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et chercheur au laboratoire VERIMAG, pour avoir toujours été disponible pour
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lement le directeur du laboratoire, Joseph Sifakis, ainsi que Yassine Lakhnech,
Marius Bozga, Sergio Yovine, Stavros Tripakis, Saddek Bensalem, et Nicolas
Halbwachs, pour leurs aides administratives ou scientifiques.

Un grand merci aussi au personnel administratif de VERIMAG et plus
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Merci à mes amis et anciens de l’Ecole Polytechnique de Tunisie, et plus
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Chapter 1

Introduction

1.1 Motivation

Formal verification is a collection of techniques for ensuring that a discrete
system (hardware or software) performs its intended function and does not
exhibit undesired behaviors. The adjective “formal” is intended to distinguish
verification from techniques known as testing, debugging or simulation that
usually cover only a fraction of the admissible behaviors of the system. All
verification techniques are based on an abstract mathematical model of the
system to be verified, typically in a form of interacting automata.

Bounded model checking is one of the several verification methods that have
been developed. It is based on writing a logical formula that characterizes the
set of all possible executions of the system under consideration the formula’s
length is bounded by a given constant and which violates a desired property.
The existence of an assignment of Boolean values to the variables which makes
the formula true implies the existence of such an execution.

The problem of checking whether such an assignment exists is called the
Boolean satisfiability problem (SAT), and is considered to be the “generic”
hard computational problem for which no sub-exponential algorithm is known.
Due to its challenging nature, SAT has been the subject of ongoing research
and development leading to algorithms and tools with impressive performance.
Such “SAT solvers” constitute the key ingredient in the bounded model checking
methodology.

In recent years attempts have been made to extend the scope of verification
technology to capture timing aspects in order to take into account phenomena
such as response times, delays, durations, deadlines etc. A commonly accepted
model for describing such “timed” systems is the timed automaton, an automa-
ton augmented with auxiliary real variables called clocks that measure the time
elapsed since certain transitions and hence impose timing constraints on the
behaviors of the automaton. The goal of this thesis is to contribute to the ap-
plicability of bounded model-checking techniques to timed automata and other
models of timed systems.

The first step in extending bounded model checking to timed systems is to
define an appropriate logic which, in this case, is propositional logic extended
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2 CHAPTER 1. INTRODUCTION

with timing constraints concerning the difference between two real variables.
This extended logic will be called difference logic in this thesis.

There are two basic approaches to apply bounded model checking to timed
systems. The first tests the satisfaction of the formula expressing the bounded
length executions by using a general purpose constraint solver that can treat
both logical and numerical constraints. The second consists in transforming
that formula to a purely propositional one either by using a binary encoding of
clocks, or by representing timing constraints and their interdependencies using
Booleans. In both cases, the resulting formula is submitted to a Boolean SAT
solver to check its satisfiability. Deduced assignments on Booleans that are
originally equivalent to constraints are used to determine if the solution is not
“spurious”, i.e. if the found Boolean solution is numerically consistent, other-
wise the solution is abandoned, and the search for other Boolean assignments
is continued.

This thesis explores an intermediate approach consisting in creating an ap-
propriate solver that can directly handle formulae in difference logic. This
solver does not operate on arbitrary numerical constraints and hence can take
advantage of the special properties of difference constraints. Thus, the major
contribution of this work is the development of mixed satisfiability checking
techniques that process both Booleans and timing constraints. These tech-
niques are inspired by those already used in Boolean SAT solvers but most of
them are extended in order to take into consideration the mixed nature of the
formulae.

1.2 Related Work

The term “bounded model checking” for discrete finite-state systems was first
put forward in [BCC+99a, BCC+99b]. In fact, the idea had been already pre-
sented in [SS90]. Several researchers investigated the extension of SAT-based
bounded model checking from finite-state systems to systems with unbounded
variables representing clocks. A solver for a logic similar to difference logic was
used for artificial intelligence temporal planning problems in [ACG99].

In [ACKS02, ABC+02], the authors develop an extended SAT solver to
verify timed automata against temporal logic specifications. Although this
work has the same motivation as this thesis, the approach it adopts is quite
different: the interaction between the Boolean and the numerical part is much
more limited and the numerical constraints are submitted to a general purpose
solver to determine their satisfiability.

A similar approach, but with more general numerical constraints is con-
sidered in [MRS02] where numerical constraints are encoded as Booleans and
decision methods are used in order to get rid of spurious solutions.

A more sophisticated approach has been proposed in [SBS02] in the context
of separation logic (another name of difference logic). Constraints are encoded
by Boolean variables along with their interdependencies. This way, the modified
problem can be submitted to a propositional solver without worrying about the
above mentioned spurious solutions. As pointed in [SBS02], encoding all the
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dependencies might lead to an exponential blow-up of the size of the formula.
In [PWZ02], a binary encoding of clocks is used to convert the problem into

a Boolean SAT instance in order to check the satisfiability of TCTL formulae.
The potential application of bounded model checking to the duration calculus
is described in [Fra02]. In general, the idea of applying bounded model checking
to timed systems is very popular these days, and there are probably many other
papers on that topic that are currently being written.

A survey of the related work on Boolean satisfiability techniques, on which
our solver is based, appears in Chapter 3.

1.3 Thesis Outline

Chapter 2 presents the definitions and the notations of mathematical objects
necessary for subsequent discussions. In particular, difference logic is defined
along with conjunctive normal form for mixed clauses. Algorithms that con-
vert formulae from difference logic to the mixed conjunctive normal form are
detailed. Difference bound matrices are also introduced as a convenient way to
represent conjunctions of timing constraints.

Chapter 3 is concerned with the state-of-the-art in the Boolean SAT solv-
ing field. It starts with a brief historical overview and presents the common
architecture of Boolean SAT solvers based on a depth-first exploration of the
space of assignments. The chapter contains also a survey of branching heuris-
tics as well as a synthesis of the major useful techniques that can be found in
contemporary efficient solvers.

In Chapter 4 we describe a generic mixed SAT solver. We extend methods
and algorithms used for Boolean SAT to take into account numerical differ-
ence constraints, and develop new techniques specific to these constraints. The
chapter concludes with a description of an implementation of such a solver.

Chapter 5 presents three classes of timed systems, namely automata, asyn-
chronous digital circuits, and non-preemptive job-shop scheduling problems,
and shows how it is possible to describe their behavior using difference logic in
order to verify them with a mixed SAT solver.

Chapter 6 provides an empirical study of the efficiency of the mixed SAT
solving techniques based on experimentation carried out on some examples
belonging to the three classes of problems presented earlier. This gives a rough
idea on how much the key solving techniques contribute to the performance of
the solver.

The concluding chapter summarizes the contributions of this thesis and
suggests future research directions.
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Chapter 2

Timed Formalisms

In this chapter, we introduce difference logic and focus on how to translate
formulae expressed in that logic to a special conjunctive normal form. Dif-
ference logic consists of classical propositional logic extended with difference
constraints, i.e. inequalities of the form (x − y ≺ c) where ≺∈ {<,≤}, x and
y are numerical variables, and c is a constant. The use of difference constraints
is natural when analyzing problems where time and delays are expressed.

2.1 Difference Logic

This logic has already been used under different names elsewhere [ABK+97,
LPWY99, MLA+99, BM00, SBS02] and is probably part of the folklore. We
chose to baptize it in this thesis as Difference Logic or DL.

Formulae of difference logic are formed by joining sub-formulae with such
connectives as ∧ (and), ∨ (or), and by prefixing ¬ (not). The formulae may
be defined recursively as the smallest class containing:

• Atomic formulae consisting of Booleans or constraints whose valuations
are either true or false;

• Expressions of the form ¬φ1, φ1 ∧ φ2, and φ1 ∨ φ2.

A more formal definition of DL follows.

Definition 1 (DL Syntax) Let B = {b1, b2, . . . } be a set of Boolean variables
and X = {x1, x2, . . . } be a set of numerical variables. The difference logic over
B and X is called DL(X ,B) and given by the following grammar:

φ ::= b | (x − y < c) | (x − y ≤ c) | ¬φ | φ ∨ φ | φ ∧ φ

where b ∈ B, x, y ∈ X and c ∈ D is a constant. The domain D is either the
integers Z or the real numbers R.

Remark 1 Other Boolean connectives can also be expressed in DL:

5



6 CHAPTER 2. TIMED FORMALISMS

• Equivalence ⇔: φ1 ⇔ φ2 ≡ (φ1 ∨ ¬φ2) ∧ (¬φ1 ∨ φ2)

• Implication ⇒: φ1 ⇒ φ2 ≡ (¬φ1 ∨ φ2)

• Exclusive or ⊕: φ1 ⊕ φ2 ≡ (φ1 ∧ ¬φ2) ∨ (¬φ1 ∧ φ2)

Remark 2 If D = Z , the DL syntax can be reduced to:

φ ::= b | (x − y ≤ c) | ¬φ | φ ∨ φ | φ ∧ φ

because (x − y < c) is equivalent to (x − y ≤ c − 1) over the integer domain.

Definition 2 (Valuation) Consider a B-valuation vB and an X -valuation vX
defined by:

vB : B → B vX : X → D

where B = {true, false}. An (X ,B)-valuation is a function

v : DL(X ,B) → B

such that:

v(b) = vB(b)

v(x − y < c) =
{

true iff vX (x) − vX (y) < c
false otherwise

v(x − y ≤ c) =
{

true iff vX (x) − vX (y) ≤ c
false otherwise

v(¬φ) = ¬v(φ)
v(φ1 ∧ φ2) = v(φ1) ∧ v(φ2)
v(φ1 ∨ φ2) = v(φ1) ∨ v(φ2)

where b ∈ B, x, y ∈ X , c ∈ D, and φ, φ1, φ2 ∈ DL(X ,B).

2.2 Satisfiability

Definition 3 (Satisfiability) A formula φ ∈ DL(X ,B) is satisfiable iff there
exists an (X ,B)-valuation v such that v(φ) = true. A formula φ is unsatisfiable
iff for every (X ,B)-valuation v, v(φ) = false.

Proposition 1 The satisfiability problem for DL(X ,B) is NP-complete.

Proof: NP-hardness is an immediate consequence of the Boolean case as de-
scribed in Cook’s theorem [GJ79]. For NP-easiness, a non-deterministic algo-
rithm works by guessing which atomic formulae (Boolean variables and con-
straints) appearing in the formula are true and which are not. Then, a poly-
nomial time test has to check that this assignment renders the entire formula
true (linear time in the size of the formula) and that the corresponding set
of constraints on the real numbers is in fact satisfiable. The satisfiability of
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a conjunction of difference constraints (a special case of linear programming)
can be solved in polynomial (cubic) time using a variant of the Floyd-Warshall
algorithm1 [CLR+01].

2.3 Conjunctive Normal Form

The conjunctive normal form (CNF) is well suited to analyze the satisfiability
of a formula. This explains why this form has been extensively used in the
classical satisfiability problems.

Definition 4 (Literal) A literal can be either Boolean or numerical. A Boolean
literal is a formula of the form b or ¬b with b ∈ B. A numerical literal is a
formula of the form (x − y ≺ c) with x, y ∈ X , ≺∈ {<,≤}, and c ∈ D.

Remark 3 In the rest of this document, we may refer to Boolean literals as
Booleans and to numerical literals as constraints.

Definition 5 (Clause) A clause is a finite disjunction of literals. An n-clause
is a disjunction of at most n literals.

Remark 4 A 0-clause is the empty clause and its valuation is false. A unit
clause is a clause containing only one literal.

Intuitively, a mixed clause denotes a clause that can contain both Boolean
and numerical literals. However, in this work, we will define mixed clauses more
restrictively:

Definition 6 (Mixed clause) A mixed clause is a clause that contains at
most one numerical literal.

Clauses have a number of interesting properties that deserve attention.
First, checking whether a clause is satisfied or not is immediate: if it con-
tains at least a literal whose valuation is true, it is satisfied. Second, given two
clauses C1 and C2, it is easy to know if C1 is weaker than C2, i.e. if C2 implies
C1, by checking that all the literals of C2 occur in C1. In such a case, we say
that C2 absorbs C1. Based upon that property, it is straightforward to deduce
that equivalent clauses contain the same literals.

Definition 7 (Conjunctive normal form) A formula F is in the conjunc-
tive normal form (CNF) iff it is a conjunction of clauses, i.e.:

F =
m∧

i=1

Ci

=
m∧

i=1

(
ni∨

j=1

Lij)

where each Lij denotes a literal.
1A discussion of this algorithm is on page 20.
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Remark 5 F is said to be n-CNF if all its clauses are n-clauses, i.e.:

∀ i ∈ {1 . . . m}, ni ≤ n

Definition 8 (Mixed conjunctive normal form) A formula is in the mixed
conjunctive normal form (MX-CNF) iff it is a conjunction of mixed clauses.

2.4 Translating from DL to MX-CNF

We present, in the increasing order of efficiency, three algorithms to perform the
translation from difference logic to the mixed conjunctive normal form. Only
the second and the third are really usable in practice due to their interesting
properties and to the relative compactness of the MX-CNF translations they
produce.

2.4.1 Trivial translation

Algorithm 1 (Trivial translation) The translation is done using the ele-
mentary properties of logical connectives. It is based on pattern matching and
rewriting, until no more of the following rules can be applied:

¬(φ1 ∧ φ2) → ¬φ1 ∨ ¬φ2

¬(φ1 ∨ φ2) → ¬φ1 ∧ ¬φ2

φ1 ∨ (φ2 ∧ φ3) → (φ1 ∨ φ2) ∧ (φ1 ∨ φ3)

(φ1 ∨ φ2) ∧ φ3 → (φ1 ∨ φ3) ∧ (φ2 ∨ φ3)

¬(¬φ) → φ

The main drawback of the trivial conversion is that it may result in an
exponential growth of the size of the formula as illustrated in the following
example.

Example: Using the trivial translation, the formula:

(x1 ∧ y1) ∨ · · · ∨ (xn ∧ yn)

is converted to a conjunction of 2n binary clauses:

n∧
i=1

n∧
j=1

(xi ∨ yj)

�
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2.4.2 Tseitin’s translation

By adding new variables, translation to MX-CNF can be done with linear com-
plexity. This simple but efficient idea is credited to Tseitin [Tse68].

The translation is based on the introduction of Boolean variables that are
equivalent to the sub-formulae encountered while parsing the formula to con-
vert.

Example: Consider the formula:

(a ∧ ¬b) ∨ (x − y ≤ 5) (2.1)

Tseitin’s translation starts by creating a new Boolean variable φ0, such that:

φ0 ⇔ (a ∧ ¬b) ∨ (x − y ≤ 5) (2.2)

Another new variable φ1 is created and is set equivalent to the left sub-
formula of φ0:

φ1 ⇔ (a ∧ ¬b) (2.3)

As a result, φ0 can be written as:

φ0 ⇔ φ1 ∨ (x − y ≤ 5) (2.4)

Checking the satisfiability of (2.1) is equivalent to checking the satisfiability
of the following conjunction:

φ0

∧
(
φ0 ⇔ φ1 ∨ (x − y ≤ 5)

)
∧

(
φ1 ⇔ (a ∧ ¬b)

)
Using elementary Boolean rules, the above problem can be immediately

translated to MX-CNF clauses. �

Algorithm 2 (Tseitin’s translation)

global k

tseitin(F )
begin

k := 0
create variable φ0

return(φ0 ∧ convert(F, φ0))
end

convert(F, φ)
begin
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if F has the form G ∨ H
then

begin
l1 := literal(G)
l2 := literal(H)
return (φ ∨ ¬l1) ∧ (φ ∨ ¬l2) ∧ (¬φ ∨ l1 ∨ l2)

∧convert(G, l1) ∧ convert(H, l2)
end

else if F has the form G ∧ H
then

begin
l1 := literal(G)
l2 := literal(H)
return (¬φ ∨ l1) ∧ (¬φ ∨ l2) ∧ (φ ∨ ¬l1 ∨ ¬l2)

∧convert(G, l1) ∧ convert(H, l2)
end

else if F has the form ¬ G
then

return convert(G, φ)
else

return true
end

literal(F )
begin

if F is a Boolean or is a constraint
then

return(F )
else if F has the form ¬ G

then
return(¬literal(G))

else
begin

k := k + 1
create variable φk

return(φk)
end

end

Remark 6 (Constraints in the translation) When applying our adapted ver-
sion of Tseitin’s algorithm, care must be taken when adding clauses to the MX-
CNF formula. In fact, as MX-CNF clauses must contain at most one con-
straint, the algorithm must modify clauses with two constraints to conform with
the MX-CNF syntax.

As the two-constraint clauses case happens only with clauses of the form
b ∨ c1 ∨ c2 where b is a Boolean literal and c1 and c2 are constraints, we can
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create a new Boolean variable β ≡ c2 and replace the clause b ∨ c1 ∨ c2 by:

b ∨ c1 ∨ β
∧ β ∨ ¬c2

∧ ¬β ∨ c2

Example: Consider again the formula:

(a ∧ ¬b) ∨ (x − y ≤ 5)

According to the algorithm, we first add a new variable φ0 such that:

φ0 ⇔ (a ∨ ¬b) ∨ (x − y ≤ 5)

and then add a single unit clause to the MX-CNF formula (which is currently
empty):

φ0

The second step consists in creating an extra new variable equivalent to the left
sub-formula. The right sub-formula is a literal so it requires no renaming.

φ1 ⇔ (a ∧ ¬b)

Then, the three following clauses are added to the MX-CNF formula:

φ0 ∨ ¬φ1

∧ φ0 ∨ (x − y > 5)
∧ ¬φ0 ∨ φ1 ∨ (x − y ≤ 5)

The right sub-formula must then be converted using the same mechanism. But
as it contains only literals, only these three clauses need to be added to the
MX-CNF formula:

¬φ1 ∨ a
∧ ¬φ1 ∨ ¬b
∧ φ1 ∨ ¬a ∨ b

The final result of the translation is:

φ0

∧ φ0 ∨ ¬φ1

∧ φ0 ∨ (x − y > 5)
∧ ¬φ0 ∨ φ1 ∨ (x − y ≤ 5)
∧ ¬φ1 ∨ a
∧ ¬φ1 ∨ ¬b
∧ φ1 ∨ ¬a ∨ b

�
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Remark 7 Tseitin’s translation generates MX-3-CNF clauses only. Hence, the
final formula contains only the following forms:

b
b ∨ b
b ∨ b ∨ b
c
b ∨ c
b ∨ b ∨ c

where b is a Boolean literal and c is a constraint.

2.4.3 Wilson’s translation

A more compact translation was proposed by Wilson in [Wil90]. It is based on
replacing a disjunction of the form F ∨ G with the conjunction:

φ0 ∨ φ1

∧ ¬φ0 ∨ F
∧ ¬φ1 ∨ G

where φ0 and φ1 are auxiliary variables. The original disjunction and the trans-
lated conjunction are equi-satisfiable. In fact, ¬φ0 ∨ F and ¬φ1 ∨ G encode
respectively that φ0 ⇒ F and φ1 ⇒ G.

