e i ittt e e e e e e e e 64
Result of Pareto explorationfora=30 65
Video decoder example 66
Video decoder explorationresult 67
Multi-stage designflow 72

LIST OF FIGURES

8.9
8.10

8.11

8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19

9.1
9.2
93
94
95

A1

Working of inter-cluster FIFO 76
Communicating tasks L o 77
Partition aware communicating tasks 0oL 77
Buffer aware graph model for a channel without DMA 79
Buffer aware graph model for a channel withDMA 79
Double buffering example schedule 0000 8o
25 scheduling solutions for 4 partitioning solutions 87
Jpeg decoder solutions measured on Kalray platform 88
Application benchmarks: summary of results 89
Neighborhood patternofsizek 92
Contiguous vs periodic allocationofdata. 94
Distribution of 2D data of same size, but different shapes 95
Influence of block shape on the amount of shareddata 95
Decomposition of one dimensional inputarray 95
Pipelined execution using double buffering on one processor 97
Regimes depending on the blocksize 98
Rectangular blocks: (a) computation and transfer domains, (b) optimal granularity

candidates and optimal granularity. 99
The dependence of computation C and transfer T on the granularity (s;,s3). 99
Pipelined execution in the transfer regime using multiple processors 100
Evolution of the computation domain and optimal granularity as we increase the

number of processors 101
Shared data communication Lo 101
DMA performance for contiguousblocks0 L., 103
Independent data computationso 104
Measurements for shared data in computation regime 105
Measurements for shared data in transfer regime 106
Convolution algorithm L o 106
Predicted transfer time for different block shapes with shareddata 107
Predicted and measured values for different combinationsof sy xs> 108
Run-time resource manager (conceptual view)., 112
Run-time resource manager (deployment view). 114
JPEG decoder SDF graph o 116
Actor migration stepsexample 117
Measured and predicted reconfiguration times 119
Gantt chart for schedule XML 131

xi

CHAPTER

INTRODUCTION

The first chapter introduces the embedded systems domain. It explains the multi-core scenario and
technological challenges associated with it.

ulti-core processors are now an unavoidable fact of the information processing industry.
M Over the years, technology advancement has seen the scaling of Moore’s law [119]. While
the technology evolved for smaller and smaller transistor size, more amount of hardware could
be fabricated on chip with same area. Increasing clock speed to gain performance improvement,
a technique followed for many years, could no longer provide performance benefits, because of
several issues like power consumption, current leakage, electrical interference, chip-design
issues etc. [97]. In order to exploit the advantages of technology scaling, multi-core processor
came into existence. It became clear that adding multiple processor cores to the same chip
provides more benefits and performance rather than over-clocking a single processor [100].
This trend is illustrated in Figure 1.1, where the evolution of the processors gradually shifts
towards multi-core approach.

Another motivational factor for multi-core processing was the advancements in data pro-
cessing algorithms, which demanded extra computational power. Applications which perform
video processing, audio-video rendering, and many other signal processing applications be-
came computationally heavy with their evolution. In addition, such applications have stringent
deadline requirements to be met on a platform having limited resources. They also provide
a degree of freedom, which involve exploitation of different levels of parallelism. Multi-core
approach is often a suitable solution for parallel applications. It is well-known that the speed-
up due to multi-core processor is less than proportional to their number, nevertheless, it still
remains attractive in power-performance trade-offs.

1.1 MULTI-CORE PROCESSOR SYSTEM ARCHITECTURE

A typical embedded system has to perform various tasks. For example, a cellphone would
display images, play video/audio, send and receive messages, perform data transfer and do
more. In real-time systems, the tasks have strict deadlines. For example, a cell-phone is
receiving a message in background while it is decoding audio and video data and displaying
it on the screen. It has timing constraints such that it should not drop frames while doing
audio/video processing to ensure quality of the service. At the same time, the communication
protocol to receive messages requires messages to be exchanged at definite time intervals.

2 CHAPTER 1. INTRODUCTION

107? Intel 48-Core Transistors
i Prototype (Thousands)
10° - . AMD4-Core FWTR Parallel Proc
E pteron Performance
105 ST Cicontel Sequent|a|
g Pentium 4 Processor
104’ Peﬁonnance
Frequency
r MHz
10° (MHz)
» r Typical Power
10" ¢ (Watts)
’ Number
10 ¢ of Cores
100 3

1975 1980 1985 1990 1995 2000 2005 2010 2015

Figure 1.1 — Evolution of multi-core processors *

Handling such a wide variety of tasks using only one processor is difficult in practice. This
will require a processor with high clock frequency, which in turn will incur higher power
consumption. On mobile platforms, the resources such as energy resource are limited and
must be optimally used.