Example: With Wilson’s translation, the formula, used in a previous example:

(x1 ∧ y1) ∨ · · · ∨ (xn ∧ yn)

is converted to the conjunction:

(φ0 ∨ · · · ∨ φn−1) ∧
n∧

i=1

(
(¬φi−1 ∨ xi) ∧ (¬φi−1 ∨ yi)

)

The advantage of this translation is obvious as it yields a compact formula. �

Algorithm 3 (Wilson’s translation)

global k

wilson(F )
begin

k := 0
return convert(F )

end

convert(F )
begin
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if F is a clause
then

return F
else if F has the form G ∧ H

then
return convert(G) ∧ convert(H)

else if F has the form ¬(G ∨ H)
then

return convert(¬G ∧ ¬H)
else if F has the form ¬(G ∧ H)

then
return convert(¬G ∨ ¬H)

else if F has the form λ ∨ (G ∧ H) where λ is a literal
then

begin
k := k + 1
create variable φk−1

return (φk−1 ∨ λ) ∧ convert(¬φk−1 ∨ G)
∧convert(¬φk−1 ∨ H)

end
else if F has the form λ ∨ ¬(G ∨ H) where λ is a literal

then
return convert(λ ∨ (¬G ∧ ¬H)

else if F has the form λ ∨ G ∨ H where λ is a literal
then

begin
k := k + 2
create variable φk−1

create variable φk−2

return (φk−1 ∨ φk−2 ∨ λ) ∧ convert(¬φk−2 ∨ G)
∧convert(¬φk−1 ∨ H)

end
else

begin
write F as G ∨ H
k := k + 2
create variable φk−1

create variable φk−2

return (φk−1 ∨ φk−2) ∧ convert(¬φk−2 ∨ G)
∧convert(¬φk−1 ∨ H)

end
end

Example: Again, assume the formula:

(a ∧ ¬b) ∨ (x − y ≤ 5)
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Using Wilson’s algorithm, it is translated into:

φ0 ∨ (x − y ≤ 5)
∧ ¬φ0 ∨ a
∧ ¬φ0 ∨ ¬b

�

2.5 Conjunctions of Difference Constraints

This section presents some possible representations of conjunctions of difference
constraints. It starts by the geometrical one, namely convex timed polyhedra,
and focuses after on Difference Bound Matrices (or DBMs) which were first
introduced by Bellman in [Bel57] and used for timing verification by Dill in
[Dil89].

2.5.1 Convex timed polyhedra

A convex timed polyhedron [BM00] is a polyhedron resulting from the finite
intersection of half-spaces.

More formally, a convex timed X -polyhedron Π is defined as follows:

Π = Π1 ∩ · · · ∩ Πm′ ∩ Πm′+1 ∩ . . . ∩ Πm

where X = {x1, . . . , xn} and Π1, . . . ,Πm are hyper-planes of dimension (n− 1).
Each of those hyper-planes is defined by the equation:

Πi :
{

xf(i) − xs(i) ≺i ci , if i ∈ {1, . . . , m′}
xf(i) ≺i ci , if i ∈ {m′ + 1, . . . , m}

where:

∀i ∈ {1, . . . , m}, f(i) ∈ {1, . . . , n}, ≺i∈ {<,≤}, and ci ∈ D

and
∀i ∈ {1, . . . , m′}, s(i) ∈ {1, . . . , n}, and f(i) �= s(i)

Hence, the convex timed polyhedron Π represents a conjunction of difference
constraints:

Π :
m′∧
i=1

(xf(i) − xs(i) ≺i ci) ∧
m∧

i=m′+1

(xf(i) ≺i ci)

2.5.2 Bounds

A bound is a pair (c,≺) where c ∈ D∪{∞} and ≺∈ {<,≤}. The standard order
< on D is extended to the elements of D ∪ {∞} by letting c < ∞, ∀ c ∈ D.
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Definition 9 (The < order) A total order on bounds can be defined as fol-
lows:

(c,≺) < (c′,≺′) iff c < c′ or

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c = c′

and
≺ = <

and
≺′ = ≤

Therefore, we can also define:

(c,≺) ≤ (c′,≺′) iff (c,≺) < (c′,≺′) or

⎧⎨
⎩

c = c′

and
≺ = ≺′

Remark 8 The bounds (∞, <) and (∞,≤) are said to be trivial.

Definition 10 (Minimum, ⊕ operation) The minimum of two bounds (c,≺)
and (c′,≺′) is denoted (c,≺) ⊕ (c′,≺′) and is defined by:

(c,≺) ⊕ (c′,≺′) =
{

(c,≺) if (c,≺) ≤ (c′,≺′)
(c′,≺′) otherwise

Definition 11 (Sum, ⊗ operation) The sum of two bounds (c,≺) and (c′,≺′)
is defined by:

(c,≺) ⊗ (c′,≺′) = (c + c′,≺′′)

where

≺′′=
{

< if ≺=< or ≺′=<
≤ otherwise

Remark 9 The standard + operation is extended over D∪{∞} for each c ∈ D

as follows:
c + ∞ = ∞

c + (−∞) = −∞
∞ + ∞ = ∞

∞ + (−∞) = ∞
(−∞) + (−∞) = −∞

Remark 10 The set of bounds provided with the minimum operator ⊕ and the
sum operator ⊗ defines a (min,+)-linear system [Gau99] such that:

• (∞, <) is the neutral element for the ⊕ operation. In fact, for any bound
b, b ⊕ (∞, <) = b.

• (0,≤) is the neutral element for the ⊗ operation.

• (∞, <) is the absorbing element for the ⊗ operation. In fact, for any
bound b, b ⊗ (∞, <) = (∞, <).
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2.5.3 Representing convex timed polyhedra using DBMs

Consider the convex timed polyhedron given by the conjunction of constraints:

(x − y ≤ 5) ∧ (z > 2) ∧ (y − z > 8)

The DBM associated with this polyhedron is:
⎛
⎜⎜⎜⎜⎝

0 x y z

0 (0,≤) (∞, <) (∞, <) (−2, <)
x (∞, <) (0,≤) (5,≤) (∞, <)
y (∞, <) (∞, <) (0,≤) (∞, <)
z (∞, <) (∞, <) (−8, <) (0,≤)

⎞
⎟⎟⎟⎟⎠

With this example, we can understand the way a DBM is built from a set
of constraints: Each item of the matrix represents the bound of the difference
between two variables. A special variable 0 is introduced and is used to encode
bounds on single variables (such as z > 2).

More formally, a difference bound matrix (DBM) of dimension n is a (n + 1)-
square matrix M whose elements are bounds of the difference between variables
from the set X ∪ {0}, where X is a set of n variables ranging over D and 0 is
the zero variable.

Each element of a DBM M is indexed by two variables x, y ∈ X ∪{0}. It is
referred to as Mxy.

If we consider a convex timed X -polyhedron Π = Π1 ∩ · · · ∩ Πm where
Π1, . . . ,Πm are hyper-planes of dimension (n − 1), we can build its associated
DBM of dimension n using the following algorithm:

Algorithm 4 (A convex timed polyhedron → DBM)

ConvexTimedPolyhedronToDBM(Π)
begin

Initialize all elements of M to (∞, <)

for k := 1 to m
begin

if Πk = (xi − xj ≺ c)
then

Mxixj := (c,≺)
else if Πk = (xi − xj � c)

then
Mxjxi := (−c,≺)

else if Πk = (xi ≺ c)
then

Mxi0 := (c,≺)
else if Πk = (xi � c)

then
M0xi := (−c,≺)
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end

return(M)
end

Inversely, any DBM M of dimension n defines a convex timed polyhedron
[[M ]] on the set of variables X = {x1, . . . , xn} such that:

[[M ]] =
⋂

1≤i≤n

(
(xi �Mxi0

bMxi0
) ∩ (−xi �M0xi

bM0xi
)
)

∩
⋂

1≤i�=j≤n(xi − xj �Mxixj
bMxixj

)

where �(c,≺)=≺ and b(c,≺) = c. [[M ]] is the convex timed polyhedron associated
with M .

2.5.4 Canonical representation of DBMs

A combination of constraints that defines a convex timed polyhedron can lead
to the deduction of other implicit constraints.

Consider the convex timed polyhedron Π defined by the constraints:

(x ≥ 1) ∧ (x ≤ 4) ∧ (y ≥ 2) ∧ (y ≤ 33) ∧ (y − x ≤ 1) ∧ (x − y ≤ 0)

From constraints (x ≤ 4) and (y−x ≤ 1), we deduce (y ≤ 5). We can easily
check that the inequality (y ≤ 5) holds for each point (x, y) in Π. Thus, it is
obvious that Π′ given by the conjunction of constraints

(x ≥ 1) ∧ (x ≤ 4) ∧ (y ≥ 2) ∧ (y ≤ 5) ∧ (y − x ≤ 1) ∧ (x − y ≤ 0)

is equivalent to Π.
This simple example shows that there is no unique set of constraints whose

conjunction defines a given convex timed polyhedron. Hence, there is no bijec-
tion between DBMs and convex timed polyhedra.

Such a bijection, if it were available, would have solved many issues, includ-
ing the detection of equality between two DBMs.

Intuitively, we can guess that testing if two DBMs M1 and M2 are equivalent
consists in testing if the sets of all their original constraints with all the implicit
constraints are the same.

In order to generate all the constraints that can be deduced from a DBM
M , we will not consider it as a geometrical object for a while. We will rather
consider it as an adjacency matrix of a directed graph whose vertices are el-
ements of X ∪ {0}. An edge in that graph that connects x to y has Mxy as
weight.

The DBMs associated with Π and Π′ are the adjacency matrices of the two
graphs in Figure (2.1) and (2.2).

The graph associated with Π′ can be obtained from the one associated with
Π by replacing the weight of the edge connecting y to 0 by the weight of the
path linking y to 0 that goes through x. In other words, the weight of any edge
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Figure 2.1: Graph associated with Π
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Figure 2.2: Graph associated with Π′
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connecting x and y can be replaced by a smaller constraint that results from
the computation of the weight of the shortest path whose extremities are x and
y.

Definition 12 (Weight of a path) Consider a DBM M and a path P in the
graph whose adjacency matrix is M , such that:

P = x1 → . . . → xk

The weight of P is :

weight(P ) = Mx1x2 ⊗ Mx2x3 ⊗ . . . ⊗ Mxk−1xk

Lemma 1 Consider a DBM M and Z ∈ [[M ]]. For each x, y ∈ X ∪ {0} and
for each path P connecting x and y :

Zx − Zy ≤ bweight(P )

Proof: Suppose that P = x → x1 → . . . → xk → y. As Z ∈ [[M ]], we have :

Zx − Zx1 ≤ bMxx1

Zx1 − Zx2 ≤ bMx1x2
...

Zxk−1
− Zxk

≤ bMxk−1xk

Zxk
− Zy ≤ bMxky

By summing the inequalities, we obtain:

Zx − Zy ≤ bMxx1
+ bMx1x2

+ . . . + bMxk−1xk
+ bMxky

As

bMxx1
+ bMx1x2

+ . . . + bMxk−1xk
+ bMxky = bMxx1

⊗ Mx1x2 ⊗ . . . ⊗ Mxk−1xk
⊗ Mxky

= bweight(P )

We conclude that:
Zx − Zy ≤ bweight(P )

Lemma 2 Let M be a DBM and P a cycle in the graph whose adjacency matrix
is M . If the weight of P is negative then [[M ]] is empty.

Proof: Let P = x1 → . . . → xk such that bweight(P ) < 0. Suppose now that
there exists Z ∈ [[M ]], then:

Zx1 − Zx2 ≤ bMx1x2
...

Zxk−1
− Zxk

≤ bMxk−1xk

Zxk
− Zx1 ≤ bMxkx1
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Summing the inequalities gives:

0 ≤ bMx1x2
+ . . . + bMxk−1xk

+ bMxkx1

≤ Mx1x2 ⊗ . . . ⊗ Mxk−1xk
⊗ Mxkx1

≤ bweight(P )

This contradicts the supposition bweight(P ) < 0. Therefore:

[[M ]] = ∅

Thus, by replacing the weight of each edge x → y in the graph with the
minimum of the weights of the paths connecting x to y, we obtain a graph
whose adjacency matrix does not enclose all implicit constraints.

That operation can be achieved by applying the Floyd-Warshall algorithm
[AHU74]. In fact, it assigns to each edge the weight of the shortest path that
connects its vertices.

Definition 13 (Floyd-Warshall of a DBM) For each DBM M , fw(M) is
the DBM resulting from the application of the Floyd-Warshall algorithm to the
matrix M .

Algorithm 5 (Floyd-Warshall)

FloydWarshall(M)
begin

for i := 1 to n
for j := 1 to n

for k := 1 to n
Mxixj := Mxixj ⊕ (Mxixk

⊗ Mxkxj )
end

Remark 11 Let M be a DBM and M ′ = fw(M). According to Lemma 2, if
there exists x ∈ X ∪ {0} such that M ′

xx < (0,≤) then [[M ]] = ∅.

Definition 14 (The empty DBM) The DBM O defined by:

∀x, y ∈ X ∪ {0}, Oxy = (−∞, <)

is the empty DBM.

Definition 15 (Canonical form of a DBM) For each DBM M , we define
its canonical form cf(M) as follows:

cf(M) =
{

O if there exists x ∈ X ∪ {0} such that fw(M)xx < (0,≤)
fw(M) otherwise

Testing if two DBMs are associated with the same convex timed polyhedron
is equivalent to testing the equality of their canonical forms.
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2.5.5 Conjunction of DBMs

Several operations can be applied to DBMs such as conjunction, assignment
and time passage. In this section, we focus on the conjunction as it is the only
operation that we will use later.

Example: Consider the convex timed polyhedra Π and Π′ defined by:

Π = (x ≥ 1) ∧ (x ≤ 4) ∧ (y ≥ 2) ∧ (y − x ≤ 1)

Π′ = (x ≥ 0) ∧ (x < 6) ∧ (y < 6) ∧ (y ≥ 0) ∧ (x − y < 1)

Let M and M ′ be the DBMs associated with, respectively, Π and Π′.

M =

⎛
⎜⎜⎝

0 x y

0 (0,≤) (−1,≤) (−2,≤)
x (4,≤) (0,≤) (∞, <)
y (∞, <) (1,≤) (0,≤)

⎞
⎟⎟⎠

M ′ =

⎛
⎜⎜⎝

0 x y

0 (0,≤) (0,≤) (0,≤)
x (6, <) (0,≤) (1, <)
y (6, <) (∞, <) (0, <)

⎞
⎟⎟⎠

Computing the DBM M ⊕ M ′ gives:

M ⊕ M ′ =

⎛
⎜⎜⎝

0 x y

0 (0,≤) (−1,≤) (−2,≤)
x (4,≤) (0,≤) (1, <)
y (6, <) (1,≤) (0, <)

⎞
⎟⎟⎠

y

1 x4 6

6
5

2 Π ∩ Π′

Figure 2.3: Example of the intersection of two convex timed polyhedra

The DBM M ⊕ M ′ corresponds to the convex timed polyhedron:

(x ≥ 1) ∧ (x ≤ 4) ∧ (y ≥ 2) ∧ (y < 6) ∧ (y − x ≤ 1) ∧ (x − y < 1)
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which is equal to Π ∩ Π′

�

Lemma 3 Let Π and Π′ be two convex timed polyhedra whose associated DBMs
are M and M ′. The convex timed polyhedron Π ∩ Π′ is associated with M ⊕
M ′,i.e.,

Π ∩ Π′ = [[M ⊕ M ′]]

Proof:

Π ∩ Π′ =
⋂

1≤i≤n

(
(xi �Mxi0

bMxi0
) ∩ (−xi �M0xi

bM0xi
)
)

∩
⋂

1≤i�=j≤n(xi − xj �Mxixj
bMxixj

)

∩
⋂

1≤i≤n

(
(xi �M ′

xi0
bM ′

xi0
) ∩ (−xi �M ′

0xi
bM ′

0xi
)
)

∩
⋂

1≤i�=j≤n(xi − xj �M ′
xixj

bM ′
xixj

)

=
⋂

1≤i≤n

(
(xi �Mxi0

bMxi0
) ∩ (xi �M ′

0xi
bM ′

0xi
)
)

∩
⋂

1≤i≤n

(
(−xi �Mxi0

bMxi0
) ∩ (−xi �M ′

0xi
bM ′

0xi
)
)

∩
⋂

1≤i�=j≤n

(
(xi − xj �Mxixj

bMxixj
) ∩ (xi − xj �M ′

xixj
bM ′

xixj
)
)

=
⋂

1≤i≤n(xi �M⊕M ′
xi0

bM⊕M ′
xi0

)
∩

⋂
1≤i≤n(−xi �M⊕M ′

xi0
bM⊕M ′

xi0
)

∩
⋂

1≤i�=j≤n(xi − xj �M⊕M ′
xixj

bM⊕M ′
xixj

)
= [[M ⊕ M ′]]



Chapter 3

SAT Solvers

The Boolean satisfiability problem is common to many fields including, but
not restricted to, logic verification, timing analysis and automatic test pattern
generation. Though its theoretical aspects are widely studied, it is still the
focus of many researchers in order to develop practical techniques that can
improve its solving time. The Boolean satisfiability problem is an NP-complete
problem and no algorithms with worst-case complexity than exponential are
known [GJ79].

During the last decades, many SAT solving algorithms, all based on the
same framework, have been proposed. In this chapter, we do a synthesis of
most of them and try to formalize the way such an algorithm is built.

The outline of this chapter is as follows: After an overview of available
methods used to solve SAT problems, we report important historical milestones
related to SAT solvers. We next describe the basic algorithm shared by most of
them. We give also a complete survey of techniques commonly used to improve
their performance.

3.1 Overview

Below is a non-exhaustive list of complete methods for determining the satis-
fiability of a given CNF formula φ; these methods are listed in no particular
order:

• Enumerating all possible truth values and checking each of them to see
whether it satisfies φ. This approach is not practical as it requires pro-
cessing time that grows exponentially with the size of the formula.

• Performing a backtracking search algorithm through the possible truth as-
signments of φ to show that it is satisfiable.This method is by far the most
used and it is the one on which we will focus in the rest of this thesis.

• Checking directly if φ is a contradiction by completely simplifying it and
testing if the resulting formula is empty. This method is not even known
to be in NP [Gal86].

23
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• Using the resolution method to show that φ is unsatisfiable. This method
is attributed to Robinson [Rob65], but it was first proposed by Blake in
1937 [CS88]. Important complexity studies have been carried out during
the late 70’s and the 80’s and include the works of Galil [Gal77], Haken
[Hak85], Urquhart [Urq87], and Chvátal and Szemerédi [CS88].

• Showing that the complement of φ 1 is not valid using a theorem prover.
Until the 80’s, interest in SAT was motivated by the possibility of using
a SAT solver as the main piece of a theorem prover for first-order logic
[DP60].

• Using binary decision diagrams (BDD) [Bry92].

• Other methods including term-rewriting [DHJP83, Hsi85] and production
systems [Sie87].

3.2 History

The history of SAT solvers can be divided into three periods that can be put in
parallel with the creation and evolution of computers. Until 1960, SAT solving
algorithms were just theoretically described but with no real interest as they
could not be used in practice. In 1960, Davis and Putnam published an algo-
rithm which inaugurated a new era. The algorithm has been used extensively to
solve many kinds of problems using computers (especially from artificial intelli-
gence and operating research). In the 90’s, the interest in SAT solvers became
more effective. Computers of the 90’s were able to handle large SAT instances,
which widened the scope of SAT solver applications to include circuit design,
scheduling, and model checking.

3.2.1 Before 1960

Boolean satisfiability was always diluted with other types of logical problems.
Löwenheim is probably the first mathematician who identified SAT problems
and discovered the first search algorithm around 1910 [CS88].