In order to satisfy these constraints, designers use a piece of hardware called as MPSoC
(MultiProcessor System on Chip) [132]. MPSoC’s typically have dedicated hardware for some
functions. For example, there is a dedicated IP (Intellectual Property) block, to process the
input from keyboard. Suppose that instead of dedicated IP block, the general purpose processor
(GPP) handled this task in the software, which is a possibility. This will increase the load on
the processor, which will have to continuously poll for updated status from the keypad. With
the IP block, this polling is offloaded to the dedicated hardware and it informs the GPP only
when it has some relevant information to process. Suppose a key is pressed by the user, it
is processed by the IP block and checked for its validity. And then it generates an interrupt
to the GPP to process this information. Thus GPP is responsible for management of many
such blocks, in addition to management of the software. Figure 1.2 shows an example MPSoC,
where different functions such as Display, Camera, Keyboard, etc. are offloaded to a dedicated
reduced instruction set computing (RISC) hardware. However, the hardware itself is managed by
a GPP.

Dedicated hardware is a long-debated trade-off between performance and flexibility. Appli-
cation Specific Instruction-set Processor (ASIP) can be optimized to provide high performance
at low energy cost. The price to be paid is in terms of flexibility. If there is need to change
in protocols, this hardware cannot be used. For example, if there is dedicated hardware for
H.263 video, it cannot be used for newer specification H.264. In order to support newer
algorithms and their respective upgrades, it is desirable to add more GPPs on the chip rather
than to develop a dedicated hardware. Owing to this fact, there were two interesting types
of processors were developed. First one is SIMD (Single Instruction Multiple Data), the chip

1. Taken from [12]

1.1. MULTI-CORE PROCESSOR SYSTEM ARCHITECTURE

Memory USB Ethernet
A A A f
> A/D
A 4 YVvyYVY Y
DSP < P General processor R > Wireless
A A AA A
Keyboard < > GPIO
Y v Y
Audio Display camera

Figure 1.2 — MPSoC architecture

contains multiple processors which execute the same instruction on different data sets. It
is a very useful architecture for data-parallel application like image processing. Graphics
processing unit (GPU) are common example of such an architecture. The other interesting
stream is MIMD (Multiple Instruction Multiple Data) or SPMD (Single Program Multiple Data).
In this architecture, the processors execute independently of each other. This is the class of
multi-core systems that we target for our work.

The design of multi-core processor architectures are driven mainly by the design costs
pertaining to its application. Typical design and manufacturing of such systems requires
investments in millions of dollars. Thus re-usability of such designs are also of primary
importance. To make these systems generic and applicable in a wide range of applications
typical system architectures have been followed. The dedicated IP blocks are re-used in the
design, which brings lot of benefits, especially for verification of the design. Figure 1.3 shows an
example of a multi-core architecture. Such multi-core systems consists of following hardware
components -

1.1.1 Host Processors

Host Processors consist of a single or a group of general purpose processors which are used
mainly for management tasks. Typically these group of processors are responsible for running
operating systems or firmware and launching applications. They also handle other tasks like
serving the hardware requests, running single-threaded program etc. The host processors are
the masters of the systems and their main job is to control all the other pieces of hardware
components and serve their requests.

1.1.2 Peripheral Devices

Peripheral devices typically consist of Application Specific Instruction-set Processor (ASIP)
which are dedicated to a specific functionality. As seen in Figure 1.2, the peripheral devices
like USB, Display etc. are the ASIP processors which are dedicated to their respective functions.
They provide a minimum instruction set, which can be used to perform a restricted task. The

4 CHAPTER 1. INTRODUCTION

multi-core fabric

Clusten Cluster,
e o o LR]
I interconnect
— 4— } shared bus %
I I " i LA
Inter-cluster memory 17
I I Intra-cluster memory

r g

advantage of ASIP is that, they are optimized to run a specific function efficiently. Thus they
provide high performance and reduce power consumption. However, it comes at the cost of
limited flexibility and reprogramming. In contrast, GPP are less efficient compared to ASIP,
but they provide high flexibility. In addition to ASIPs, some architecture also have Digital
Signal Processor (DSP) which have SIMD or VLIW (Very Long Instruction Word) execution
model. These processors are highly optimized to process data in parallel by using a single
instruction. They are helpful in efficient execution of signal processing algorithms like filter
banks, Fourier transforms, convolution etc. Application Specific Integrated Circuit (ASIC) also
form a part of peripheral devices. These hardware circuits are devised to perform only specific
tasks and are more efficient than ASIPs or GPPs, but at a cost of no flexibility.

Figure 1.3 — Multi-core architecture

1.1.3 Multi-core Fabric

The motivation behind introduction of multi-core accelerator is to improve the response
time of the programs that have portions executing in parallel as shown in Figure 1.4. Multi-core
fabric is typically used to offload the parallel computation of the program to execute it faster
than on a single processor.

The multi-core fabric typically consists of multiple symmetric processors. Sometimes the
symmetric cores are grouped in clusters [14, 65]. The obvious benefit of having clusters is
to limit number of processors sharing common resources, resulting in less contentions and
faster access. Typically, memory is a resource which is extensively used by the processor. If
thousands of processors access memory, then memory will be a huge bottleneck, resulting
in worse performance. Clustering helps to reduce number of processors to contend for such
resources, for example by adding local memories to every cluster, which are synchronized with
the main memory using either explicit transfers or synchronous hardware mechanisms (cache).