3.2.2 From 1960 to 1990

In 1960, Davis and Putnam rediscovered the algorithm already designed by
Löwenheim [DP60, CS88]. It became widely known as the Davis-Putnam pro-
cedure, or simply DP. Two years later, Davis contributed with Logemann and
Loveland to the creation of a new SAT search algorithm [DLL62] usually re-
ferred to as DPL or DPLL.

DPL is generally mistaken for DP although the two methods are radically
different: DP is based on a variable elimination rule that usually transforms a
Boolean satisfiability problem into a larger one. On the contrary, DPLL uses a
splitting rule that replaces a problem with two smaller sub-problems. That is
why DPLL is the most commonly-implemented algorithm.

1The complement is a disjunctive normal form expression.
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DP is not the preferred algorithm for four main reasons:

• It increases the length and the number of clauses;

• It generates many duplicate and subsumed clauses;

• It rarely leads to the generation of unit clauses;

• The variable elimination rule is harder to implement than the splitting
rule.

Another property makes DPLL a better choice: the splitting rule is well
suited to prove satisfiability whereas DP’s variable elimination rule renders
unsatisfiability proving easy.

Cook’s seminal paper [Coo71], where he introduces the NP-completeness
notion, uses SAT as the canonical NP-complete problem.

3.2.3 From 1990

Until 1990, researchers focused on studying and improving the theory that un-
derlies SAT solvers. During that period, important results have been proved
but the rare solvers were very rudimentary as they remained close to the im-
mediate transcription of the Davis-Putnam search algorithm (DPLL/DLL) to
a programming language.

In the beginning of the 90’s, computers became powerful enough to solve
medium sized SAT instances using simple implementations. As a consequence,
some researchers started studying how to improve SAT solvers in practice.
Benchmarks and worldwide competition has been established and the quest
for the fastest ever solver was born.

Many SAT solvers were created during that rush period such as C-SAT
[DABC93], 2cl [GT93], NTAB [CA93], GSAT [GM94], POSIT [Fre95], rel sat
[BS97], SATO [Zha97], SATZ [LA97], GRASP [SS99], HeerHugo [GW99, GW00],
cnfs [DD01], (z)Chaff [MMZ+01], and BerkMin [GN02].

3.3 Basic Algorithm

3.3.1 Description

Almost all the SAT solvers are based on the DPLL algorithm. DPLL is tradi-
tionally written in a recursive manner. It requires two parameters:

• φ: The formula to solve in the conjunctive normal form;

• A: A set of assignments. An assignment of a variable b is denoted:

b = true/false

Remark 12 In this chapter, we will use the term literal to designate a Boolean
literal. We will also extend the assignments to literals. Assume a literal l
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containing a boolean variable b. Saying that l is assigned a value v, or l is set
to v, is the same as assigning to the variable b the value v if l = b, and is the
same as setting b to ¬v if l = ¬b.

To determine the satisfiability of a given formula φ, the set A must be
initially empty, i.e., the algorithm is invoked as:

DPLL(φ, ∅)

Algorithm 6 (Recursive DPLL)

DPLL(φ, A)
begin

A′ = deduction(φ, A) ∪ A

if is-satisfied(φ, A′)
then

return(satisfiable)
else if is-conflicting(φ, A′)

then
return(conflicting)

v = choose-free-variable(φ, A′)

if DPLL(φ, A′ ∪ {v = true}) = satisfiable
then

return(satisfiable)
else

return(DPLL(φ, A′ ∪ {v = false}))
end

The algorithm introduces the function deduction(φ, A) which returns the
necessary set of assignments that can be deduced from the set of assignments
A applied to φ.

The DPLL algorithm ends when the formula is found to be satisfied or
unsatisfied with the current set of assignments A. Otherwise, DPLL chooses
an unassigned variable v and branches on it. The first branch has v set to true
and the second has v set to false. DPLL is applied recursively on each branch.

While the recursive version of DPLL can be used without any problem,
implementors often tend to favor its iterative version to lower memory usage
and to improve the performance. In fact, the recursion implies multiple pushes
and pops of the whole formula on the stack of the solver.

3.3.2 Improvements to the basic algorithm

In this section, we describe the main ways to enhance the basic solving frame-
work provided by DPLL. Although conceptually interesting, not all of the pre-
sented methods are efficient in the sense that they do not speed up the basic
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algorithm. It is also important to emphasize that these enhancements depend
a lot on the class of the problems to solve and on their size.

Improving DPLL can be achieved at two distinct levels:

• The deduction function: It simplifies the formula and returns variable
assignments that can be deduced from it. The algorithm is commonly
called binary constraint propagation or BCP;

• The choose-free-variable function: Its efficiency is related to the heuris-
tic used to pick a variable from the set of free variables.

3.4 Binary constraint propagation

This technique consists of applying a series of transformations to simplify and
deduce new assignments until the stabilization of the formula, i.e. until no more
simplifications or deductions can be done.

3.4.1 Unit resolution

For each clause consisting of a single literal l in the formula, l is set to true.

3.4.2 Pure literals resolution

If the formula contains a pure literal, i.e. a literal l such that ¬l does not occur
in the formula, l is set to true.

3.4.3 Equivalent literals detection

Binary clauses in the formula are used to build a directed graph. For each
clause l1 ∨ l2, an edge joining l1 to ¬l2 and another joining ¬l1 to l2 are added
to the graph. Cycles in that graph are made of equivalent literals.

3.5 Branching heuristics

When no more deductions are possible, the DPLL algorithm chooses a free
variable and assigns to it a value. It is well established that different branching
heuristics produce search trees whose sizes may vary significantly for the same
algorithm. Thus, it is obvious that choosing a good variable is crucial as it may
have a direct impact on the performance of the solver.

3.5.1 Maximizing satisfied clauses heuristics

The goal of early branching heuristics was to find a variable which, when as-
signed, will maximize the number of the satisfied clauses. These heuristics were
based on evaluation functions that take into account statistics relative to the
clauses in the formula: clause length, number of occurrences of each variable,
etc.
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MOM’s heuristic

The MOM’s heuristic, or Maximum Occurrences on Minimum-sized clauses, fits
in that class of heuristics. It is certainly the most widely used SAT heuristic
as it is simple, easy to implement and relatively problem-independent. The
MOM’s heuristic finds the variable that occurs the most in clauses of minimum
size, hence its name [Pre93].

Formally, the MOM’s heuristic scans the list of clauses of a given SAT
problem and counts for each v ∈ V :

• on(v): the number of unresolved clauses of size n that contain positive
occurrences of v;

• on(¬v): the number of unresolved clauses of size n that contain negative
occurrences of v.

where V denotes the set of the variables used in the problem.
Then, for each variable v, o(v) and o(¬v) are computed as follows:

o(v) = min{on(v) | on(v) > 0 and n ∈ N∗}
o(¬v) = min{on(¬v) | on(¬v) > 0 and n ∈ N∗}

The variable chosen by the heuristic is v∗ such that:
⎧⎨
⎩

o(v∗) = max{o(v) | v ∈ V }
and
o(¬v∗) = max{o(¬v) | v ∈ V }

We can guess that this heuristic behaves well because it chooses variables
that are the most constrained in the formula. Branching on them maximizes
the effect of BCP and shortens the search sub-tree. But, a close look at the
MOM’s heuristic reveals two main disadvantages:

• It heavily depends on the number of short clauses;

• It does not provide good results at the first levels of the search tree. This
can drastically harm the performance of the solver as the first choices of
branching variables affect the size of the search tree, especially when the
SAT instance is satisfiable.

Variations of this heuristic have been studied and implemented:

• Zabih and McAllester’s version considers only negative occurrences of the
variables [ZM88]. Formally, v∗ satisfies:

o(¬v∗) = max{o(¬v) | v ∈ V }

• Freeman’s version used in POSIT [Fre95] chooses the variable v∗ such
that:

o(v∗) + o(¬v∗) = max{o(v) + o(¬v) | v ∈ V }
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Bohm’s heuristic

Bohm’s heuristic [BKB92] selects a variable that maximizes the vector H with
respect to the lexicographical order where H is:

H =
(
H1(v), H2(v), . . . , Hn(v)

)
Each Hi(v) is computed as follows:

Hi(v) = α max
{
oi(v), oi(¬v)

}
+ β min

{
oi(v), oi(¬v)

}
The constants used in this heuristic offer a way to choose what to prefer:

• Satisfying the small clauses when assigning true to the selected variable;

• Or reducing the size of small clauses when setting the selected variable to
false.

The values of α and β are chosen empirically. Suggested values in [BKB92]
are: {

α = 1
β = 2

It is possible to think about changing these values dynamically while ex-
ploring the search tree according to information collected during runtime.

Jeroslow and Wang’s heuristics

Jeroslow and Wang proposed two heuristics in [JW90]. Both are based on the
definition of J(l) for a given literal l:

J(l) =
∑

l∈C∧C∈φ

2−|C|

These heuristics count the positive and negative occurrences of each variable.
Next, rather than considering only the shortest clauses, as it is the case with
the MOM’s heuristics, each occurrence is weighted by the size of the clause in
which it appears.

The one-sided Jeroslow-Wang heuristic chooses the variable v∗ with the
largest max{J(v∗), J(¬v∗)}. The two-sided version selects the variable v∗ such
that:

J(v∗) + J(¬v∗) = max{J(v) + J(¬v) | v ∈ V }
In the first branch, v∗ is set to true if J(v∗) ≥ J(¬v∗). Otherwise, it is assigned
false.

Later, in 1993, Van Gelder and Tsuji, and Dubois et al. designed sophisti-
cated versions belonging to this class of heuristics [Fre95].

The heuristics that try to maximize the number of satisfied clauses work
well on some classes of SAT instances but make the solver behave very badly
on others. The main reason is that using the statistics can be useful for ran-
domly generated instances but generally fail to give relevant information about
structured problems.
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3.5.2 Literal count heuristics

Literal count heuristics have been developed in order to reduce the time a solver
spends computing heuristics. In fact, the major drawback of the maximizing
satisfied clauses heuristics is their excessive runtime. Literal count heuristics
take into account only the number of occurrences of a given variable in unre-
solved clauses at each step of the search algorithm.

This class of heuristics is based on counting c(v) (respectively c(¬v)) that
represents the number of unresolved clauses in which a variable v appears pos-
itively (respectively negatively.) The advantage of literal count heuristics be-
comes obvious here since these two figures are computed during the search
without being dependent on the current state of the solver, which consists es-
sentially of variable assignments.

Below we present some of the most popular literal count heuristics. Most
of the heuristics belonging to this class are variations of these.

Dynamic Largest Individual Sum (DLIS)

This heuristic selects the variable with the largest individual value of c(v) or
c(¬v). Formally, the selected branching variable v∗ satisfies:

max{c(v∗), c(¬v∗)} = max
{
max{c(v), c(¬v)} | v ∈ V

}
Variable v∗ is assigned the value true if c(v∗) ≥ c(¬v∗) and false otherwise.

Dynamic Largest Combined Sum (DLCS)

In this heuristic, c(v) and c(¬v) are considered combined. We choose the vari-
able v∗ such that:

c(v∗) + c(¬v∗) = max{c(v) + c(¬v) | v ∈ V }

As with DLIS, v∗ is set to true if c(v∗) ≥ c(¬v∗) and to false if c(v∗) < c(¬v∗).

Randomly Dynamic Largest Combined Sum (RDLCS)

RDLCS is a modified version of DLCS. Because this latter can lead to bad
branching variable choices, RDLCS tries to randomly assign true or false to
the selected v∗ instead of comparing c(v∗) and c(¬v∗).

Randomization has proved to provide a good compromise by avoiding too
many bad decisions for some classes of SAT problems. It can also be used with
the DLIS heuristic.

3.5.3 Variable state independent heuristics

Although sharing the same background with literal count heuristics, variable
state independent heuristics form a distinct class. In fact, a score is assigned
to each phase of a given variable v (positive and negative).

Initially, the score of a variable v is set to a linear combination of c(v) and
c(¬v). As the search progresses, and periodically, all the scores are divided by



3.6. CONFLICT DIRECTED BACKTRACKING AND LEARNING 31

the same constant. The score of a variable v is increased whenever it satisfies
a given property P(v). The selected variable to branch on is the one with the
highest sum of its positive and negative scores.

By construction, variable state independent heuristics tend to privilege the
choice of a free variable that lately satisfied the property P. The focus on the
recent is guaranteed by the periodic decay of the scores.

Variable state independent heuristics are quite competitive when compared
with other good heuristics. Besides, these heuristics are cheap in terms of
computation time. Being state independent (scores do not depend on the as-
signments of the variables) is the main explanation of their performance.

Variable State Independent Decaying Sum (VSIDS)

Since most modern SAT solvers implement a learning mechanism (see Section
3.6) which is likely to add clauses to the problem while running, VSIDS increases
the score of a variable whenever it is included in a learned clause. Formally, the
score of a variable v is incremented when the following property is satisfied:

P(v) : v occurs in a learned clause

VSIDS has been introduced in Chaff [MMZ+01].

BerkMin’s VSIDS

VSIDS has been pushed a little bit further in the SAT solver BerkMin [GN02].
In that version, activity of the variables is captured by their participation in a
conflict instead of being captured by their occurrence in learned clauses as in
VSIDS. In fact, BerkMin’s version is identical to VSIDS except that it does not
increase the score of a variable that occurs in a learned clause. Such an increase
is rather done when a variable is identified as being involved in a conflict.
BerkMin also restricts its choice to the variable with the highest combined
score that occurs in the last added clause that is still unresolved. According to
published results, this version of VSIDS seems to be more powerful than regular
VSIDS on some SAT instances.

3.6 Conflict Directed Backtracking and Learning

When the solver finds a conflicting clause, it goes back to undo assignments
that caused that conflict. This is called backtracking. The solver also performs
a conflict analysis: it finds a reason for that conflict and tries to resolve it. This
analysis prunes the search space by excluding a subspace where a conflict is
guaranteed to occur [SS99].

The basic DPLL algorithm performs a simple conflict analysis. Each deci-
sion variable has a flag that indicates whether it was tried in both phases or
not. When a conflict is detected, the algorithm looks for the furthest decision
variable from the root that is not yet flipped, discards all the assignments that
have been deduced in the search sub-tree starting at that variable, sets the flag,
and tries the other phase for that decision variable. The solver is said to do a
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chronological backtracking in that case because it always backtracks to the last
decision it made.

Chronological backtracking has proven to be good for some randomly gen-
erated SAT problems. However it fails to be efficient on structured instances
that describe real world problems. The need for a better solution led to the
development of sophisticated conflict analysis procedures. The results of this
advanced analysis allow the solver to backtrack to an earlier decision and not
to the last one necessarily. The most obvious effect is that the solver prunes
bigger subspaces of the search space and runs significantly faster. This kind of
backtracking is called non-chronological backtracking.

3.6.1 Implication graph

The implication graph is a directed acyclic graph, or DAG, built using the
implication relationships between assignments that were deduced during the
SAT solving search [SS99]. Each of its vertices represents an assignment of a
variable and is denoted x = v where x is a variable and v is either true or false.
Let λ(x) represent the decision level at which the assignment was made. By
extension, we will sometimes write a variable assignment x = v@λ(x), i.e. x
was set to v at level λ(x).

Incident edges of a vertex are the reasons that lead to its related assignment.
Each assignment has a decision level associated with it. That level is the depth
of the SAT search tree at which a value has been assigned to the variable.

Vertices that have directed edges to a given vertex are called its antecedent
vertices. A variable whose value has not been deduced but assigned during
DPLL branching is called a decision variable. Decision variables have no an-
tecedent vertices.

Definition 16 (Antecedent sub-graph of a vertex) Given an implication
graph I and a vertex z ∈ I, we define the antecedent sub-graph of z as the
antecedent vertices of z and their connecting edges. It is denoted AI(z).

A conflict is detected whenever two vertices in the graph represent two
contradictory assignments for the same variable. That variable is said to be the
conflicting variable.

Example: Suppose that at the sixth level of a solving process, the following
assignments are available:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y1 = false@1
y2 = false@3
y3 = false@2
y4 = false@1
y5 = false@4
y6 = true@5

Consider also that the SAT instance includes the following clauses:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0 = ¬x2 ∨ ¬x0

C1 = x3 ∨ y2 ∨ y3 ∨ ¬x0

C2 = ¬x1 ∨ y1 ∨ ¬x0

C3 = x4 ∨ x2 ∨ ¬x3 ∨ x1

C4 = ¬x5 ∨ y4 ∨ ¬x4

C5 = x6 ∨ x5

C6 = ¬x7 ∨ x5

C7 = x8 ∨ x5

C8 = x9 ∨ y5 ∨ ¬x6 ∨ x7

C9 = ¬x9 ∨ ¬y6 ∨ ¬x8 ∨ x7

The implication graph that results from the assignment of true to x0 at
decision level 6 is represented in Figure (3.1).

y1 = false@1 y4 = false@1

x2 = false@6

x0 = true@6

x3 = true@6

y3 = false@2

x1 = false@6

x4 = true@6

x5 = false@6

x7 = false@6

x9 = false@6

x9 = true@6

x8 = true@6

x6 = true@6

y6 = true@5y2 = false@3

y5 = false@4

Conflict

Figure 3.1: Implication graph

�

Since conflict analysis, as its name suggests, is concerned with the assign-
ments that lead to a conflict, the implication graph is not required in its totality.
Only a limited number of the antecedent vertices of the two conflicting assign-
ments and their connecting edges are relevant for the analysis.
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The key idea behind learning and conflict-directed backtracking is to identify
the main reasons that imply a conflict. For that purpose, we introduce the
following definitions:

Definition 17 Given an implication graph I and two vertices a, b ∈ I,

a dominates b ⇐⇒ any path from d to b goes through a

where d is the decision variable whose decision level is the same as the decision
level of a.

Definition 18 (UIP) A unique implication point (UIP) is a vertex that domi-
nates both vertices that represent the contradictory assignments for a conflicting
variable.

Remark 13 A decision variable is always a UIP.

A UIP can also be seen as a sufficient reason that leads to a given conflict.
Usually, one or more UIPs are associated with a conflict.

Example: In the above example, there are 3 UIPs, namely:

x0 = true@6 x4 = true@6

x5 = false@6

�

3.6.2 Conflict analysis

Advanced conflict analysis techniques use the implication graph to extract the
reasons that lead to conflicts. Knowing these reasons, it is possible to build
clauses called conflict clauses and to add them to the problem in order to
prevent the search process from encountering the same conflicts in the future.
This operation is called learning.

Remark 14 The conflict clauses must not be confused with the conflicting
clauses, which are the clauses that cause a conflict.

A conflict clause is directly deduced from the reasons that are responsible
for a given conflict. It simply states that a certain combination of assignments
is not allowed as it leads to a contradiction for the value of the conflicting
variable.

Given an implication graph I in which a conflict occurs, let us denote the
conflicting variable k. Since the analysis requires only the part of the graph that
contains the implications that produce the conflict, the first step is to extract
from I that relevant part that is denoted αI(k) and formally defined as follows:

αI(k) = AI(k = true) ∪ AI(k = false)
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The second step consists in partitioning the extracted sub-graph αI(k) into
two parts: One part contains all the conflicting assignments and the other holds
all the decisions that end up in a conflict. The first is known as the conflict
side and the second as the reason side. Such a bipartition is called a cut.

The most evident cut in the implication graph already presented in Fig-
ure (3.1) is depicted in Figure (3.2). It delimits a conflict side containing only
the conflicting assignments. Figure (3.3) shows other possible cuts.

y1 = false@1 y4 = false@1

x2 = false@6

x0 = true@6

x3 = true@6

y3 = false@2

x1 = false@6

x4 = true@6

x5 = false@6

x9 = false@6

x9 = true@6

x8 = true@6

x6 = true@6

y6 = true@5y2 = false@3

y5 = false@4

Conflict

x7 = false@6

Reason Side Conflict Side

Conflict Cut

Figure 3.2: Implication graph with a conflict cut

The third step is to find a set V of vertices such that one or more of their
outgoing edges cross the cut line (the boundary between the two sides of the
partition). With V, it is fairly easy to generate the conflict clause associated
to the conflict involving k. Suppose that V = {x1 = v1, . . . , xn = vn}, then the
reason for that conflict is:

xv1
1 ∧ . . . ∧ xvn

n

where

xv =
{

x if v = true
¬x otherwise
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y1 = false@1 y4 = false@1

x2 = false@6

x0 = true@6

x3 = true@6

y3 = false@2

x1 = false@6

x4 = true@6

x5 = false@6

x9 = false@6

x9 = true@6

x8 = true@6

x6 = true@6

y6 = true@5y2 = false@3

y5 = false@4

Conflict

Cut 1

Cut 2Cut 3

x7 = false@6

Figure 3.3: Other possible cuts
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Thus, the conflict clause, which is the negation of the conflict’s reason, is:

x¬v1
1 ∨ . . . ∨ x¬vn

n

Each cut results in a different conflict clause and represents a specific learn-
ing strategy. Solving times can vary enormously between two different strate-
gies. In fact, adding the conflict clause to the clauses of the SAT instance
narrows the search space. Thus, the shorter that conflict clause is, the nar-
rower the search space becomes. Shorter conflict clauses are obtained when
cuts pass by UIPs such that the resulting conflict clauses are built using those
UIPs.

Example: Figure (3.3) represents three possible cuts. The conflict clauses
resulting from these cuts are:

Cut 1 → y5 ∨ ¬x6 ∨ x7 ∨ ¬x8 ∨ ¬y6

Cut 2 → y5 ∨ x5 ∨ ¬y6

Cut 3 → y5 ∨ y4 ∨ y1 ∨ ¬x0 ∨ y2 ∨ y3 ∨ ¬y6

Cut 2 gives the smallest conflict clause, compared with Cut 1 and Cut 3. In
fact, it passes by the UIP x5 = false. Cut 3 passes also by an UIP, which is in
that case also a decision variable, but it results in a long conflict clause. �

3.6.3 Conflict-free learning

Adding conflict clauses after performing a conflict analysis is the primary form
of learning. But cuts are not restricted to implication graphs with conflicts.
It is possible to think about cuts that are conflict-free and that involve only
implications between variable assignments.

Such cuts can generate clauses that are already in the problem. They can
also generate new clauses that restrict the search space a little more. This
kind of learning is possible only if the implication graph (or at least the part
that interests the solver) is not a tree. In fact, there must be a confluence in
the implication graph to have interesting cuts that can result in new learned
clauses.

3.6.4 Backtracking

When a conflict is encountered and when a conflict clause is derived, the solver
backtracks to an earlier search level. This level is the highest decision level at
which the assignments in V were made. Formally, the solver backtracks to the
level β such that:

β = max{λ(x)|(x = v) ∈ V}

At decision level β, the derived conflict clause is used either to create a new
conflict clause or to backtrack again to a higher level.
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3.6.5 Clause recording

During the conflict resolution and the learning steps, new clauses are added
to the original SAT instance. For performance and space considerations, that
growth in the size of the clauses database must be limited.

Many techniques can be applied to pick the added clauses that can be
removed to guarantee a bounded size. The most efficient consists in keeping
only clauses of size less or equal to a given integer m. That results in the
automatic deletion of large unresolved clauses.

Deletion can also be directed by the relevance of the learned clause. For
example, it is good practice to delete large unresolved clauses with at least m′

free literals, where m′ is an integer fixed in advance.

3.6.6 Restarts

Learning helps to prune the search space when solving a SAT instance by adding
new clauses to the initial problem. Those added clauses can be seen as the
knowledge about the problem that is accumulated during the search process.
The most interesting property of such knowledge is its independence from the
current position in the search tree: it still holds even if the position changes,
hence the idea of using restarts.

The restart technique consists of stopping the search process when a certain
search parameter (such as the solving time or the current search depth) goes
beyond a certain limit value. Some solvers even do that on a random basis.
The search is stopped and immediately restarted. However, some precautions
must be taken in order to not retrace a previous search.

These precautions simply consist of choosing a free variable that has not
yet been used for branching at the first level. The learned clauses ensure also
that the search is different since they prune its space.

Frequent restarts are good in helping the solver avoid getting stuck searching
for a solution in a difficult subspace because of earlier bad decisions. Restarts
do not even harm unsatisfiable problems identification.

3.7 Alternative Techniques

Several alternative techniques have been studied during the last decade. They
can be used to completely replace the DPLL branching part. They can also
be applied with a limited scope inside the classic DPLL algorithm. This latter
alternative is still the most used in current Boolean SAT solvers.

3.7.1 Resolution à la Davis-Putnam

Resolution is the basis of the original Davis-Putnam algorithm. It is better
understood when applied on formulae in the disjunctive normal form (DNF).
A DNF formula is a finite disjunction of conjunctions of literals.
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Definition 19 (Disjunctive normal form) A formula φ is in the disjunc-
tive normal form (DNF) iff it can be written as a finite disjunction of conjunc-
tions of literals, i.e.,

φ =
m∨

i=1

Di

=
m∨

i=1

(
ni∧

j=1

Lij)

Given a DNF formula φ, we call D the set of its conjunctions Di.

D = {D1 . . . Dm}

Resolution consists of choosing a variable v used in φ and rewriting that
formula as follows:

φ = φ[v = true] ∨ φ[v = false]

Notice that the above equality always holds for every choice of v.
Practically, resolution consists of partitioning φ into 3 sub-formulae:

φv =
∨

δ∈D∧v∈δ

δ

φ¬v =
∨

δ∈D∧¬v∈δ

δ

φ∗ =
∨

δ∈D∧v/∈δ∧¬v/∈δ

δ

Let φR
v (respectively φR¬v) be the result of the removal of all v (respectively

¬v) occurrences from φv (respectively φ¬v.) and let φR = φR
v ∨ φR¬v ∨ φ∗.

φR is the result of resolving φ on v. It is also said to be the resolvent of φ
with v being the variable resolved on.

Example: Suppose that φ is defined by:

φ = (a ∧ b) ∨ (a ∧ c) ∨ (¬a ∧ d) ∨ (¬a ∧ ¬c ∧ e) ∨ (e ∧ f)

Resolving φ on a gives:

b ∨ c ∨ d ∨ (¬c ∧ e) ∨ (e ∧ f)

�

Resolution is suitable for DNF formulae as it reduces their sizes. It is
possible, though, to use it on formulae expressed in CNF but it leads to the
growth of their size in most cases.
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Example: Assume the CNF formula:

φ = (a ∨ b) ∧ (a ∨ c) ∧ (a ∨ d) ∧ (¬a ∨ e) ∧ (¬a ∨ f)

Converting φ to DNF gives:

φ =
(
a ∨ (b ∧ c ∧ d)

)
∧

(
¬a ∨ (e ∧ f)

)
= (a ∧ e ∧ f) ∨ (¬a ∧ b ∧ c ∧ d) ∨ (b ∧ c ∧ d ∧ e ∧ f)

Let φR be the result of resolving φ on a:

φR = (e ∧ f) ∨ (b ∧ c ∧ d) ∨ (b ∧ c ∧ d ∧ e ∧ f)
= (b ∧ c ∧ d) ∨ (e ∧ f)

Transforming φR back to CNF gives:

φR = (b ∨ e) ∧ (b ∨ f) ∧ (c ∨ e) ∧ (c ∨ f) ∧ (d ∨ e) ∧ (d ∨ f)

φ has 5 clauses and applying resolution increases their number to 6. �

Resolution should not be used in all cases as it is inefficient on CNF formulae.
The only situation where it does not increase the size of the formula is when
there exists a literal l that occurs positively in only one clause and negatively
in one or more other clauses.

Let Cl be the only clause where l occurs positively such that:

Cl = l ∨ l1 ∨ . . . lk

Resolving the formula on the variable contained in the literal l is equivalent
to substituting all the occurrences of l with ¬(l1 ∨ . . . lk). In other words, it is
equivalent to removing the clause Cl and replacing negative occurrences of l by
l1 ∨ . . . lk. It is obvious that this operation decreases the number of the clauses
of the formula.

3.7.2 Local search

Local search belongs to the family of stochastic methods. These methods have
no way to prove that a SAT instance is unsatisfiable. However, they can quickly
find solutions for some hard satisfiable instances.

A local search algorithm starts by assigning, for each free variable, a random
value. Then it searches for the variable that can satisfy the largest number of
unsatisfied clauses and flips its value. That step is performed at most k times,
where k is a given integer. The algorithm stops when the entire formula is
satisfied.

The local search algorithm iteration count must be limited. In fact, there is
no guarantee that it can give a solution after a bounded number of successive
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applications. In practical implementations, the algorithm is repeated k′ times,
k′ being an already fixed integer. If the formula is still not satisfied, there
is no means to show that it is unsatisfiable. Hence, the use of local search
can just be considered as a complement to other complete solving methods.
It can be applied with some restrictions when satisfiability is suspected. If
satisfiability cannot be found using local search, the solver must proceed using
other techniques.

3.7.3 St̊almarck’s method

St̊almarck’s method2 does not share many properties with other SAT solving
algorithms. It is particular because it does not rely on a CNF representation.
Besides, it uses a breadth-first search by opposition to DPLL which is based on
a depth-first search.

In the sequel, an overview of the original St̊almarck’s method is given. A
more recent version has been described by Harrison in [Har96] and is believed
to be very close to the algorithm used in the commercial tool developed by
Prover AB, a company founded by St̊almarck. Lately, Groote and Warners
developed HeerHugo, a solver largely inspired from the original St̊almarck’s
method [GW99, GW00].

The following transformations are repeatedly applied on the SAT instance
until stabilization:

φ1 ∧ φ2 ≡ ¬(φ1 → ¬φ2)
φ1 ∨ φ2 ≡ ¬φ1 → φ2

¬¬φ1 ≡ φ1

¬φ1 ≡ φ1 → false

Next, the formula is translated into a special form. During that step, new
auxiliary variables that are equivalent to sub-formulae are introduced. At the
end of the process, we obtain a set of special clauses of the form:

a ⇔ (b → c)

The above form is denoted as a triplet (a, b, c). true and false are considered
as special cases of Boolean variables. They are respectively written 1 and 0 in
the triplet notation.

Example: Assume the formula:

φ ≡ p → (p ∨ q)

By applying the transformation rules, φ is equivalent to:

φ ≡ p → (p ∨ q)
≡ p → (¬p → q))
≡ p → ((p → false) → q)

After introducing intermediate variables, the transformed formula becomes:

φ ≡ t0
2Patented for commercial use [St̊a94].
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where:
t0 ⇔ (p → t1)
t1 ⇔ (t2 → q)
t2 ⇔ (p → false)

Using the triplet notation, φ is reduced to:

(t0, p, t1)
(t1, t2, q)
(t2, p, 0)

�

Once the translation is made, the algorithm proves the formula by supposing
that its value is false and by trying to derive a contradiction. For that purpose,
it uses a set of rules. Each rule has a triggering triplet which, when matched,
results in the assignment of one or two Boolean variables.

The first rule is the following:

(r1)
(0, b, c)

b/1 c/0

When a triplet matches the pattern (0, b, c), the second variable b is set to
true and the third c is set to false.

Applying a rule on an element of a set of triplets leads to a new set in which
the assigned variables are substituted with their deduced values. The algorithm
is stopped when the new set contains a terminal triplet. By definition, terminal
triplets express an impossible equivalence. Hence, the presence of such a triplet
in the new set indicates a contradiction. There are only three terminal triplets:

(1, 1, 0)
(0, a, 1)
(0, 0, a)

For instance, (1, 1, 0) is a terminal triplet because true ⇔ (true → false)
is a contradiction.

The remaining rules are:

(r2)
(a, b, 1)

a/1
(r3)

(a, 0, c)
a/1

(r4)
(a, 1, c)

a/c
(r5)

(a, b, 0)
a/¬b

(r6)
(a, a, c)

a/1 c/1
(r7)

(a, b, b)
a/1

Example: As a continuation to the previous example, assume that φ is false,
i.e. t0 ≡ false. That results in the following set of triplets to solve where only
t0 was substituted with 0:

(0, p, t1)
(t1, t2, q)
(t2, p, 0)
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Applying the listed rules to that set of triplets related to φ gives:

(0, p, t1)
(t1, t2, q)
(t2, p, 0)

→ (r1) →

p/1
t1/0

(t1, t2, q)
(t2, p, 0)

−→

p/1
t1/0

(0, t2, q)
(t2, 1, 0)

The application of rule (r1) yields a new set of triplets and a couple of
assignments.

p/1
t1/0

(0, t2, q)
(t2, 1, 0)

→ (r1) →

p/1
t1/0
t2/1
q/0

(t2, 1, 0)

−→

p/1
t1/0
t2/1
q/0

(1, 1, 0)

Another application of the same rule results in a terminal triplet. As a
conclusion t0 cannot be false and the formula is satisfiable.

�

Deduction of a new set of triplets using the seven simple rules is called
0-saturation. Usually, 0-saturation is not enough to prove a formula as some-
times a contradiction cannot be reached after its application. In such a situa-
tion, the solving process must proceed with the dilemma rule.

The dilemma rule consists of a special case split over a chosen variable.
Suppose that the 0-saturation gives a set of triplets S and that the variable v
is chosen. The sets S ∪{v/0} and S ∪{v/1} are 0-saturated respectively to get
new triplet sets S0 and S1. Then, Σ is computed, where:

Σ =

⎧⎨
⎩

S0 if S1 contains a terminal triplet
S1 if S0 contains a terminal triplet

S0 ∩ S1 otherwise

Σ is a super set of the original triplet set S, i.e. S ⊆ Σ. In fact, the clauses
represented by the triplets it contains hold for every value of v. Therefore, the
case split was used to gain new information about the problem.

By extension, we can now define 1-saturation as the operation consisting in
applying the dilemma rule to each free variable. If 1-saturation does not lead
to a solution, 2-saturation is carried out. 2-saturation is similar to 1-saturation
except that during the dilemma rule application, case splits are done over pairs
of variables. For each pair v and w of variables, the following sets of triplets
are 0-saturated:

S ∪ {v/0, w/0} ,

S ∪ {v/1, w/0} ,

S ∪ {v/1, w/1} ,

and S ∪ {v/0, w/1}
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0-saturation results respectively in the sets S00, S01, S11, and S10. Σ is com-
puted as:

Σ =
⋂

σ∈S∗

σ

where

S∗ =
{
Sij | i, j ∈ {0, 1} and Sij does not contain a terminal triplet

}

Similarly, we can define n-saturation for any integer n based on case splits
over n-tuples of variables. St̊almarck’s method uses (n + 1)-saturation if n-
saturation is unsuccessful in solving the problem.

The major advantage of this method is that case splits are made on both the
original variables of the problem and the generated variables that are equivalent
to sub-formulae. That results in a fast propagation of the assignments of the
variables in the formula tree. Thanks to the use of the breadth-first search,
St̊almarck’s method keeps the number of case splits as low as possible and
avoids exponential growth of the search space.

Based upon his method, St̊almarck defined a new classification of Boolean
SAT instances according to their hardness. An instance is said to be n-hard
when it cannot be solved by (n− 1)-saturation. It is said to be n-easy if it can
be proved by n-saturation.

It is interesting to note that many instances that are generated from real
world problems turn out to be 1-easy. According to Harrison [Har96], the
commercial implementation of St̊almarck’s method seems to take into account
that fact: It performs at most 1-saturation. If no result is found, it tries to find
a falsifying set of assignments.



Chapter 4

A Mixed SAT Solver

This chapter is concerned with the core of the work of this thesis. It describes
a generic mixed SAT solver and presents all the algorithms it can use, most of
which are adaptations or extensions of methods already found in its Boolean
counterparts. Due to the specificity of the mixed SAT instances, some other
techniques are introduced in order to handle and process constraints.

4.1 Overview

The skeleton of the mixed SAT solver general algorithm is based on the DPLL
scheme, widely implemented in Boolean SAT solvers and discussed in Chapter 3.
It consists of two major parts:

• The reduction part: It applies several techniques to reduce the size of the
SAT instance while discovering assignments and making deductions. An
outline of the reduction algorithm is sketched in Figure (4.1).

• The branching part: Although conceptually similar to what Boolean SAT
solvers use for branching, it entails many specific details and uses re-
vamped algorithms that make it unique.

The reduction techniques belong to two distinct families:

• The simplification rules: These handle both Boolean and constraint sim-
plification. Many methods are used for that purpose. Boolean methods
have already been introduced in Chapter 3 while techniques specific to
constraints will be presented in the sequel.

• The Davis-Putnam rules: They consist of transforming the formula while
narrowing the search space without affecting the satisfiability of the solved
problem.

4.1.1 Solving context

During the solution process, the current state is held in the current solving
context which contains:

45
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Rewrite

Technique n
applicable? Apply technique n

Technique 1
applicable? Apply technique 1

Yes

No

Yes

No

Yes/No

Don’t know

Satisfiable?

End

Start

Figure 4.1: Reduction algorithm
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• A working copy of the set of clauses.

• A DBM that represents in a compact structure the constraints that exist
between numerical variables that occur in the SAT instance.

• A set of variables assignments. These assignments are absolute when the
value is constant (e.g. a = true, a = false, or x = 55), or relative when it
includes a reference to one or more variables (e.g. a = b, a = ¬c, a = b∨c,
x = y + 5, or x = min{z + 2, y − 3}).

Each solving context produced during the solution process is fully equivalent
to the original SAT instance. Thus the use of the solving context preserves the
satisfiability (or the unsatisfiability) of the original SAT instance.

Remark 15 In the algorithms presented in the sequel, a solving context is de-
noted as a tuple (C, M,A) where C is a set of clauses, M is a DBM, and A is
a set of variable assignments.

4.1.2 Assignments

There are four types of assignments for Boolean variables:

• Constant: the variable is set to true or false.

• Literal: the variable is assigned the value of a Boolean or a numerical
literal, e.g. a = b, a = ¬b, or a = (x − y < 5).

• Disjunction: the variable is assigned the value of a clause, e.g.:

a = b ∨ (x − y < 5)

• Conjunction: the variable is assigned the negated value of a clause, e.g.:

a = ¬b ∧ (y − x ≤ −5)

Disjunction and conjunction assignments have at most one numerical literal.
Numerical variables admit three kinds of assignments:

• Constant: the variable is set to a constant value, e.g. x = 55.

• Bias: the variable is assigned the value of another numerical variable plus
or minus a constant value, e.g. x = y + 5 or x = y − 5.

• MinMax: the variable is assigned the minimum or the maximum value
of a set of biased assignments, e.g. x = min{y + 5, z − 4, w + 3} or
x = max{w + 5, y − 3}.

4.1.3 Clause rewriting

Rewriting the set of clauses belonging to the current solving context is an
operation that involves assignments deduced so far as well as the DBM of that
context. It modifies the set of clauses and eliminates references to variables
that are assigned a value whether absolute or relative.
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Boolean literal rewriting

Each clause C that contains a Boolean literal denoting an assigned Boolean
variable b is rewritten according to the assignment type of b as follows:

• Constant: If l = b and b = true or if l = ¬b and b = false, C can be
removed. Otherwise, only the literal l is removed from C.