1.1. MULTI-CORE PROCESSOR SYSTEM ARCHITECTURE

(a) Sequential execution on single processor

(b) Parallel execution

Figure 1.4 — Execution of a program

1.1.4 Memory Organization

The memory access in a computer system is the biggest bottleneck in the advancement of
the processor technology. The gap between the the processor and memory speeds is increasingly
becoming larger. Caches were added to processor systems which helped to close this gap. Multi-
level caches became necessary to further boost the performance. In multi-core processors, they
bring additional problems like extra area and power overhead, maintaining cache coherence
(maintaining same copy of data in all the caches of the system) which limits scalability [28, 57,
69] etc.

Owing to such and many other issues, the multi-cores generally follow a Non-Uniform
Memory Access (NUMA) model, where though all the memory is directly or indirectly accessi-
ble to all the cores, the access times differ according to hierarchy. Another problem with the
cache in hierarchical memory, is that the access time for the cache is unpredictable (or in a
wide range). If data is not found in cache, the amount of time required to bring data from
main memory to cache depends on various factors like memory access latency, contentions on
network, DRAM architecture and so on. Further, when processing is done in parallel, it can
trigger cache coherence mechanism, maintaining the same copy of data in different caches to
update the copies. This data traffic brings a further unpredictability in the software. Many
a times, handling of cache coherence is offloaded to the software, making hardware design
simpler. Some architectures provide scratchpad memories, which is located on-chip close to
the processor. The difference is fast and predictable access as contrary to slower and with larger
variation in access time for off-chip memories.

1.1.5 Network Interconnect

With increasing number of transistors and hardware on the chip, as discussed before, it
became increasingly difficult to maintain a single clock source with small skew across the
entire chip. Due to this Globally Asynchronous Locally Synchronous (GALS) approach was
introduced, which involves using different clocks in different region of the chip. Traditional
approaches like Point-to-Point connections, shared bus, etc. incurred number of issues to
connect high number of hardware blocks. These issues include performance, dynamic power
dissipation, wire delay, crosstalk, global routing congestion etc. In addition, with the increasing
complexity, performance requirements, power issues, real-time requirements, Network On-

6 CHAPTER 1. INTRODUCTION

Chip (NoC) came into existence [13]. In NoC, the communication message is split into packets
which are eventually transmitted on the packet-switched network. Due to their regular
structure, fragmentation of wires and data multiplexing, they resolve many of the above-
mentioned problems. A detailed survey of various NoC techniques and architectures are found

in 3, 19].
1.2 MULTI-CORE SOFTWARE

Given that we have a multi-core processor architecture, with the applications executing
on them as a software, the question is how much speed-up can be acquired compared to the
single core execution and how to optimize it. In this context, given a parallel application and a
parallel processing architecture, the software programmer has a very high number of design
choices at various levels.

These choices can be briefly described as -

m Software : programming model and languages, portability, performance, re-use

m Algorithm : exposing the parallelism, and a set of design parameters influencing its

execution, that can be chosen by the programmer.

m Models : abstraction of hardware platform, abstraction of software details to focus on

the timing properties.

m Optimization tools and methods : heuristics and formal methods to be used for opti-

mization, mapping and scheduling algorithms

Given with all these choices, it is not practically possible to evaluate every combination.
In many cases, these decisions are made by intuition rather than by theory. It becomes
hard to analyze if the design choices made by the programmer were correct and ensure
optimal utilization of the resources. With these mentioned points, we can roughly describe
the theoretical and practical issues in design and implementation of software on multi-core
processors.

1.2.1 Theoretical issues
1.2.1.1 Theoretical limit for the speedup

When an application is executed in parallel, the speedup obtained compared to its sequen-
tial execution is theoretically limited by the Amdahl’s Law.

Amdahl’s Law for maximum speedup in parallel execution of a program on n processors
is given by -

Speedup =
p
(1-p)+—
n

where, n € N number of parallel threads in execution
p € [0, 1], is the proportion of the program that can be made parallel

Thus we can observe that, the maximum speedup is directly dependent on the sequential
and the parallel parts of the program. Even if we have infinite processors for the execution
of the software, still the speedup obtained will be limited by the factor ﬁ. We should note
that this is only a theoretical limit. In practice, the program execution faces various issues like
cache conflicts, network contentions, synchronization and communication overheads etc. It

1.2. MULTI-CORE SOFTWARE

Task
parallelism
Data
parallelism

(a) Task parallelism (b) Data parallelism
iteration 1
iteration|o
1%2]
g | D D |
S m| |c|lE]|Cc]
S
~
plalB|A|B]
Time

(c) Pipeline parallelism

Figure 1.5 — Parallelism in a program

is difficult to take into account all these factors; however it becomes apparent that the actual
speedup that is obtained will be less than the theoretical speedup.

1.2.1.2 Parallelization of the Software

Designing a parallel algorithm and expressing the parallelism efficiently is a challenging
task. It refers to the concurrent execution of different parts of an algorithm. There are several
types of parallelism, as discussed below.

Task Parallelism refers to different tasks in an application, that can be executed in parallel.
For example, in a word processor, one task waits for input from the user and displays it on the
screen, whereas another parallel task immediately processes the input in parallel and check
for error in a given dictionary. These 2 tasks can run in parallel and can be represented in a
task graph. An example of task parallelism is shown in Figure 1.5(a). Maximum amount of
task parallelism is equal to the task graph width.

Data Parallelism is the same task executing on different data. Single Instruction Multiple
Data (SIMD) and Single Program Multiple Data (SPMD) are different implementation schemes
which benefit from data parallelism. The difference between them is that, in SIMD on every
piece of data, each processor executes the same instruction. This is the type of input suits
vector processors like GPUs. In the case of SPMD, each processor executes same software
subroutine on a separate piece of data. Thus due to coarse granularity, the instructions may

8 CHAPTER 1. INTRODUCTION

differ between different data-parallel tasks (because of data dependent operations). Due to this
characteristic, different data-parallel tasks can have different execution times.

For example, if we execute a blur filter on an image, in the output each pixel is replaced by
the mean value of its 3x3 neighborhood. This filter can operate independently on each pixel.
Figure 1.5(b) illustrates data parallelism. It looks similar to task parallelism, however with
some key differences. In data parallelism, the tasks execute same piece of software on different
piece of data, making the execution times of data-parallel tasks same (or nearly the same).
Further the granularity and the number of tasks can be an option for the programmer, which
is less the case for task parallelism. For example we can join tasks Ag and A; into one task of
higher granularity.

Pipeline Parallelism is the possibility of executing another instance of the entire task graph,
before the completion of previous instance. Figure 1.5(c) shows an example of such execution
of task graph shown in Figure 1.5(a). We call execution of the graph once as an iteration of the
graph. We observe that the execution of iteration o finishes with execution of task E, however,
task A of the next iteration starts before task E of the first iteration finishes. This increases
the throughput of the application, which is the number of graph instances executing per unit
time. It brings extra efficiency to execute such pipelined schedule, however the analysis of such
schedule is more complex. Further, programming such schedule also has to ensure the data
communication between tasks. The pipelined parallelism can be partly modeled by task and
data parallelism if we concatenate multiple instances of the task graph into one more complex
instance.

Instruction-level Parallelism (ILP) is different from that of SIMD data parallelism operating
at the instruction level. In ILP, different instructions of a sequential program can be executed
in parallel. For example, if the program has two instructions without dependency between
them, they can execute in parallel in hardware by using hardware pipeline. Superscalar
processors perform pipeline dependency analysis in hardware for parallel execution. To write
such code explicitly would be a complex process which results in unportable code, specific
to the processor. Further the benefits gained by this optimization would be minimal, and
therefore we don’t explore this parallelism. It is taken care of by hardware and compiler.

1.2.1.3 Programming Models and Languages

Given an algorithm for performing tasks and processing data, it should be represented
with a model of computation. The model abstracts the algorithm in order to hide the fine
details of a program, but still represent important characteristics of the algorithm, primarily
its parallelism, that can be used for optimization. For example, in Figure 1.5 the model used is
task graph. It represents the precedence of the tasks and also indicates about which tasks can
be executed in parallel. There are different models of computation available for specific class
of problems. We discuss this issue detail in Chapter 2.

In addition to the programming models, there is need of programming languages which can
express the data processing in these models in order to enable their execution on the hardware
platforms. Today there is no standard way of programming parallel platforms. There have
been various efforts to develop languages in the context of different target architectures and
programming models. OpenMP [31] is an extension to C/C++ language, which consists of
set of compiler directives and library routines to specify parallel computations for a shared
memory architecture. It annotates the loops and parallelizable code in a sequential program,
which is used by the OpenMP compiler and runtime to effectuate a parallely executing code
on the hardware. Recent versions of OpenMP support task parallelism. However, OpenMP is

1.2. MULTI-CORE SOFTWARE

designed more for shared memory programming. There have been efforts to implement it on
MPSoC architectures [26, 83, 123].

OpenCL [51] and CUDA [92], target typically the GPU architectures. They are efficient in
expressing and optimizing the SIMD kind of operations. In addition they support the typical
GPU hardware which has different levels and types of memories. There have been recent
work [81] on using OpenCL for multi-core platform with certain restrictions. There are many
other works like MPI [93], Cilk [20], PGAS [24], ZPL [114] etc.

Overall the programming languages and models should provide the following

m Abstraction of the application algorithm, independent of the hardware platform with a
separation between algorithm and implementation.

m Data abstraction and sharing conventions, in order to utilize different levels of memory
in the hardware platform effectively.

m Portability to different hardware platforms.

m Execution model transparency, which in turn will help the tools and provide the
programmer with a better understanding of how the code will execute on the hardware
platform, facilitating the design choices.

m Interoperability with existing code. With new programming languages, one should not
have to always completely rewrite all the programs that have already been written in
other languages. It should be easy to migrate the code from other languages.