• Literal: b inside l is substituted with λ where λ stands for the literal value
assigned to b.

• Disjunction: Assume b = λ1∨. . .∨λk. If l = b, the disjunction λ1 ∨ . . . ∨ λk

is or-ed with the clause where l occurs and the reference to l is removed
from the latter. In the other case, i.e. when l = ¬b, the clause C is
replaced by the following conjunction of clauses:

k∧
i=1

(C ′ ∨ ¬λi)

where C = C ′ ∨ l, i.e. C ′ is a copy of C from which references to the
literal l were deleted.

• Conjunction: Assume b = λ1 ∧ . . . ∧ λk. If l = ¬b, the disjunction
¬λ1 ∨ . . . ∨ ¬λk is or-ed with the clause where l occurs and the refer-
ence to l is removed from that latter. In the other case, i.e. when l = b,
the clause C is replaced by the conjunction of clauses:

k∧
i=1

(C ′ ∨ λi)

where C = C ′ ∨ l, i.e. C ′ is a copy of C from which references to the
literal l were deleted.

Example: Consider the following set of clauses:

a ∨ b (1)
∧ ¬a ∨ c ∨ (x − y < 5) (2)
∧ ¬b ∨ d (3)
∧ e ∨ (z − w ≤ 12) (4)
∧ ¬e ∨ d (5)

Assume also that we have the following assignments:

a = false
b = ¬c
e = c ∨ f

Using the assignment of a, rewriting clause (1) gives the unit clause b while
clause (2) is removed. Clause (3) is transformed to c ∨ d. Now, using the
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assignment of variable e, the fourth clause becomes c ∨ f ∨ (z − w ≤ 12) and
clause (5) is replaced with the conjunction:

¬c ∨ d
∧ ¬f ∨ d

�

Numerical literal rewriting

Each clause C containing a numerical literal (x−y ≺ c) such that x (respectively
y) is already assigned a value is rewritten according to the assignment type of
the latter as follows:

• Constant: Assume that the value is set to v ∈ D. Then the numerical
literal becomes (0 − y ≺ c − v) (respectively (x − 0 ≺ c + v)).

• Bias: If the assignment’s value is z + v where z is a variable and v ∈ D,
the numerical literal is substituted with the constraint (z − y ≺ c − v)
(respectively (x − z ≺ c + v)).

• MinMax: This type of assignment is not used when rewriting clauses due
to its complexity and to its dependency on the information available when
it is deduced, i.e. during the application of the Davis-Putnam rules (refer
to Section 4.3.2 for a detailed discussion.)

In addition to the above rewriting rules, each numerical literal (x − y ≺ c)
is tested against the DBM M associated with the current solving context. If
(c,≺) > Mxy, the clause C is removed from the set of clauses as the value of
the numerical literal is true. If (−c,≺) > Myx, that literal is removed from C
since its value is false.

Example: Suppose that the current solving context consists of the following
set of clauses:

a ∨ b ∨ (x − y < 5) (1)
∧ ¬a ∨ (u − v ≤ 6) (2)
∧ c ∨ (z − v ≤ 12) (3)
∧ ¬d ∨ (x − z < 7) (4)

Assume also that we have the following assignments:

y = 6
u = x − 3
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Suppose also that the DBM M associated with the current solving context is:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 x y z u v

0 (0,≤) (∞, <) (∞, <) (∞, <) (∞, <) (∞, <)
x (∞, <) (0,≤) (∞, <) (5, <) (∞, <) (∞, <)
y (∞, <) (∞, <) (0,≤) (∞, <) (∞, <) (∞, <)
z (∞, <) (∞, <) (∞, <) (0,≤) (8,≤) (∞, <)
u (∞, <) (∞, <) (∞, <) (∞, <) (0,≤) (∞, <)
v (∞, <) (∞, <) (∞, <) (∞, <) (∞, <) (0,≤)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

When rewritten using the assignment of y, clause (1) becomes :

a ∨ b ∨ (x − 0 < 11)

Using the assignment of u, clause (2) is transformed to:

¬a ∨ (x − v ≤ 9)

.
Now, using the DBM M , the constraint (z − v ≤ 12) in clause (3) is un-

changed since Mzv = (∞, <), which means that z and v have no relation. On
the contrary, as Mxz = (5, <), clause (4) can be removed since the constraint
it contains is true. In fact, (5, <) < (7, <), i.e.:

(x − z < 5) ⇒ (x − z < 7)

. �

4.2 Simplification Rules

4.2.1 Boolean unit resolution

This rule consists of setting the single Boolean literal in each unit clause to
true.

Example: Consider the following set of clauses:

a ∨ d ∨ c
∧ ¬a
∧ b

Applying the Boolean unit resolution leads to setting both ¬a and b to true.
Thus, a is assigned the value false and b is assigned the value true. �
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4.2.2 Boolean literals equivalence detection

A directed graph is built using the Boolean binary clauses of the considered set
of clauses, i.e. clauses that contain exactly two Boolean literals. For each clause
of the form l1 ∨ l2, where l1 and l2 are Boolean literals, two directed edges are
added to the graph: the first is from vertex ¬l1 to vertex l2, and the second is
from l1 to ¬l2. Of course, vertices l1, ¬l1, l2, and ¬l2 are added to the graph
if they are not already there. These edges represent the implications ¬l1 → l2
and l1 → ¬l2.

Next, the SCC (or Strongly Connected Components) decomposition algo-
rithm is applied to the freshly built directed graph. Since it represents implica-
tions between literals, detecting the strongly connected components identifies
the cycles, and thus provides the literals that belong to the same equivalence
class. The number of found cycles is always even. In fact, for each detected
cycle formed by vertices l1, . . . , lm there exists another cycle in the graph that
represents the same equivalence class and whose vertices are ¬l1, . . . ,¬lm. This
is due to the symmetry of the graph building procedure.

Remark 16 For a complete description of the SCC decomposition algorithm,
refer to Appendix B.

Example: Consider the following set of clauses:

a ∨ b ∨ (x − y ≤ 8)
∧ ¬a ∨ ¬b
∧ b ∨ c
∧ a ∨ ¬c
∧ b ∨ d

Figure (4.2) shows the implication graph built using the binary clauses ¬a∨¬b,
b ∨ c, a ∨ ¬c, and b ∨ d. Applying the SCC decomposition algorithm on that
graph leads to the detection of two cycles: the first is formed by vertices a, ¬b,
and c; and the second is formed by vertices ¬a, b, and ¬c.

From the first cycle, an equivalence between a, ¬b, and c is deduced and it
is safe to set c = a and b = ¬a. The second cycle represents an equivalence
between ¬a, b, and ¬c. Obviously, it is the same equivalence as discovered
earlier with the first cycle. �

4.2.3 Pure Boolean literals resolution

For each pure Boolean literal l in the set of clauses, l is set to true.

Example: Consider the following set of clauses:

a ∨ b ∨ c
∧ ¬a ∨ b
∧ b ∨ c
∧ ¬d ∨ ¬c
∧ b ∨ ¬d
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¬d

¬a

¬c

b

dc

a ¬b

Figure 4.2: Example of a graph built to detect Boolean equivalences

b and ¬d are pure Boolean literals since their negations, ¬b and d, do not occur
in the set of clauses. When applying the pure Boolean literals resolution, b is
set to true and d to false. �

4.2.4 DBM updating

Each unit numerical clause (i.e. each clause that contains one numerical literal
(x − y ≺ c) and no Boolean literals) is used to update the DBM M associated
with the current solving context: The polyhedron [[M ]] associated with M
is intersected with that constraint (x − y ≺ c) and the DBM of the current
solving context is replaced with the canonical form of the DBM associated with
[[M ]] ∩ (x − y ≺ c), i.e.:

M := cf
(
[[M ]] ∩ (x − y ≺ c)

)
If that canonical form is empty, the solving process is stopped and the

mixed SAT instance represented by the current solving context is known to be
unsatisfiable.

4.2.5 DBM analysis

The DBM M associated with the current solving context is scanned in order to
find variables x and y such that:

⎧⎨
⎩

bMxy = −bMyx

�Mxy=≤
�Myx=≤

When such x and y are found, x = y + bMxy holds and that assignment can be
safely made. In fact:
{

x − y ≤ bMxy

y − x ≤ bMyx

⇔
{

x − y ≤ bMxy

y − x ≤ −bMxy

⇔
{

x − y ≤ bMxy

x − y ≥ bMxy

⇔ x − y = bMxy
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4.3 Davis-Putnam Rules

The Davis-Putnam rules go beyond the simplification steps presented above.
In fact, their application narrows the search space without affecting the satis-
fiability or the unsatisfiability of the considered set of clauses. They replace
the formula corresponding to the current list of clauses by a stronger but equi-
satisfiable one.

4.3.1 Restricted Boolean Davis-Putnam rule application

This rule is based on a restricted version of Boolean resolution as described in
[DP60]. It is applied to each literal l that has a unique negative occurrence in
the set of clauses that can be written as:

k∧
i=1

Ci ∧
k′∧

i=1

(C ′
i ∨ l) ∧ (C ′′ ∨ ¬l) (4.1)

Ci, C ′
i, and C ′′ are clauses or sub-clauses that contain neither l nor ¬l.

When such a literal l is found, it can be assigned the value of the sub-clause
C ′′. After rewriting the set of clauses, we obtain the formula:

k∧
i=1

Ci ∧
k′∧

i=1

(C ′
i ∨ C ′′) (4.2)

which has one less variable. Note that equation (4.2) is not equivalent to (4.1).
However, both are equi-satisfiable.

Applying this rule is not straightforward, and provisions must be taken in
order to avoid the production of malformed mixed clauses, i.e. clauses that
have more than one numerical literal. Therefore, the rule is not applied when
such a problem can occur after assigning a value to the literal l and rewriting
the rest of the clauses. More formally, this rule is used only when:

max{ν(C ′
i)|1 ≤ i ≤ k′} + ν(C ′′) ≤ 1

where ν(Z) denotes the number of numerical literals in the clause Z.

Example: Consider the following set of clauses:

a ∨ b ∨ (x − y < 5)
∧ ¬a ∨ c
∧ ¬a ∨ d

The literal ¬a is a candidate to the application of the restricted Boolean
Davis-Putnam rule. Thus we can set:

¬a = b ∨ (x − y < 5)

In other words, the variable a is assigned the conjunction ¬b ∧ (y − x ≤ −5).
Rewriting the above set of clauses gives:

b ∨ (x − y < 5) ∨ c
∧ b ∨ (x − y < 5) ∨ d
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�

4.3.2 Restricted numerical Davis-Putnam rule application

This rule is an adaptation of the restricted Boolean Davis-Putnam rule de-
scribed above for numerical constraints. It can also be considered as a special
case of the Fourier-Motzkin variable elimination [DE73]. The idea is illustrated
using the following example:

Example: Assume the following set of clauses:

a ∨ b ∨ (x − y ≤ 5)
∧ (y − z ≤ 7)
∧ (y − w ≤ 2)

From both clauses where y occurs positively, we can deduce:{
y − z ≤ 7
y − w ≤ 2

⇔
{

y ≤ z + 7
y ≤ w + 2

⇔ y ≤ min{z + 7, w + 2}

Thus, y can be set to min{z+7, w+2} and substituted in (x−y ≤ 5) to obtain:
{

x − y ≤ 5
y = min{z + 7, w + 2} ⇔ x ≤ 5 + min{z + 7, w + 2}

⇔
{

x ≤ 5 + z + 7
x ≤ 5 + w + 2

⇔
{

x − z ≤ 12
x − w ≤ 7

Therefore, the above set of clauses becomes:

a ∨ b ∨ (x − z ≤ 12)
∧ a ∨ b ∨ (x − w ≤ 7)

�

This example explains roughly how that rule works. In our case, unit numer-
ical clauses are already integrated in the DBM M associated with the current
solving context. So we first select a numerical variable x occurring a few times
positively in M . Let (x−y1 ≤ c1), . . . , (x−yk ≤ ck) be the constraints deduced
from M where occurrences of x are positive.

Next, x is set to min{y1 + c1, . . . , yk + ck}. Each constraint (z − x ≺ c) in
the set of clauses, in which x occurs negatively, is replaced by the conjunction:

(z − y1 ≺ c − c1) ∧ . . . ∧ (z − yk ≺ c − ck)

M is also updated in order to remove references to x:

• For each numerical variable z ∈ X ∪ {0}\{x} such that Mzx �= (∞, <),
and for each 1 ≤ i ≤ k, Mzyi is set to Mzyi ⊕ (−ci,≤), and Mzx is reset
to (∞, <).
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• For each z ∈ X ∪ {0}\{x}, Mxz is reset to (∞, <).

Analogously, we can do the same for a numerical variable y that occurs
a few times negatively in M . Let (x1 − y ≤ c1), . . . , (xk − y ≤ ck) be the
constraints deduced from M where occurrences of y are negative. y is set to
max{x1 − c1, . . . , xk − ck}. Each constraint (y − z ≺ c) in the set of clauses,
where y occurs negatively, is substituted by the conjunction:

(x1 − z ≺ c + c1) ∧ . . . ∧ (xk − z ≺ c + ck)

M is also updated in order to remove references to y:

• For each numerical variable z ∈ X ∪ {0}\{y} such that Myz �= (∞, <),
and for each 1 ≤ i ≤ k, Mxiz is set to Mxiz ⊕ (ci,≤), and Myz is reset to
(∞, <).

• For each z ∈ X ∪ {0}\{y}, Mzy is reset to (∞, <).

Remark 17 This rule does not affect the satisfiability of a given SAT instance.
In fact, for a numerical variable x that occurs positively as described above, any
valuation v satisfying that instance must satisfy v(x) ≤ v(yi)+ci. The valuation
v′ = v[x := min{y1 + c1, . . . , yk + ck}] where only the value of x is changed such
that v′(x) ≤ v(x) also satisfies the instance. In fact, it satisfies the constraints
x − yi ≤ ci for all i ∈ {1, . . . , k}. It satisfies also all the constraints where x
occurs negatively.

A similar reasoning can be made for numerical variables that occur a few
times negatively.

Remark 18 This rule is applied when a numerical variable occurs a few times
positively or negatively. This is a vague quantifier but it is up to the imple-
mentor of the solving algorithm to define how much a few is. This depends on
numerous factors especially on how much gain in performance the elimination
of a numerical variable can provide.

4.4 DPLL Branching

The global algorithm of the mixed SAT solver is based on DPLL as described
in Chapter 3. The solver reduces the current context. If it is found to be
unsatisfiable or satisfiable, it stops. Otherwise, it will choose a free variable,
i.e. a variable v that is not already assigned, and branch on it. The first branch
is with v = true and the second with v = false. In each branch, the same
algorithm is applied recursively.

Reducing the current context consists of successive applications of the sim-
plification steps and the restricted Davis-Putnam rules. Figure (4.1) depicts
how the reduction is achieved.

Algorithm 7 (Recursive DPLL)
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MXSolve(C, M,A)
begin

(C, M,A) := reduce(C, M,A)

if is-unsatisfiable(C, M,A)
then

return (C, M,A)

if no-free-variable(C, M,A)
then

return (C, M,A)

v := choose-free-variable(C, M,A)
(C ′, M ′,A′) := MXSolve(C, M,A ∪ {v = true})

if is-satisfiable(C ′, M ′,A′)
then

return (C ′, M ′,A′)
else

return MXSolve(C, M,A ∪ {v = false})
end

Remark 19 Since MXSolve does not return explicitly the satisfiability of a
given context, it should be invoked from another function that tests the returned
context using is-unsatisfiable or is-satisfiable.

While the above recursive DPLL algorithm is good for didactic purposes, it
turns out to be practically inefficient because recursion adds a processing over-
head at each nesting level. Besides, advanced features such as non-chronological
backtracking1 and restarts are hard to integrate into such a recursive algorithm.
For all these reasons, a non-recursive version of the algorithm has been designed
(See Algorithm 8).

Recursion is avoided by using an array of contexts and by augmenting each
context with its state indicator and its current branching variable if any. The
state of a context gives information about what the algorithm is currently doing:

• The state is 0 when the solver is reducing the current context.

• The state is 1 when the solver is processing the left branch after it has
chosen a free variable for branching on.

• The state is 2 when the solver is processing the right branch.

In the following algorithm, i represents the current branching level. Each
context at level i is made of:

• A set of clauses Ci;

1Backtracking by more than one level at a time
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• A DBM Mi;

• A set of assignments Ai;

• A state indicator si;

• A branching variable vi;

Algorithm 8 (Non-Recursive DPLL)

MXSolve(C, M,A)
begin

(C1, M1,A1) := (C, M,A)
s1 := 0
i := 1

while (i > 0)
begin

(Ci, Mi,Ai) := reduce(Ci, Mi,Ai)

if is-unsatisfiable(Ci, Mi,Ai)
then

begin
i := i − 1
continue

end

if is-satisfiable(Ci, Mi,Ai)
then

return (Ci, Mi,Ai)

if (si = 0)
then

begin
if no-free-variable(Ci, Mi,Ai)
then

begin
i := i − 1
continue

end
else

begin
vi := choose-free-variable(Ci, Mi,Ai)
si := 1

end
end
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if (si = 1)
then

value := true

if (si = 2)
then

value := false

if (si = 3)
then

begin
i := i − 1
continue

end

if (si ∈ {1, 2})
then

begin
si := si + 1
(Ci+1, Mi+1,Ai+1) := (Ci, Mi,Ai ∪ {vi = value})
si+1 := 0
i := i + 1

end

end
end

return (C1, M1,A1)
end

Remark 20 In the above algorithm, a new keyword continue is used. It stops
the execution of the current while loop and restarts it.

The non-recursive algorithm makes backtracking as easy as setting the level
variable i and restarting the loop (by using continue). This permits adding
conflict analysis and restarts to the algorithm with minimum changes as can
be seen in Algorithm 9 where the new or modified lines are marked with the �
symbol.

Algorithm 9 (Non-Recursive DPLL with conflict analysis and restarts)

MXSolve(C, M,A)
begin

(C1, M1,A1) := (C, M,A)
s1 := 0
i := 1
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while (i > 0)
begin

(Ci, Mi,Ai) := reduce(Ci, Mi,Ai)

if is-unsatisfiable(Ci, Mi,Ai)
then

begin
(C, M,A, i) := conflict-analysis(C, M,A, i) �
continue

end

if is-satisfiable(Ci, Mi,Ai)
then

return (Ci, Mi,Ai)

if (si = 0)
then

begin
if restart(Ci, Mi,Ai, i) �
then �

begin �
i := 1 �
continue �

end �

if no-free-variable(Ci, Mi,Ai)
then

begin
i := i − 1
continue

end
else

begin
vi := choose-free-variable(Ci, Mi,Ai)
si := 1

end
end

if (si = 1)
then

value := true

if (si = 2)
then

value := false
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if (si = 3)
then

begin
i := i − 1
continue

end

if (si ∈ {1, 2})
then

begin
si := si + 1
(Ci+1, Mi+1,Ai+1) := (Ci, Mi,Ai ∪ {vi = value})
si+1 := 0
i := i + 1

end

end
end

return (C1, M1,A1)
end

The updated version of the non-recursive DPLL with conflict analysis and
restarts uses two functions that can be customized at will by the implementor
of the algorithm:

• conflict-analysis(C, M,A, i): It does the conflict analysis on an unsat-
isfiable context at level i. It operates on the entire array of contexts
(C, M,A) and updates all the contexts with the newly learned clauses.
In fact, each learned clause is valid regardless of the current branching
configuration. conflict-analysis returns the new level to which the algo-
rithm must backtrack.