1.2.1.4 Deployment of Parallel Applications

Deployment of applications refers to organizing the execution of the program on the
hardware platform. It consists mainly of two steps:

m Mapping is the spatial allocation of processor resources to the tasks to execute in paral-
lel. It aims at optimizing the properties related to the amount of allocated resources,
like power consumption, communication cost, load-balancing etc.

m Scheduling is the temporal allocation of processors between different tasks. It aims
at optimizing the properties that depend on task execution order like response time,
communication buffer size etc.

Embedded systems typically operate under extra-functional constraints. Hence deployment
of applications has to consider various requirements such as throughput, response time, power
consumption, load balancing, data communication etc. All these variables are elements of
a multi-criteria optimization [38] problem where the cost variables are in conflict with each
other. For example, if we use two processors instead of three, shown in Figure 1.5(c), we have
to execute task D on either processor P, or P». This will delay the execution of task E, thus
increasing the response time of the application.

In such case, the optimal solution is not unique, but rather a set of incomparable solutions
called Pareto [94] set. These solutions represent different trade-offs between the cost variables.

Exploring the design space and finding the Pareto solutions requires a model of computation
as well as a model of the hardware platform. The application model captures different aspects of
algorithms, such as concurrency, data communication, precedence constraints etc. In contrast,
the hardware platform models capture the hardware resources such as number of processors,
communication links, interconnect bandwidth, power consumption, memory capacity etc.
Deployment involves finding a solution which can make efficient use of all these resources in
the hardware meeting the performance goals. Both the models, while abstracting information,
lose some fine level details. This is a natural trade-off between efficiency in finding solutions
and accuracy, giving rise to performance gap between the predicted properties and its actual
execution.

10 CHAPTER 1. INTRODUCTION

-

profiling feedback
information

solutions

B EEE

1 deployment

app. code performance
profiling measurement

Figure 1.6 — Software design flow

1.2.2 Practical Issues

In addition to the theoretical issues, there are practical problems for exploitation of multi-
core software -

Lack of standard development and debugging tools

Lack of multi-core operating systems and system software

Lack of parallel programming models

Non-standardized interfaces of tools, compilers, hardware from different manufacturers
Unavailability of parallel programming expertise

Due to all these factors, the multi-core software development faced difficulties. A variety
of different architectures made it impossible to standardize programming models and tools
for this domain. Current software development tools for multi-core processors are far less
matured than those for single core processors and even those for hardware development of
multi-core processors. It is evident that the software development for multi-core processor
requires highly skilled work-force.

1.3 SOFTWARE DESIGN FLOW

The software design process commonly follows the Y-chart approach [70, 117] as shown
in Figure 1.6. This approach involves an application model and a hardware platform used as
an input to the optimization solver. Optimization solver is particularly a set of tools which is
used to determine the optimal configurations in which the application code can execute on
the hardware platform satisfying different cost constraints. These solver tools need profiling
information from the application code, such as task execution times, memory consumption,
communication data size etc. This information varies from one hardware platform to another,
and can be either calculated by the WCET (Worst Case Execution Time) analysis tools or
estimated by running the code on the platform and profiling it. The performance analyzer
part is optional in the design flow, and it can provide a feedback to the solver in terms of extra
constraints to avoid performance problems observed during measurements.

1.4. RELATED TOOLS 11

The solver which forms the heart of this methodology, employs different solution space
search algorithms to solve the mapping and scheduling problem. There exists a vast literature
on algorithms for mapping and scheduling. The ultimate goal of the solver is to use such
algorithms to solve this problem, and produce a solution (or set of Pareto optimal solutions).

1.4 RELATED TOOLS

1.4.1 SDF3

SDF3 [117] is a design flow based on synchronous dataflow (SDF) model. This design flow
starts from architecture and application specification and proceeds to mapping, scheduling
and performance prediction. The input to this tool is an application and architecture graph
along with different constraints, like throughput, processors used etc. The tool performs
static performance analysis on the input and determines if the constraints are feasible. If
any constraint is violated, the bottlenecks can be analyzed. This tool is oriented to a specific
predictable hardware platforms. Apart from SDF model, it also supports some other (more
expressive) application models in particular SADF (Scenario Aware Data Flow).

1.4.2 MAMPS

MAMPS [63] extends SDF3 for code generation for an FPGA based platform. The inputs to
this tool are same as SDF3 plus a template to generate hardware platform. This tool then takes
input application along with its throughput requirements, generates a hardware platform and
executable code which can satisfy these requirements. This hardware platform then can be
programmed on an FPGA and the application can be run on the platform. This tool uses a
simple Xilinx Microblaze processor and point-to-point links or a simple NoC to minimize the
prediction error due to network contentions.

1.4.3 MDP-Opt

MP-Opt [43] is a similar tool to that of SDF3/MAMPS, focussing on the throughput con-
straints of an application. It consists of four parts- a front-end compiler which generates
SDF graphs from annotated C code. A solver, based on constraint programming, solves the
allocation and scheduling problem. A back-end compiler responsible for generation of C code
which can be executed on the target hardware. And finally the description languages which
allows interfacing between all these components.

1.4.4 StreamlIT

StreamlIT is a programming language and a compiler which can compile the dataflow
applications [49]. The language models SDF with various programming patterns like filters
(same as actors) and split-join mechanism (edges). In this work, application data streams are
explicitly split and merged in order to exploit the available parallelism. StreamlIt can analyze
and optimize sliding window extensions of SDF which are not taken into consideration in
SDF3. For example it supports peek construct, which allows a filter to read the token without
removing it from the channel.

1.4.5 StreamRoller

Another interesting work is StreamRoller compiler [75] which maps the StreamIT code
on the Cell platform. It uses an algorithm SGMS (Stream Graph Modulo Scheduling) to

12 CHAPTER 1. INTRODUCTION

schedule the actors on the processors using ILP (Integer Linear Programming). SGMS applies a
pipelining technique at coarse-grain level in order to achieve concurrent execution and hidden
communication, minimizing stalls. It is done in two steps. First step involves splitting of the
actor and partitioning in order to evenly balance the work among the processors. It is done by
integer linear programming. Second stage is where actors are assigned to the pipeline stage in
order to overlap communication and computation. It is done by greedy heuristic partitioning
which assigns filters to processors.

1.4.6 Discussion

SDFj3 tool does extensive performance analysis on SDF and other variants of the model. It
also offers mapping and scheduling tools for a multiprocessor on-chip network platform with
TDM scheduling. It does not support multiple core clusters accessing local shared memory
without network and does not provide a run-time environment, although MAMPS as well
as CompOSe operating system (see Section 3.4) offer support for SDF3. MAMPS on other
hand deals with combined design space exploration of architecture and application. It has a
run-time management system which performs online resource management considering the
requirements of the application. MP-Opt offers optimization and runtime environment for
Cell processor architecture which assumes one processor per cluster. It is designed to use
the DMA communication (see Section 3.6) of the processor but does not model it explicitly.
The major optimization goal of SDF3, MAMPS and MP-Opt is optimization of throughput,
which requires pipelined scheduling. StreamlT is a compiler based approach to optimize the
execution of streaming applications based on actor splitting and fusion. In this thesis we
present our infrastructure which deals with mapping and scheduling problem on multi-core
taking DMA communication into account. We consider application latency as the timing metric
to optimize in our work. Our infrastructure deals with eliminating symmetrical solutions in
the design space and accelerating the search for optimal solutions.

1.5 ORGANIZATION OF THESIS

In this thesis we study the problem of mapping and scheduling dataflow applications on
multi-core processors. The thesis is organized as follows:

m Chapter 2 introduces the application programming model used in this work. We discuss
briefly different programming models and similarity with our model that we introduce.

m Chapter 3 presents the hardware architecture model that we follow for our investigation.
We describe the important parameters of the hardware platform that must be taken into
account for modeling. Further we describe the working of DMA on Cell processor and
introduce a model to estimate performance of the applications using it.

m Chapter 4 introduces the satisfiability solvers and briefly describe the mechanism
behind them. We give a small example of how a scheduling problem can be encoded and
presented to such solvers. Further, we describe the multi-criteria optimization problem,
where multiple costs must be optimized simultaneously. We present algorithms to
efficiently track solutions to such problems.

m Chapter 5 explains the method of deployment and evaluation of our solutions. We
briefly describe the framework in which we carry out the experiments and a runtime
environment which is used to execute and validate the solutions discovered by our
methods.

m In Chapter 6 we introduce the symmetry in the dataflow graphs and a method to encode
them in to satisfiability constraints in order to accelerate the search for solutions. We

. ORGANIZATION OF THESIS 13

present the constraints by which the scheduling problem can be encoded in order to
optimize latency, communication buffer size and number of processors.

Chapter 7 introduces a new multi-stage approach for the scheduling problem for the
Kalray processor. We demonstrate the modeling of communication and network flow-
control to orchestrate the application execution in bounded distributed memory.

In Chapter 8 we study the parallel applications with regular access pattern, which bring
the data from main memory to the limited local memory, process it and write back the
results again to the main memory. We present the work on optimizing the DMA transfer
size, for such applications.

In Chapter g we present a runtime system which optimizes resource usage of the system
by dynamically reconfiguring the applications. We present a predictable method for
such reconfiguration, without affecting other running applications.

Chapter 10 concludes the thesis and presents the future work.

CHAPTER

PROGRAMMING MODEL

This chapter introduces the role of programming model and split-join graphs which we use to model
streaming class of applications.

He description of a multi-core mapping and scheduling problem starts with a model for
T applications. Models are encoded and presented to the optimization solvers to find correct
and efficient parallel schedules.

While studying an algorithm specification, one encounters numerous parameters, details
available to the designer consideration. It is very important to select few of them which make
the most significant impact towards the solution of the problem. If the model captures too
fine-grain details, then it becomes difficult for the optimization solvers and any other search
strategies to find optimal solutions. This makes the model of computation or the programming
model, a very important aspect of embedded system design. It gives a structured view of
how a given computation will execute and is annotated by important characteristics of the
program. The model helps us to study the behavior of the entire system depending on the
behavior of individual components. By study of such model using timed system formalisms,
the designer can estimate the required resources. It is very helpful in order to gain an insight
of the algorithms and performance of the machines on which applications represented by such
models execute.