• restart(Ci, Mi,Ai, i): It decides whether to restart the solving at level
1 or continue. This decision is based upon the current context and the
current branching level.

Other functions, that are already used in the previous versions of the algo-
rithm, can also be subject to customizations:

• reduce(Ci, Mi,Ai): It returns a copy of the current context to which
the simplification steps and the restricted Davis-Putnam rules have been
applied.

• choose-free-variable(Ci, Mi,Ai): It selects a free variable to branch on,
and it can do so using various heuristics.

To summarize, Algorithm 9 can be considered as a template for a mixed
solving algorithm with at least four parameters, namely the implementations
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of reduce, choose-free-variable, conflict-analysis, and restart. The cus-
tomization can go further since the implementor has a wide choice of what
methods to use in these functions.

4.5 Conflict Analysis

Conflict analysis used in the mixed solver is a generalization of the conflict anal-
ysis technique used in Boolean SAT solvers and already described in Chapter 3.

4.5.1 Extension of solving contexts

In order to use conflict analysis, clauses, DBM bounds, and assignments must be
extended. The extension consists in augmenting each of these context elements
with a set of variables that represent the reasons that resulted in that element
change or setting.

An extended clause is a pair Z∗ = (Z, R) where Z is a clause and R =
{v1, . . . , vk} is the set of variables whose assignments lead to the current form
of the clause. Likewise, an extended DBM M∗ is a DBM whose entries are
extended bounds, i.e pairs M∗

xy = (Mxy, R
′) where R′ is the set of variables

whose assignments lead to the inclusion of Mxy in the DBM. Finally, an ex-
tended assignment is a pair A∗ = (A, R′′) where R′′ is the set of variables whose
assignments lead to A. We will use the following notations in the rest of the
section:

clause(Z∗) = Z reason(Z∗) = R
bound(M∗

xy) = Mxy reason(M∗
xy) = R′

assignment(A∗) = A reason(A∗) = R′′

From now on, we assume solving contexts to be of the form (C∗, M∗,A∗)
where C∗ is a set of extended clauses, M∗ is an extended DBM, and A∗ is a set
of extended assignments.

4.5.2 Changes in operations

The extension of the components of the solving contexts changes slightly the
operations that can be applied to them as explained below.

Assignments

Assume that the extended clauses involved in a given simplification step or in
an application of a Davis-Putnam rule are {C∗

1 , . . . , C∗
m} ⊂ C∗. A clause is said

to be involved in a step when it is used to decide if that step can be applied. If
that step results in an assignment v = V , the extended assignment (v = V, R)
is appended to A∗, where:

R =
m⋃

j=0

reason(C∗
j )
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Clause rewriting

For each extended clause C∗
i in the current solving context that is rewritten

based on an assignment v = V , the variable v is added to its set of reason
variables, i.e.:

reason(C∗
i ) := reason(C∗

i ) ∪ {v}

During a rewrite, if a numerical literal (x− y ≺ c) in an extended clause C∗
i

is found to be true because (c,≺) > bound(M∗
xy), then:

reason(C∗
i ) := reason(C∗

i ) ∪ reason(M∗
xy)

Likewise, if it is found to be false because (−c,≺) > bound(M∗
yx), then

reason(C∗
i ) := reason(C∗

i ) ∪ reason(M∗
yx)

DBM updating

If an extended clause C∗
i contains only a numerical literal, that literal is candi-

date to be included in the DBM M∗. In such a case, the updated bound of the
DBM has its reason set to reason(C∗

i ). If adding that constraint to the DBM
results in an empty matrix, a conflict is detected

During the update of an extended DBM, reasons associated with the bounds
must be also set. For that purpose, the Floyd-Warshall algorithm already de-
scribed on page 20 is extended in order to record and update the set of reason
variables related to each bound of the DBM.

Algorithm 10 (Extended Floyd-Warshall)

ExtendedFloydWarshall(M∗)
begin

for i := 1 to n
for j := 1 to n

for k := 1 to n
begin

b := bound(M∗
xixj

) ⊕
(
bound(M∗

xixk
) ⊗ bound(M∗

xkxj
)
)

if
(
b �= bound(M∗

xixj
)
)

begin
reason(M∗

xixj
) := reason(M∗

xixk
) ∪ reason(M∗

xkxj
)

bound(M∗
xixj

) := b

end
end

end

DPLL branching

When the solver selects a variable v to branch on, it adds a new assignment of
v to A∗ with an empty set of reason variables.
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4.5.3 Conflict detection and analysis

Now, consider an extended clause C∗
i in the current solving context. If rewriting

the clause of C∗
i gives the false clause, a conflict is deduced and the solver uses

R = reason(C∗
i ) to build the implication graph.

Another type of conflicts arises when the canonization of a DBM gives an
empty matrix. In such a case, there is at least one numerical variable x that
satisfies fw(M)xx < 0, i.e. there is at least one negative cycle after the applica-
tion of the Floyd-Warshall algorithm (see Lemma 2 on page 19). The following
set of variables R is used to build the implication graph:

R =
⋃

(x,y)∈Z

reason(M∗
xy)

where:
Z =

{
(x, y) ∈ (X ∪ {0})2|fw(M)xx < 0

}
In both cases, invoking ImplicationGraph(R) generates the implication

graph that ends in a conflict. The following algorithm uses reason(r) that
denotes, by extension, the set of reason variables associated with the assignment
of the variable r.

Algorithm 11 (Implication graph) 2

ImplicationGraph(R)
begin

V (G) := ∅

E(G) := ∅

for each r ∈ R
G := G ∪ ImplicationGraphOfVariable

(
reason(r), r

)

return G
end

ImplicationGraphOfVariable(R, v)
begin

V (G) := {v}
E(G) := ∅

for each r ∈ R
begin

V (G) := V (G) ∪ {r}
E(G) := E(G) ∪ {〈r, v〉}

end

2The algorithms use the directed graph notations presented in Appendix B.
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for each r ∈ R
G := G ∪ ImplicationGraphOfVariable

(
reason(r), r

)

return G
end

Notice that the vertices of the graph are made of variables and not of assign-
ments. This is not a limitation since a full assignment can be easily retrieved
from a variable name by doing a lookup in the set of assignments of the current
solving context.

Building the full implication graph is not required as only a portion of it is
relevant to perform the conflict analysis. Thus, ImplicationGraphOfVariable
can be modified in order to return an empty implication graph when the vari-
able v passed as a parameter does not satisfy a given property. For example,
such a property can test the branching level at which the variable was assigned
a value.

That graph is then analyzed to extract a learned clause that will be added
to the SAT instance to prevent the occurrence of the same conflict in the future.

4.6 MX-Solver Implementation

4.6.1 Technical overview

The current MX-Solver implementation is written in ANSI C. It consists of
about 6500 lines of code. It has been successfully tested on many 32-bit and
64-bit platforms powered by Windows or popular UNIX flavors (such as Linux
and Solaris).

Since speed and stability are the major concerns, MX-Solver does not rely
on external libraries: The implementation is self-contained and only uses some
I/O and memory allocation routines from the standard C library. Besides,
extensive code reuse inside the implementation has been practiced in order to
reduce the size of the resulting executable code which is around 55 KB. From
a technical point of view, these consented restrictions are required in order to
get the most from the solver. In fact, the smaller the executable code is, the
longer it will reside in the processor cache, and the faster will be its execution.

A second version of the solver, called MX3-Solver, has been implemented
as well. It is restricted to formulae in MX-3-CNF, i.e. every clause has at most
three literals and at most one of them can be numerical. MX3-Solver shares
75% of its code with MX-Solver. In the sequel, we will refer to both versions
by MX-Solver except for cases where we mention their differences.

4.6.2 Data structures

MX-Solver relies on several data structures that store the information and the
attributes related to the objects it manipulates. Figure (4.3) shows the depen-
dencies between them.

In the sequel, we discuss some of the main data structures used in MX-Solver
and describe, at some level of detail, how they are implemented.
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Figure 4.3: Data Structures in MX-Solver
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Clause

In MX3-Solver, clauses are MX-3-CNF. Each clause is stored as a static array of
three literals. On the other hand, MX-Solver does not set any limitation on the
size of the clauses. Consequently, they are implemented as a dynamic array of
literals. But due to performance reasons, this simple way of describing clauses
has been abandoned at an early stage in favor of a more complex definition.
Thus, a clause is made of static array that has room for three literals. It has
also the ability to contain more literals in an additional dynamic array.

List of clauses

A list of clauses consists of seven dynamic arrays, each of them is dedicated to
store a specific type of clauses. The first six arrays contain respectively clauses
of the form b, b∨ b, b∨ b∨ b, c, b∨ c, and b∨ b∨ c, where b represents a boolean
literal and c a constraint. These enumerated types represent all the possible
kinds of MX-3-CNF clauses. Clauses that do not fit in one these forms go in
the seventh array. This definition of the list of clauses makes browsing easy,
especially if the search is restricted to one or a few types of clauses.

DBM

The set D in the MX-Solver is the set of integers Z. This results in the simplifi-
cation of bounds: a bound is reduced to a single integer. In fact, a bound (z, <)
is equivalent to (z − 1,≤) (See also Remark 2 on page 6). Thus, all bounds
have the form (z,≤) and only the integer z is needed.

A DBM can then be defined as a (n + 1)-square matrix of integers, where
n is the number of numerical variables referenced in the mixed SAT instance.
The first row and the first column of each DBM refer always to the special 0
variable.

Solving context

A solving context is a structure containing mainly:

• A list of clauses;

• A DBM;

• An array of assignments. This array has a fixed size as the number of the
variables referenced in the mixed SAT instance is known in advance.

• An array of statistics on variables. Useful information about each vari-
able, such that the number of its positive and negative occurrences in the
current list of clauses, is kept in that array and is frequently updated.

4.6.3 Features

MX-Solver starts by reading a mixed CNF formula from an input file. This
formula is used to initialize the main solving context. Next, the solver processes
that context in order to find if it is satisfiable.
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MX-Solver relies on many of the ideas already presented in Chapter 4. The
current implementation is based on the DPLL algorithm and features all the
reduction rules described in Chapter 4.

Rule MX-Solver MX-3-Solver
Unit resolution

√ √

Pure literals resolution
√ √

Equivalence detection
√ √

DBM updating
√ √

DBM Analysis
√ √

Restricted Boolean DP
√

Restricted numerical DP
√ √

MX-3-Solver does not implement the restricted Davis-Putnam rules as they
can produce clauses that are not MX-3-CNF.

Both solvers are fully configurable at the command line: the user can re-
strict the set of reduction rules that should be applied. He/she can also set a
maximum branching depth for the DPLL algorithm. More information about
using the solvers is available in Appendix A.

4.6.4 Design guidelines

Implementing a solver results in the accumulation of a non-negligible know
how. In the sequel, general programming advice, based on my experience with
MX-Solver design, is given.

• Improve the locality of the data: Modern processors use memory caches as
an intermediate layer to make memory accesses faster. But if the program
does frequent random accesses outside the cache scope, the performance
becomes poor as the processor spends most of its time flushing and loading
the cache. As a consequence, it is highly recommended to have contiguous
data especially when executing algorithms that require frequent accesses
to the memory.

• Minimize the dependency of the critical code on external libraries: This
could be rephrased into ”Improve the locality of the code”. In fact, for
the same caching consideration mentioned above, the more the code is
self-contained, the faster it is. Self-containment means here that the code
does not rely, or rely a little, on other libraries and system calls. For
that reason, static linking, i.e. incorporation of library routines in the
generated executable file, should be preferred over dynamic linking.

• Avoid as much as possible conditional statements in computing intensive
portions of the code: In such portions, conditional structures dramati-
cally slow the execution. This is due to the fact that conditions prevent
the processor from using its code pipelines and its unordered execution
features, and thus participate in lowering temporarily its performance.
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• Avoid recursions: Although elegant, recursive procedures have generally
a large overhead due to the stack pushes and pops they require. Besides,
stack overflow error handlers are rarely written by programmers, which
leads to a fragile code.

• Forget common sense and use a profiler: When it comes to improving
the performance of the solver, the best is to use a profiler to locate the
functions that are really time consuming. This advice is not so futile as
it seems to be. In fact, programmers tend to rely on their common sense
or their subjective convictions (related to how they perceive the com-
plexity of an algorithm) to designate functions that need improvements.
But those functions are seldom responsible for the poor performance of
the program. Usually, small and frequently called functions are the main
speed bottlenecks. Profiling the program on a wide range of sample exe-
cutions can help identifying them.

The choice of the C language to write MX-Solver was motivated by the
above advice and remarks I have made during the implementation of its first
prototypes. In fact, its compiled code is highly optimized, it allows full control
over the data structures, and it is backed by powerful development tools such
as debuggers and profilers. Moreover, the use of C makes MX-Solver portable
and virtually compatible with any modern computing platform.



Chapter 5

Timed Systems

Timed systems are systems whose behavior and dynamics are dependent on
time. In this chapter, we focus on three classes of timed system models, namely,
timed automata, asynchronous digital circuits, and non-preemptive job-shops.

For each class, we show how systems belonging to it are modeled and how
possible behaviors of such models can be expressed using difference logic for-
mulae.

5.1 Timed Automata

Timed automata are automata augmented with clocks [AD94]. They are useful
to model systems with timing constraints and where states depend on time. A
timed automaton behavior is made of an alternation of discrete states (as in a
classical automaton) and time passage. During time passage, all clock values
grow at a uniform rate. Conditions on clock values enable transitions or disable
staying in state. Besides clock values can be reset during transitions.

5.1.1 Flat timed automata

In the sequel, we give a bunch of basic definitions related to flat timed automata.

Definition 20 (Time constraints) A time constraint is a constraint of the
form (x− y ≺ c) or x ≺ c′ where x and y are clocks, ≺∈ {<,≤}, c ∈ D, and
c′ ∈ D+. D+ is defined as follows:

D+ = {x ∈ D | x ≥ 0}

Definition 21 (Timed automaton) A timed automaton is a tuple A such
that:

A = (Q,X , q0, Δ,S)

where:

• Q is a finite set of discrete states;

• X is a finite set of clocks whose values range over D;

69
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• q0 is the initial state;

• Δ is a finite set of transitions of the form (q, Π, R, q′) where q, q′ ∈ Q
are the source and the target discrete states, Π is the guard of the related
transition made of a conjunction of clock constraints on X defining a
convex X -polyhedron, and R is a subset of X that contains clocks to be
reset when the transition is made. Δ is also called the transition relation;

• S is a function that associates to each discrete state q a conjunction of
clock constraints on X defining a convex X -polyhedron. S(q) defines the
staying conditions for q.

Definition 22 (Clock valuation) A clock valuation is a function:

v : X → D+

The set of clock valuations is denoted C.

Definition 23 (Clock reset function) A reset function on a subset of clocks
R is defined by:

ResetR : C → C

v(x) �→
{

0 if x ∈ R
v(x) otherwise

In other words, a clock reset function sets to zero all the clocks in R and does
not modify the others.

Definition 24 (State) A state is a pair (q,v) where q ∈ Q and v is a clock
valuation.

Remark 21 (Initial state) The initial state of the timed automaton A is
(q0,0) where 0 is the clock valuation:

0 : X → D+

x �→ 0

Definition 25 (Transition) A transition is one of the following:

• A discrete transition
(q,v) δ−→ (q′,v′)

where δ = (q, Π, R, q′) ∈ Δ, such that v satisfies Π and v′ = ResetR(v).

• A time transition
(q,v) θ−→ (q,v′)

where the delay θ ≥ 0 and v′ = v + θ · 1, 1 is the clock valuation defined
as follows:

1 : X → D+

x �→ 1

In such a time transition, v′ satisfies S(q).
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Remark 22

• The concatenation of two time transitions (q,v) θ−→ (q,v + θ · 1) and

(q,v) θ′−→ (q,v+θ′ ·1) is the time transition (q,v) θ+θ′−→
(
q,v+(θ+θ′) ·1

)
.

• Inversely, a time transition can be divided into k time transitions

(q,v) θ1−→ (q,v + θ1 · 1) θ2−→ . . .
θk−→ (q,v + θk · 1)

such that
∑k

i=1 θi = θ. If D = Z, k ≤ θ. If D = R, due to the dense
nature of the reals, k can be unbounded, i.e. k ≥ 1.

• An idle time transition is a time transition with a zero delay, i.e.:

(q,v) 0−→ (q,v)

Definition 26 (Finite run) A finite run of a timed automaton is a finite se-
quence of transitions:

(q1,v1) z1−→ (q2,v2) z2−→ . . .
zk−→ (qk,vk)

A finite run with no two consecutive time transitions is called a minimal
run.

5.1.2 Translation into DL

Consider a timed automata A = (Q,X , q0, Δ,S) that is being translated into
difference logic.

State encoding

To encode states, each element of Q must be encoded using Booleans. In the
sequel, we will use a set of Booleans B to encode elements of Q. Φq(B) is
the formula over those Boolean variables denoting state q. We will also use
respectively B′ and X ′ to represent the values of states and clock variable after
a step is made.

The most compact encoding, i.e. the encoding that requires the least num-
ber of Booleans, consists in associating each state with a formula containing
the conversion of its rank in Q to a binary basis.

Assume that Q = {q0, . . . , qm}. In that case, we define B = {b1, . . . , bk}
such that k = ceiling(ln (m + 1)/ ln 2), where:

∀n ∈ Z, ∀x ∈]n − 1, n], ceiling(x) = n

The formula denoting state qi is:

Φqi(B) =
k∧

j=1

bj
β(i,j)
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where:

i =
k∑

j=1

β(i, j).2j−1

and:

bj
v =

{
bj if v = 1

¬bj otherwise

Example: Let Q = {q0, q1, q2, q3, q4}. The set of Booleans used to encode the
states has 3 as cardinal and is B = {b1, b2, b3}. The encoded states are:

Φq0(B) = ¬b1 ∧ ¬b2 ∧ ¬b3 Φq1(B) = b1 ∧ ¬b2 ∧ ¬b3

Φq2(B) = ¬b1 ∧ b2 ∧ ¬b3 Φq3(B) = b1 ∧ b2 ∧ ¬b3

Φq4(B) = ¬b1 ∧ ¬b2 ∧ b3

�

Reset formula

The formula that expresses the effect of resetting clocks in R is:

ΦR(X ,X ′) =
∧

xi∈R

(x′
i = 0) ∧

∧
xi /∈R

(x′
i = xi)

Discrete transition translation

A discrete transition δ = (q, Π, R, q′) translates into:

Ψδ(B,X ,B′,X ′) = Φq(B) ∧ ΦΠ(X ) ∧ ΦR(X ,X ′) ∧ Φq′(B′)

where ΦΠ(X ) is the formula of the X -polyhedron Π.