A programming model, in general, should provide the following information:

m Structure of the program

m Amount of computation of different elements

m Interaction among different elements of the program

Depending on the target class of applications and modeling objectives, there are different
types of models to choose from. Timed Automata, Petri Nets, acyclic task graphs, Process
Networks are examples of models. They are developed for different goals e.g. analyze deadlocks,
ensure safe operations etc., and hence different formalisms are applied on the models to achieve
these goals.

A class of applications called streaming applications, process a continuous stream of data for
indefinite time. The input data arrives at a given rate, and is processed by algorithms defining
such applications. JPEG decoder, MPEG decoder, H-263 encoder, filter banks etc. are examples
of streaming applications. These applications perform a predetermined set of operations on
input stream of data and can be easily represented with the type of models referred to as
dataflow graphs.

15

16 CHAPTER 2. PROGRAMMING MODEL

In this chapter we describe a few relevant dataflow graph models which are typically used
in signal processing applications. We focus on synchronous dataflow graph (SDF) model in
detail. We present a model namely split-join graph which can be regarded as a sub-class of SDF
model. Further we describe the semantics and behavior of this model. We conclude the chapter
by defining method to convert a split-join graph to an acyclic task graph which is a commonly
used model for mapping and scheduling tasks with dependencies.

2.1 DATAFLOW GRAPHS

Dataflow graph is a popular class of model of computation related to Petri Nets, which
describes a computational process with evolving availability of the data. Dataflow graphs have
nodes called actors, which represent the computation performed on a data. The edges between
the actors carry tokens represents the communication of the data, which is processed by the
actors. It emphasizes only on the dependency between execution of different actors. Dataflow
graph does not describe any timing notions explicitly, however there are common extension of
time for actors and/or edges.

(= — (9=
) ()

Figure 2.1 — Basic dataflow graph

Figure 2.1 shows an example of a dataflow graph. It has four computation actors namely A,
B, C, D. Actors A and B produce data tokens which are taken by actor C. Actor C processes
this data and produces an other data token used by actor D. This is represented by the edges,
which exhibit the data dependency. The data tokens are depicted as black bullets in the graph.
When the actors execute they consume the tokens present at their input edges and produce
tokens on their output edges. In Figure 2.1, C consumes the tokens produced by A and B from
their outputs and produces the tokens on the input edge of actor D.

In the dataflow terminology, the nodes called as actors produce or consume an amount of
data on the edges called as rate. Different data flow graph models are distinguished by the
rules that determine the number of tokens produced and consumed by actors. Dataflow graphs
can be classified into static and dynamic depending on whether the rate of production and
consumption of tokens is statically known. We discuss some of the dataflow models below.

2.1.1 Static Dataflow

These are very simple models which assume that the amount of data is known a priori to
the execution. These models have completely predictable execution times and various other
parameters of the model. This is a trade-off that has to be made in order to achieve simplicity
and analyzability of the model.

Homogeneous synchronous data flow (HSDF) are the simplest dataflow graph similar to
shown in Figure 2.1, where rate of every edge is equal to 1. Thus every actor produces a token

2.1. DATAFLOW GRAPHS 17

on outgoing edge while it consumes one token on an incoming edge. They can be seen as an
extension to the acyclic task graph by cyclic paths and data tokens.

Synchronous Dataflow (SDF) graphs is a restricted version of dataflow in which the produc-
tion and consumption rates (can be non-unity) are known at the compile time. Each actor fires
or executes by consuming and producing a predefined number of tokens at its input and output
respectively. Each actor may have different rates, however to an individual actor the actual
rates are invariant. This restrictive property makes the model analyzable and easy to predict
and produce a static schedule which can be repeatedly executed in bounded memory. Marked
graphs [29], a class of Petri nets, are similar to HSDF graphs, while SDF can be regarded as
equivalent to weighted marked graphs [125].

Computation graphs [67], another type of static dataflow model, are similar to the SDF,
which are represented by a finite set of nodes connected with directed queues. In addition
to token rates, it adds a threshold value, which is a minimum number of tokens that must
be present at the input queue. SDF can be regarded as special case of computation graphs,
where this threshold is equal to the consumption rate. Threshold property of this model is
helpful in modeling sliding window algorithms, where the nodes need to read the data tokens
without consuming them. These graphs find applications in DSP systems, where it is common
to operate on a continuous stream of data, e.g. FIR filters, FFT algorithms etc.

There are various extension of SDF. Cyclo Static dataflow model [18, 40] enhances the
SDF model by allowing periodically changing token production and consumption rates in
contrast to the static rates of SDE. Multidimensional Data Flow (MDSDF) [89] supports the
multi-dimensional tokens, such that an actor fires only if the tokens/space in all the dimensions
are available. Such models are useful in applications like image processing where the data is
represented in two or multiple dimensions. Windowed Synchronous Data Flow (WSDF) [68] is
an extension of MDSDF, which supports sliding window algorithms.

2.1.2 Dynamic Dataflow

With the development of new applications and algorithms, the static models are not able
to accommodate the conditional execution of the actors or varying data rates [17]. Dynamic
dataflow are the models in which a set of parameters like the production and consumption
rates are not completely known at compile time. This allows flexibility in modeling modern
applications, however at the cost of analyzability of such models.

An example of dynamic dataflow is Process Networks. Kahn Process Networks (KPN or
simply PN) [64] is model of concurrent computations which has a set of deterministic processes
which communicate by unbounded FIFO (first-in first-out) queues. The processes block only
when trying to read an empty queue, but the queues grow indefinitely when writing processes
add data to them. Termination of a PN program is undecidable in finite time, as is boundedness
of the queues. This property of queues makes an actual implementation infeasible in limited
amount of memory. There are various algorithms to execute a process network in bounded
memory, one such is described in section 4.2 of [95]. As compared to SDF, KPN is more
expressive but difficult to make static analysis [46].

Boolean dataflow model (BDF) [23] is a extension of SDF model supporting conditional exe-
cution of an actor. It has two special actors called as switch and select. The switch actor has two
output and one input, while select actor has two input and one output ports respectively. The
former determines to which output port the tokens are produced, while the latter determines
from which input port the tokens are consumed. The selection in both the cases is done with
the help of a control port. This property makes the model difficult for compile time analysis.
For example it is difficult to check boundedness of memory, absence of deadlock, compute a
timed schedule, and the model in general is Turing complete.

18 CHAPTER 2. PROGRAMMING MODEL

Scenario Aware Dataflow (SADF) [116] is a class of extensions of SDF model, introducing the
concept of scenarios. A predefined set of scenarios can be seen as different modes of operation
of the model, in which the resource requirements, like communication rates and structure,
differ considerably. While some properties of these graphs like deadlock and throughput in
many cases are analyzable at design time, in practice this analysis can be computationally
expensive.

There are many parametric extensions of SDF which allow updating of the parameters
of the the dataflow graphs at run-time. Parameterized synchronous dataflow (PSDF) [16],
Variable rate dataflow (VRDF) [131], Schedulable parametric data-flow (SPDF) [42] are a few
examples of such extensions.

In this thesis, we use static dataflow models, typically SDF. Since our model of computation
is closely related with SDF, we discuss it first in brief and then describe the split-join graphs
which can be considered as a restriction to the SDF model.

2.2 SYNCHRONOUS DATAFLOW

SDF is one of the static dataflow models for computation. This model, introduced by Lee
and Messerschmitt [78], provides a compact representation of applications which communicate
data in regular fashion. The graph consists of actors which are connected by edges. An actor
corresponds to a piece of code which has input and/or output. It performs some computation
on the input tokens and as a result produces output tokens. The edges are marked with input
and output rates. The actors communicate using buffers which are of limited size. An actor
can fire when its input buffers have enough tokens available for firing and output buffers have

enough space for tokens.
2
A B

Figure 2.2 — Simple SDF with two actors

yWw

Figure 2.2 shows a very basic SDF. It has two actors namely A and B. The numbers marked
on the edge connecting A to B denote the rates. Thus for this edge, the production rate is 2 and
consumption rate is 3. It implies that when actor A executes, it will produce two tokens on the
edge, while when actor B executes, it will consume 3 tokens on this edge.

An iteration of a graph is execution of all the actors of SDF for a fixed number of times
greater than or equal to one. In an iteration, consistency property [115] of an SDF states that,
for all edges in SDF, the amount of data produced on the edge of an SDF is equal to the
data consumed on that edge. In short, the graph should return to the initial state after an
iteration. Thus in the above example, initially there are zero tokens on the edge. If actor A
executes 3 times, it will produce 6 tokens on its output edge, and if actor B executes for 2
times, then it consumes all the 6 tokens. Thus an iteration can be defined for this example for
A executing three and B two times. Note that they can also execute for multiple of these values,
for example 6 and 4 times respectively, but we always refer to the minimal values. An array
which gives minimal number of times for execution of actor for graph to be consistent is also
called repetition vector.

DEerINITION 1 (Repetition Vector) — Repetition Vector is an array of length equal to number of actors
in SDEF, such that if each actor is invoked for the number of times equal to its entry, the number of
tokens on each edge of SDF remains unchanged.

2.2. SYNCHRONOUS DATAFLOW 19

Any SDF graph which is not consistent requires unbounded memory to execute or dead-
locks [115]. When an SDF graph deadlocks, no actor is able to fire, which is due to an
insufficient number of tokens in a cycle of the graph. Any SDF graph which is inconsistent or
deadlocks is not useful in practice.

Figure 2.3 — SDF with backward edge

The edge between actor A and B represents a FIFO which carries data from the writer of the
FIFO to the respective reader. In the example, if actor A fires continuously, the size of the FIFO
will grow continuously and the graph will require unbounded memory for execution. SDF
graph models bounded memory with the help of backward edges with initial tokens (similar to
algorithm in [95]) as shown in Figure 2.3. The initial tokens represent the free space available
in the forward edge. For every execution of actor A, it produces 2 (data) tokens on the forwa