Time passage formula

The time passage formula is the following:

Φτ (X ,X ′) = (∃t ≥ 0) ∧
∧

xi∈X
(x′

i − xi = t)

Time transition translation

The formula expressing a time transition at state q is:

Ψq(B,X ,B′,X ′) = Φq(B) ∧ Φτ (X ,X ′) ∧ ΦS(q)(X ′) ∧ Φq(B′)

where ΦS(q)(X ′) is the formula of the X ′-polyhedron S(q).
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Finite run translation

The formula associated with a valid transition is:

Ψ(B,X ,B′,X ′) =
∨
q∈Q

Ψq(B,X ,B′,X ′) ∨
∨
δ∈Δ

Ψδ(B,X ,B′,X ′)

Thus, the formula expressing a valid run of length k is:

Ψk = Ψ(B0,X 0,B1,X 1) ∧ Ψ(B1,X 1,B2,X 2) ∧ . . . ∧ Ψ(Bk−1,X k−1,Bk,X k)

Notice that Ψk is also valid for runs of length less than k. This is due to
idling.

Conformance with DL

The time passage formula expressed above is not DL conformant. Elimination
of t in Φτ gives:

Φτ (X ,X ′) =
∧
i

∧
i�=j

(
(x′

i − xi = x′
j − xj) ∧ (x′

i − xi ≥ 0)
)

Φτ is still beyond the scope of DL. But this can be easily avoided by using
extended states.

Definition 27 (Extended state) States can be extended to include the abso-
lute time since the beginning of the finite run. Therefore, a discrete transition
becomes:

(q,v, T ) δ−→ (q′,v′, T )

And a time transition is written:

(q,v, T ) θ−→ (q,v + θ · 1, T + θ)

This extension can be seen as an addition of a clock that is never reset and
which valuation is T .

For each clock x ∈ X , the date variable ξ = T − x represents the last time
when x was reset, and the pair (ξ, T ) can replace the clock x with no loss of
expressivity.

When applying that isomorphic transformation on the clocks in X , i.e. when
substituting each clock x with T − ξ, changes occur in the formulae expressed
so far:

• Time passage only affects T. It does not affect variables in Ξ(T ), where:

Ξ(T ) = {T − x | x ∈ X}

• A reset of a clock x is equivalent to setting its associated date variable ξ
to T .
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• Polyhedra associated with the guards and the staying conditions must be
evaluated on elements of Ξ(T ).

The reset formula becomes:

ΦR

(
Ξ(T ), Ξ′(T ), T

)
=

∧
i

(ξ′i = T ) ∧
∧
i

(ξ′i = ξi)

where Ξ(T ) = {ξ1, . . . , ξn}.
The time passage formula can be written:

Φτ

(
Ξ(T ), T, Ξ′(T ), T ′) = (∃t ≥ 0) ∧ (T ′ − T = t) ∧

∧
i

(ξ′i = ξi)

It becomes after eliminating t:

Φτ

(
Ξ(T ), T, Ξ′(T ′), T ′) = (T ′ − T ≥ 0) ∧

∧
i

(ξ′i = ξi)

A discrete transition is transformed into:

Ψδ

(
B, Ξ(T ),B′, Ξ′(T ), T

)
= Φq(B) ∧ ΦΠ

(
Ξ(T ), T

)
∧ ΦR

(
Ξ(T ), Ξ′(T ), T

)
∧ Φq′(B′)

A time transition at state q becomes:

Ψq

(
B, Ξ(T ), T,B′, Ξ′(T ′), T ′) = Φq(B) ∧ Φτ

(
Ξ(T ), T, Ξ′(T ′), T ′)

∧ ΦS(q)

(
Ξ′(T ′)

)
∧ Φq(B′)

Thus, a valid transition satisfies the formula:

Ψ
(
B, Ξ(T ), T,B′, Ξ′(T ′), T ′) =

∨
q∈Q Ψq

(
B, Ξ(T ),B′, Ξ′(T ), T

)
∨

∨
δ∈Δ Ψδ(B, Ξ(T ), T,B′, Ξ′(T ′), T ′)

Finally, the formula expressing a valid run of length k becomes:

Ψk = Ψ
(
B0, Ξ0(T 0), T 0,B1, Ξ1(T 1), T 1

)
∧ Ψ

(
B1, Ξ1(T 1), T 1,B2, Ξ2(T 2), T 2

)
∧ . . .
∧ Ψ

(
Bk−1, Ξk−1(T k−1), T k−1,Bk, Ξk(T k), T k

)
That new version of Ψk is fully in conformance with DL. Such a goal was

achieved by adding k new variables T 0,. . . , and T k, each of them represents the
time at which a transition was taken.

5.1.3 Composition

In this sub-section, we describe the translation to DL of a product of interacting
timed automata and focus on the composition operator based on communication
by variables. In such a composition an automaton may observe the states of
other automata, that is, it may use their values in its transition guards and
staying conditions. Hence, in an updated definition of timed automata that



5.1. TIMED AUTOMATA 75

takes interaction into account, both the staying conditions and the guards are
extended to be a conjunction of Boolean variables that encode the states of
external automata with the clock constraints on X .

Two composition variants are presented in the sequel. In the first, all the
composed automata share the same global time-scale whereas in the second,
each automaton has its own.

In the rest of that sub-section, consider n timed automata A1, . . . ,An such
that for each i ∈ 1 ≤ i ≤ n, Ai = (Qi,Xi, q0,i, Δi,Si), where i ∈ {1, . . . , n}. As-
sume also the states of each automaton Ai are encoded using a set Bi of Boolean
variables such that ∀i �= j, Bi ∩ Bj = ∅. Let B =

⋃
Bi and X =

⋃
Xi.

Global time scale composition

The set of automata that should be observed while taking a transition δi ∈ Δi

with a guard Πi is:

Jδi = {Aj |∃q ∈ Qj , q appears in Πi}

The set of automata to be observed during time passage in a state qi ∈ Qi

is:
Jqi = {Aj |∃q ∈ Qj , q appears in S(qi)}

The set of automata that might be influenced by transitions in automaton
Ai during their time passage is:

Ji = {Aj |∃qj ∈ Qj ,Ai ∈ Jqj}

A local discrete step of an automaton Ai is:

(qi,vi, T ) δi−→ (q′i,v
′
i, T )

such that the clocks of Ai and the states of automata in Jδi satisfy the guard
Πi of the transition δi ∈ Δi at time T .

A time step of Ai is:

(qi,vi, T ) θ−→ (qi,vi + θ · 1, T + θ)

such that the staying condition for state qi denoted S(qi) is satisfied by the
clocks of Ai and by states of automata in Jqi during the time interval [T, T +θ).

A global discrete step is of the form:(
(q1, . . . , qi−1, qi, qi+1, . . . , qn), (v1, . . . ,vi−1,vi,vi+1, . . . ,vn), T

)
δi−→(

(q1, . . . , qi−1, q
′
i, qi+1, . . . , qn), (v1, . . . ,vi−1,v′

i,vi+1, . . . ,vn), T
)

where (qi,vi, T ) δi−→ (q′i,v
′
i, T ) is a discrete step of automaton Ai.

Likewise, a global time step is of the form:(
(q1, . . . , qn), (v1, . . . ,vn), T

)
θ−→(

(q1, . . . , qn), (v1 + θ · 1, . . . ,vn + θ · 1), T + θ
)
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such that for every state qi, the staying condition S(qi) is satisfied by every
vi + θ · 1 and by every qj ∈ Ji.

This definition of global steps requires that whenever an automaton makes
a discrete step at time T, any other automata that is in a time step from time
T ′ to T ′′, such that T ∈ [T ′, T ′′), must split that step into two.

Building the DL formula for the composition of automata is very similar to
building the DL formula for a single automaton. Date variables replace clock
variables and all the automata share the same time-stamp T , which guaran-
tees the synchronization between them. The formula of a global step is the
conjunction of step formulae constructed for all automata.

Private time-scale composition

The behaviors of loosely-coupled automata that make independent transitions
often can be encoded by formulae with less variables. The idea, inspired by
[BJLY98], is based on expressing the steps of each automaton using a private
time-scale and on the synchronization of those time-scales whenever required,
i.e. only when automata interact. Each automaton Ai uses its own time-stamp
variables Ti such that its corresponding date variables are ξi = Ti − xi.

The reset formula for Ai is:

ΦRi

(
Ξ(Ti), Ξ′(Ti), Ti

)
=

n∧
j=1

(ξ′j = Tj) ∧
n∧

j=1

(ξ′j = ξj)

The time passage formula for Ai is written:

Φτi

(
Ξ(Ti), Ti, Ξ′(T ′

i ), T
′
i

)
= (T ′

i − Ti ≥ 0) ∧
n∧

j=1

(ξ′j = ξj)

The formula for discrete transition δi ∈ Δi is:

Ψδi

(
B, Ξ, T ,B′, Ξ′, T ′) = Φqi(Bi) ∧ ΦΠi

(
B, Ξ(Ti), Ti

)
∧ ΦRi

(
Ξ(Ti), Ξ′(Ti), Ti

)
∧ Φq′i(B

′
i)

∧ (Ti = T ′
i ) ∧

∧
j∈Jδi

∪Ji
(Ti = Tj)

where T = {T1, . . . , Tn} and T ′ = {T ′
1, . . . , T

′
n}.

A time transition at state qi is:

Ψqi

(
B, Ξ, T ,B′, Ξ′, T ′) = Φqi(Bi) ∧ Φτi

(
Ξ(Ti), Ti, Ξ′(T ′

i ), T
′
i

)
∧ ΦS(qi)

(
B, Ξ′(T ′

i ), T
′
i

)
∧ Φq′i(B

′
i)

∧
∧

j∈Jqi
(Ti = Tj)

where Ξ = {Ξ(T1), . . . ,Ξ(Tn)}, Ξ′ = {Ξ′(T ′
1), . . . ,Ξ

′(T ′
n)}, and ΦS(qi)

(
B, Ξ′(T ′

i ), T
′
i

)
is the result of the substitution of T ′

i − ξ′i and all the state variables in S(qi).
Thus, a valid step of Ai is represented by the formula:

Ψi

(
B, Ξ, T ,B′, Ξ′, T ′) =

∨
q∈Qi

Ψq

(
B, Ξ, T ,B′, Ξ′, T ′)

∨
∨

δ∈Δi
Ψδ

(
B, Ξ, T ,B′, Ξ′, T ′)
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The formula for a global step is:

Ψ
(
B, Ξ, T ,B′, Ξ′, T ′) =

n∧
i=1

Ψi

(
B, Ξ, T ,B′, Ξ′, T ′)

Finally, the formula expressing a valid run of length k is:

Ψk = Ψ
(
B0, Ξ0(T 0), T 0,B1, Ξ1(T 1), T 1

)
∧ Ψ

(
B1, Ξ1(T 1), T 1,B2, Ξ2(T 2), T 2

)
∧ . . .
∧ Ψ

(
Bk−1, Ξk−1(T k−1), T k−1,Bk, Ξk(T k), T k

)

5.2 Asynchronous Digital Circuits

This section is concerned with modeling circuits with bi-bounded delays using
timed automata [MP95, BMT99, BJMY02] and expressing them in difference
logic.

5.2.1 Used model

We present a general model that expresses the behavior of asynchronous dig-
ital circuits without any limitation or restriction. In this model, all variables
can influence each other. Besides, all circuit structures, including the acyclic
structure, can be modeled in a natural manner.

Assume a circuit made of wires transporting k different signals. It can
contain at most k Boolean gates. Each gate can have up to k signals as input
but it has always a single output signal. To simplify, we can consider that such
a circuit has k gates, additional gates perform the identity transformation on
their single input signal. Each signal is modeled by a Boolean variable and each
gate is represented by a Boolean function that takes all the Boolean variables
as input and outputs a single Boolean value.

In order to add timing considerations to that model, it is extended with a
delay operator that expresses the non-immediate propagation of signals inside
a gate. This operator satisfies the following properties:

• Positive lower-bound: A minimal amount of time has to elapse to propa-
gate a change from the input to the output.

• Finite upper-bound: Every persistent change in the input propagates to
the output in a bounded amount of time.

• Uncertainty: The exact delay duration is not predictable. It can be un-
known or vary according to some hidden or complex phenomena. The
delay can only be estimated to be within an interval.

• Inertia: The delay element filters small fluctuations in the input. Only
changes that persist for a minimal duration propagates to the output.
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x1

xk

... fi(x1, . . . , xk)

Delay elementGate

x2

xk−1

... Δ[li,ui]

yi
xi

Figure 5.1: A timed gate model

Due to uncertainty, a delay element can transform an input signal to an
infinity of possible output signals, all satisfying the four properties listed above.
Hence, the corresponding delay operator Δ[l,u] is set-valued. Figure (5.2) demon-
strates that fact.

Definition 28 (Digital circuits model) A k-variable digital circuit is:

N = (X, Y, F, D)

where:

• X = {x1, . . . , xk} is a set of variables;

• Y = {y1, . . . , yk} is a set of auxiliary, or hidden, variables;

• F = {f1, . . . , fk} is a set of Boolean functions, such that for each i:

fi : Bk → B

• D =
{
(l1, u1), . . . , (lk, uk)

}
is a set of pairs of integers, such that:

∀i ∈ {1, . . . , k}, 0 < li ≤ ui

The semantics of a circuit is the set of all solutions of the following system
of equations: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = f1(x1, . . . , xk)
...
yk = f1(x1, . . . , xk)
x1 ∈ Δ[l1,u1](y1)
...
xk ∈ Δ[lk,uk](yk)

(5.1)
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i

o1

o2

o3

o4

Figure 5.2: An input signal i and some corresponding delayed output signals
{o1, . . . , o4} ∈ Δ[2,4]
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5.2.2 Conversion to timed automata

Every equation in (5.1) can be translated into a timed automaton whose be-
haviors correspond to the solutions of the considered equation. Composing all
these automata produces all the possible behaviors of the digital circuit with
respect to all possible choices of delays.

A Boolean gate, whose equation is yi = fi(x1, . . . , xk), is transformed into a
simple one-state automaton that generates all the tuples satisfying the equation.

A delay element, whose equation is xi ∈ Δ[li,ui](yi), is modeled by a four-
state timed automaton with a single clock C as depicted in Figure (5.3). The
rest of this paragraph explains how the automaton acts for example when the
input signal goes from 0 to 1 whereas xi was formerly set to 0: State (0, 0) is
a stable state where both yi and xi are 0. When the input signal yi changes to
1, an excite transition to state (1, 0) is made and the clock C is reset to 0. A
transition from (1, 0) back to (0, 0) corresponds to a regret transition, i.e. the
cancellation of the propagation of the input inside the delay element. During
the stay of the automaton in state (1, 0), the value of C grows uniformly. If
the latter crosses the lower bound li, the output xi can change to 1 and the
automaton can go to state (1, 1). But, the automaton may stay in (1, 0) as long
as the value of C has not reached the upper bound ui.

y = 0∧
C < u

(0, 1)

(0, 0)

y = 1∧
C < u

(1, 0)

(1, 1)

y = 0

y = 1

y = 1 ∧ C < u

y = 0/C := 0

y = 0 ∧ C < u

y = 1/C := 0

y = 1∧
l ≤ C ≤ u

stabilize

y = 1∧
l ≤ C ≤ u

stabilize

regret

regret

excite

excite

Figure 5.3: A timed automaton model of the delay element

Concretely, all the timed automata are composed using a global time-scale
composition and a difference logic formula expressing the overall circuit behav-
ior for a given run length is generated as described in Subsection 5.1.3.
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5.3 Non-Preemptive Job-Shops

Job-shop problems are common to many kinds of optimization problems coming
from various fields such as airplane traffic planning and manufacturing optimiza-
tion. All those problems aim to find an efficient scheduling of a given number
of tasks with respect to constraints on time and resources. In this section, we
introduce an example of non-preemptive job-shop scheduling. Then, we give a
formal description of this class of problems. Finally, we explain how to write a
formula in difference logic that characterizes the feasible solutions.

5.3.1 Introductory example

A factory produces three types of products P1, P2, and P3 using 3 machines
M1, M2, and M3. Manufacturing each product requires the use of two machines
as described in Figure 5.4.

1 Hour
M2

2 Hours
M3

1 Hour 3 Hours
M3M1

2 Hours
M1

2 Hours
M2

P2

P1

P3

Figure 5.4: A sample manufacturing process

For obvious rentability reasons, it is necessary to find a scheduling of the
manufacturing process with the minimal cycle duration and the optimal use of
the machines.

In order to find such a scheduling, we introduce variables that represent the
start time of each task in a given cycle (See Figure 5.5). A task consists in the
manufacturing of a product on a machine. All cycles start at time 0.

The order of the operations gives a first set of timing constraints. In fact,
to manufacture a product P1, M2 is not used until the end of the use of M1.
These constraints produce the following inequalities:

⎧⎨
⎩

x1 + 2 ≤ x2

y1 + 1 ≤ y2

z1 + 1 ≤ z2

(5.2)

Besides, it is impossible to use the same machine at the same time for two
different products. For instance, this mutual exclusion condition forbids the
use of M1, while it is dedicated to P2, to produce P1.
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M2 (1h) M3 (2h)

M3 (3h)M1 (1h)

M1 (2h) M2 (2h)

P2

P1

P3

x1

z2z1

y1

x2

y2

Figure 5.5: Variables associated with the start time of tasks

⎧⎨
⎩

] x1, x1 + 2 [ ∩ ] y1, y1 + 1 [ = ∅ (Mutual exclusion for M1)
] x2, x2 + 2 [ ∩ ] z1, z1 + 1 [ = ∅ (Mutual exclusion for M2)
] y2, y2 + 3 [ ∩ ] z2, z2 + 2 [ = ∅ (Mutual exclusion for M3)

(5.3)

Solving (5.2) and (5.3) gives all the possible schedulings. In order to find
the optimum one, i.e. the scheduling with the least cycle duration, we have just
to introduce a variable w that represents the end of the cycle and that satisfies
:

⎧⎨
⎩

x2 + 2 ≤ w
y2 + 3 ≤ w
z2 + 2 ≤ w

(5.4)

Minimizing w subject to all the above mentioned constraints gives the op-
timal solution to the job-shop problem.

5.3.2 Expression of job-shop problems

We focus on classic job-shop problems [JM99], i.e. problems with a finite num-
ber of tasks and machines where preemption is not allowed and where the goal
is to find the minimum overall completion time.

Such job-shop problems can be expressed using timing constraints. In fact,
they have to satisfy absolute time, precedence, and mutual exclusion constraints.

Absolute time

A task has constraints on its start and/or end times. Assume a task T starting
at time x and lasting d units of time:

T starts at least at time t ⇐⇒ x ≥ t

T ends at most at time t ⇐⇒ x ≥ t − d
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Precedence

The precedence expresses the order in which two tasks are executed. Assume
two tasks T1 and T2 such that T1 starts at x1 and lasts d1 time units and T2

starts at x2.
T1 precedes T2 ⇐⇒ x1 + d1 ≤ x2

Mutual Exclusion

The mutual exclusion expresses the impossibility of sharing the same resource
by two different tasks at the same time.

Consider two tasks T1 and T2 requiring the same resource R. T1 needs R for
at most d1 time units and T2 needs R for at most d2 time units. x1 (respectively
x2) represents the start time of the use of R by T1 (respectively T2).

The mutual exclusion constraint is the following:

]x1, x1 + d1[ ∩ ]x2, x2 + d2[ = ∅

which is equivalent to:
⎧⎨
⎩

x1 + d1 ≤ x2

∨
x2 + d2 ≤ x1

⇐⇒

⎧⎨
⎩

x2 − x1 ≥ d1

∨
x1 − x2 ≥ d2

5.3.3 Translation into DL

Since the formulae for job-shop problems are conjunctions of absolute time,
precedence, and mutual exclusion constraints, they are, by construction, in
DL. In fact, they are Boolean combinations of difference constraints, with no
Boolean variables.

Since solving a DL formula gives a yes/no answer about its satisfiability, the
optimization problem is replaced by the decision problem: “Is there a scheduling
with a duration less or equal to wd?” This modification requires only adding
w ≤ wd as a conjunction to the formula expressing the job-shop.

Notice that this question is not restrictive as it allows to find the optimal so-
lution using dichotomy. The initial search range of wd can be set to [wmin, wmax]
where wmin is the maximum of all the ideal tasks durations and wmax is their
sum. An ideal task duration is the duration of a task if mutual exclusion was
not to be taken into account (no resource race).
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Chapter 6

Experimental Results

This chapter discusses the efficiency of the techniques that can be used in a
mixed SAT solver. It contains an empirical statistical study that compares the
relative contribution of the key techniques to the overall performance of the
mixed solver. This study is carried out on a set of sample problems belonging
to three distinct classes.

6.1 Study Methodology

First, we define several significant configurations of the MX-Solver. A configu-
ration consists of a set of reduction rules that the mixed solver uses. Since it is
impractical to study all the possible combinations of the solver features (there
are two versions of the solver having 7 and 6 reduction rules respectively), we
need to restrict the study to a small number of configurations, called C1, C2,
. . . , and C7.

The following table describes the seven selected typical configurations of
the solver that will be studied in the sequel. Comparison of their performance
can give information about the efficiency of the available techniques. All the
configurations use the MOM’s heuristic.

Notice that the restricted Davis-Putnam rule is not available in configu-
rations that use the MX3-Solver for the reasons already discussed in Section
4.6.

C1 C2 C3 C4 C5 C6 C7
MX-Solver

√ √ √

MX3-Solver
√ √ √ √

Unit resolution
√ √ √ √ √ √ √

Pure literals resolution
√ √ √ √ √ √

Equivalence detection
√ √

DBM updating
√ √ √ √ √ √ √

DBM Analysis
√ √ √ √ √ √

Restricted Boolean DP
√

N/A
√

N/A N/A N/A
Restricted numerical DP

√ √ √ √
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For instance, comparing C1 and C2 can give an idea about the difference
between the two versions of the solver when both are run using all the available
techniques. Likewise, comparing C2 and C6 provides information about the
efficiency of the restricted Davis-Putnam rule.

For each class of problem, an overview explains the studied problem(s) used
to generate the mixed SAT instances. Next, the latter are described in detail.
Finally, both the execution time and the maximum memory usage for solving
each instance on each configuration are reported. All the experimentations were
carried out on a standard PC powered by a 600 MHz Pentium III with 384 MB
of RAM.

6.2 Job-Shop problems

6.2.1 Overview

This section is concerned with studying the satisfiability of the decision problem
“Is there a feasible scheduling for a given job-shop whose duration is less or equal
to wd?”, where wd ∈ N.

For illustration purposes, we consider the job-shop ft06 [FT63, JM99] con-
taining 6 machines and 6 jobs and whose optimal make-span is 55. The following
table shows the results obtained when solving the decision problem applied to
the latter with C7 while varying wd. The solving times in seconds are also
listed.

wd Satisfiable? Solving time of C7
0 No 0.14
50 No 0.14
51 No 0.14
52 No 1.79
53 No 7.67
54 No 21.47
55 Yes 1.31
56 Yes 0.20
57 Yes 0.92
58 Yes 1.88
59 Yes 0.57
60 Yes 0.21
100 Yes 0.25

Figure (6.1) shows graphically the relation between the solving time and
wd. The solving time grows exponentially when wd is relatively close to the
optimal schedule. In fact, when wd is much smaller than the optimum, the
solver quickly detects a contradiction. Likewise, when wd is much larger than
the optimal schedule, a satisfying assignment is easily found.

6.2.2 Instances

In the sequel, we consider job-shop problems bigger than ft06, namely abz5
[ABZ88, JM99] and la25 [Law84, JM99], whose properties are summarized in
the following table:
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Figure 6.1: The relation between wd and solving time for ft06 using C7

Problem # Machines # Jobs Optimal Make-span
abz5 10 10 1234
la25 10 15 977

For both job-shop problems, we do some preliminary satisfiability checks
using C7 while varying wd. The solving times in seconds are listed in the
following tables and are graphically represented in Figure (6.2) and Figure
(6.3).

abz5
wd Satisfiable? Solving time of C7
0 No 4.65

950 No 4.70
975 No 4.96
980 No 261.72
990 No 1709.38
1000 No > 18001

1234 Yes > 1800
1300 Yes > 1800
1390 Yes > 1800
1395 Yes 17.20
1400 Yes 17.23
1600 Yes 10.42
1800 Yes 10.86
3000 Yes 11.75
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la25
wd Satisfiable? Solving time of C7
0 No 28.10

800 No 29.32
815 No 29.29
816 No > 1800
977 Yes > 1800
1794 Yes > 1800
1795 Yes 73.64
1800 Yes 156.37
1900 Yes 295.35
2000 Yes 88.36
5000 Yes 84.97
10000 Yes 86.69

0

5

10

15

20

25
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40

45

50

0 2000 4000 6000 8000 10000
wd

Solving
time (s)

Figure 6.2: The relation between wd and solving time for abz5 using C7

For each problem, we will focus on solving the decision problem applied to
four values of wd: Two of them are far from the optimum, and two others are
relatively close, but without requiring a long solving time. The following table
lists the studied instances and gives the number of variables and clauses found
in the translation of each instance to MX-CNF.
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Figure 6.3: The relation between wd and solving time for la25 using C7

Instance wd
Bool.
Var.

Num.
Var. Clauses Satisfiable?

abz5-200 200 1452 102 4353 No
abz5-980 980 1452 102 4353 No
abz5-1400 1400 1452 102 4353 Yes
abz5-5000 5000 1452 102 4353 Yes
la25-200 200 3302 152 9904 No
la25-800 800 3302 152 9904 No
la25-1800 1800 3302 152 9904 Yes
la25-5000 5000 3302 152 9904 Yes

6.2.3 Results

The following table contains the solving times in seconds of each instance on
each of the seven configurations:

Instance C1 C2 C3 C4 C5 C6 C7
abz5-200 6.57 4.63 6.58 6.59 4.64 4.65 4.65
abz5-980 181.44 172.99 271.72 181.10 173.18 264.35 262.1
abz5-1400 18.79 16.30 19.88 18.70 16.08 17.45 17.22
abz5-5000 13.73 11.23 15.47 13.79 11.27 12.92 12.50
la25-200 41.33 30.95 41.26 37.93 28.58 28.92 28.56
la25-800 39.13 30.09 38.82 38.88 30.11 30.15 30.00
la25-1800 131.31 118.75 180.42 130.50 118.70 167.32 158.58
la25-5000 79.21 67.32 88.89 79.21 67.07 78.38 75.16
Average 63.93 56.53 82.88 63.33 56.20 75.51 73.59
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The maximum amount of used memory in kilobytes per SAT instance and
per configuration is listed below:

Instance C1 C2 C3 C4 C5 C6 C7
abz5-200 1564 1096 1564 1564 1096 1096 1096
abz5-980 8068 6196 2696 8068 6196 2168 2168
abz5-1400 24048 19088 21548 24048 19088 17176 17176
abz5-5000 115180 92192 113364 115180 92188 90664 90664
la25-200 2056 1704 2056 2506 1704 1704 1704
la25-800 2056 1704 2056 2506 1704 1704 1704
la25-1800 333536 266140 314816 333536 266140 250172 250172
la25-5000 388128 309736 380484 388128 309736 303660 303660
Average 109329 87232 104823 109329 87231 83543 83543

As one can see, C2 and C5 behave similarly and are the fastest configura-
tions for instances derived from the job-shop decision problems. They consume
a slightly larger amount of memory than C6 and C7, and can be considered as
the best compromise to solve this kind of instances.

On the other hand, C3, C6, and C7 are the slowest configurations. They
do not use the restricted numerical Davis-Putnam rule.

6.3 Timed-Automata problems

6.3.1 Overview

This section is concerned with studying the efficiency of the solver configurations
on mixed SAT instances generated from a bounded model checking problem
involving a simple timed-automata with 4 states and 1 clock as depicted in
Figure (6.4) and verifying if all the states of the automata are reachable.

6.3.2 Instances

The instances correspond to runs of different lengths of the automata. The
following table lists the characteristics of the considered instances:

Instance
Run

Length
Bool.
Var.

Num.
Var. Clauses Satisfiable?

ta-5 5 247 19 703 Yes
ta-10 10 492 34 1408 Yes
ta-50 50 2452 154 7048 Yes
ta-100 100 4902 304 14098 Yes

6.3.3 Results

As with the job-shop problems, the following table contains the solving times
in seconds for the generated mixed SAT instances.
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Figure 6.4: A sample timed automaton

Instance C1 C2 C3 C4 C5 C6 C7
ta-5 0.65 0.11 0.13 0.09 0.07 0.06 0.06
ta-10 2.01 0.49 0.68 0.43 0.29 0.29 0.28
ta-50 176.08 17.23 23.45 16.30 12.23 11.68 16.39
ta-100 1319.42 76.85 100.09 70.78 56.35 54.85 213.38

Average 374.54 23.67 31.08 21.90 17.23 16.72 57.52

The maximum memory requirements in kilobytes for solving the generated
mixed SAT instances are listed below:

Instance C1 C2 C3 C4 C5 C6 C7
ta-5 1136 864 904 1012 780 704 704
ta-10 3976 2432 3132 3968 3044 2436 2436
ta-50 84204 40700 62192 79844 65960 48120 48120
ta-100 333024 153892 243224 296684 230708 158080 158080

Average 105585 49472 77363 95377 75123 52335 52335

The tables show that C6 is the best configuration for solving this type of
instance. It is the fastest and uses less memory than others in almost all the
cases.

Configurations using the MX-Solver have poor performance in comparison
with those based on MX3-Solver. They are slow and require more memory than
others, in particular, C1 that wastes a huge amount of time trying to detect
Boolean equivalences.

The gap between the execution time of C7 and C6 seems to grow with the
length of the solved instance. Hence, C7 takes more than 213 seconds to solve
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ta-100, i.e. four times the time used by C6 to do the job. This shows the impact
of the pure literal rule application and the DBM analysis.

6.4 Asynchronous circuits problems

6.4.1 Overview

In this section, we consider a simple 2-bit adder circuit, depicted in Figure (6.5).
Each gate is labeled with an interval [l, u] that represents the delay operator
associated with the timed gate model whose lower bound is l and upper bound
is u, i.e. each gate needs from l to u units of time to stabilize its output after
its inputs were excited.

x1

x2

y1

y2

s2

s1

c

⊕
[4, 6]

[2, 3]
∧

⊕
⊕

∨

∧

∧

∨
[3, 5]

[2, 3]

[3, 5]

[4, 6]
[4, 6]

[2, 3]

Figure 6.5: Asynchronous 2-bit adder

The studied decision problem is : “Can all the outputs of the circuit stabilize
in less than d units of time?”, where d is a positive integer. That problem is
satisfiable only when d ≥ 10, which is the maximum of the sums of the lower
bounds of all gates in all possible paths from the inputs to the outputs.
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6.4.2 Instances

The generated mixed SAT instances correspond to runs of different length of
automaton representing the circuit for two values of d. The characteristics of
each instance are listed blow:

Instance
Run

Length d
Bool.
Var.

Num.
Var. Clauses Satisfiable?

2ba-2-5 2 5 498 13 1468 No
2ba-2-15 2 15 498 13 1468 No
2ba-3-5 3 5 733 17 2176 No
2ba-3-15 3 15 733 17 2176 No
2ba-4-5 4 5 968 21 2884 No
2ba-4-15 4 15 968 21 2884 Yes

Notice that for runs of length less than 4, the outputs cannot stabilize in
less than 15 units of time.

6.4.3 Results

As before, the following table gives the execution times in seconds of the differ-
ent configurations when applied to each instance:

Instance C1 C2 C3 C4 C5 C6 C7
2ba-2-5 40.01 9.16 17.43 18.61 13.02 13.02 12.94
2ba-2-15 40.51 9.34 17.52 18.45 12.58 12.94 12.91
2ba-3-5 574.73 162.92 155.38 155.09 104.32 104.30 144.02
2ba-3-15 706.42 192.31 233.83 227.57 153.76 153.71 154.07
2ba-4-5 870.10 788.30 584.15 620.91 425.32 424.17 424.08
2ba-4-15 4.01 2.83 2.65 2.34 1.63 1.57 1.64
Average 372.63 194.14 168.49 173.82 118.43 118.28 124.94

The next table contains the maximum needed memory in kilobytes to solve
each instance:

Instance C1 C2 C3 C4 C5 C6 C7
2ba-2-5 37010 1460 1460 1028 780 780 780
2ba-2-15 37436 1460 1460 1028 780 780 780
2ba-3-5 23280 5808 6880 2628 2008 2008 2008
2ba-3-15 24532 23324 6960 3548 2684 2684 2684
2ba-4-5 149904 15448 14136 5156 3880 3880 3880
2ba-4-15 8656 7020 8492 8336 6376 6376 6376
Average 46803 9086 6564 3620 2751 2751 2751

Again, C5 and C6 are ranked the first as they have the least resolution
time and the smallest memory requirements. A similar level of performance is
achieved by C7.

Configuration C1 is dramatically slow and needs a large amount of memory.
Equivalence detection seems to contribute to its low speed, and the same applies
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to C2. Used in conjunction with Boolean Davis-Putnam, the reduction rules
result in solving contexts where it is too complicated to find good branching
variables, hence the abnormal memory consumption, directly related to the
maximal search depth.

6.5 Conclusions

The above experiments suggest the following remarks:

• Configurations that use the MX3-Solver are faster and use less memory
than those based on the MX-Solver.

• Configurations using the Boolean Davis-Putnam rule have poor perfor-
mance and interfere badly with the branching heuristics. This results in
a deep exploration of the search tree due to the accumulated bad choices
of branching variables.

• Equivalence detection does not enhance the solver in the best cases. Some
experiments even show that it becomes a real bottleneck as the solver
keeps trying to detect equivalent literals on numerous binary clauses,
which requires a bad processing time/discovered assignments ratio.

• The numerical Davis-Putnam rule seems to boost the solution process
especially when the number of numerical variables is high. Indeed, its
immediate effect is reducing the size of the solving context DBM, and
hence speeding-up its normalization, an operation whose complexity is
O(n3).

• The DBM analysis, whose efficiency is not as evident as that of the nu-
merical Davis-Putnam rule, can contribute in some cases to the reduction
of the DBM size. For instance, comparing C6 and C7 applied to timed
automata instances shows its contribution to the overall performance of
the solver.

• The efficiency of the pure literal rule is also marginal, but in some cases
it can make the difference. Anyway, in the worst situation, if it does not
enhance the solver, it does not affect its speed.

From these remarks, we can draw some conclusions about how to configure
the solver to have it give the best performance:

• Using small fixed-size clauses saves memory and significantly reduces the
solution time. Profiling the two versions of the solver showed that the
MX-Solver spends more than 20% of the time managing the dynamical
data-structures.

• Reduction rules that operate on numerical clauses and decrease the num-
ber of variables referenced in the DBM have a good impact on the solver.
Developing new rules that achieve this goal can substantially enhance the
processing times.
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• Boolean reduction rules should be simple and should not require a complex
detection phase before they can be applied. Thus, the simple pure literal
rule is more efficient that the complex Boolean Davis-Putnam rule.



96 CHAPTER 6. EXPERIMENTAL RESULTS



Chapter 7

Conclusions

7.1 Contribution

The main contribution of this thesis is the development of a mixed SAT solver
for difference logic, in order to carry out bounded model checking for timed
systems. The solver has been developed after a careful examination of the
structure of existing Boolean SAT solvers and the techniques they use. The key
features of our solver are:

1. Definition of a conjunctive normal form (CNF) for mixed clauses in which
every clause has at most one numerical difference constraint.

2. Adaptation of the DPLL procedure for solving mixed SAT problems.

3. Using difference bound matrices (DBMs) to check the consistency of sets
of unit clauses containing only numerical literals.

4. Development of new simplification rules specific to difference constraints.

5. Adaptation of conflict analysis techniques to mixed clauses.

A large part of the developed techniques have been implemented to obtain
a functioning SAT solver for difference logic. Preliminary experiments were
conducted on several benchmarks coming from several application domains, for
which translators to difference logic were implemented. The results of these
benchmark problems provide a preliminary assessment of the relative merits of
the different methods used in the solver.

7.2 Future Research Directions

Needless to say, there is a lot of room for improvement in the design and im-
plementation of the solver. We mention below some of the most promising
directions divided into two parts: the first requires more conceptual work while
the second is concerned with algorithms that were already developed in the
thesis but have not yet been implemented.

97
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7.2.1 New Algorithms and Methods

So far the solver was designed to be general-purpose, that is, to treat DL for-
mulae regardless of their origin. It may turn out that knowing the origin of
certain variables in the formulae (for example, state variables, synchroniza-
tion variables) may help in the solution strategy. Development of such tech-
niques involves theoretical and experimental analysis as well as inspiration from
other approaches such as unbounded model-checking, constraint propagation for
scheduling programs, etc.

The branching heuristics mentioned in this thesis were (mostly) simple adap-
tations of the heuristics used for Boolean SAT. More research is needed for
developing heuristics specialized for difference logic and for specific classes of
problems.

Another direction for improvements involves the trade-off between compu-
tation time and memory usage in the representation of the solving context. It
is possible to omit certain information from the context and derive it when
needed. For example, DBMs can be replaced by reduced constraint systems as
reported in [LLPY97, LLPY02].

Although in this work we restricted ourselves to simple safety properties,
the mixed SAT solver can be integrated into a more general Bounded Model
Checking environment for richer properties expressed in some real-time timed
logic.

7.2.2 The MX Toolbox

In addition to general code improvements, the following directions seem impor-
tant:

1. On the front-end, more complete and efficient translators from timed au-
tomata and other formalisms can be developed, in particular a composi-
tional translation with distinct time-scales as described in Chapter 5.

2. Next, the conversion to MX-CNF, currently based on Tseitin’s transla-
tion can be improved by implementing Wilson’s algorithm described in
Chapter 2.

3. Some more of branching heuristics described in Chapter 3 can be inte-
grated, in addition to the currently used MOM’s heuristic.

4. Finally, the MX-Solver can be extended to include conflict-directed back-
tracking along the lines of Section 4.5. This technique improves signifi-
cantly the performance of Boolean SAT solvers and we hope it can do the
same for mixed SAT solvers.



Appendix A

MX Toolbox

The MX Toolbox is the concrete realization of this thesis. It consists of a set
of software tools based on the algorithms presented in this document. In the
sequel, we describe the MX Toolbox from a technical point of view, and provide
concise instructions on how to use it.

A.1 Overview

The MX Toolbox contains a set of tools classified into three categories:

• The To DL translators are tools that transform several classes of problems
to difference logic.

• The DL to MX-CNF translator is responsible for converting DL formulae
into a set of clauses conforming to the mixed conjunctive normal form
(MX-CNF).

• The mixed solver is the cornerstone of the toolbox. It reads an MX-CNF
set of clauses and checks for its satisfiability.

The dependency between the different tools is depicted in Figure (A.1).
One of the major concerns about the design of the MX Toolbox was its ex-

pandability. Its architecture is flexible enough to allow using other translators.
This adaptability was achieved by the use of common file formats in order to
ease data exchange between tools.

A.2 To DL Translators

A To DL translator takes a file describing a problem from a given class and
expressed in its proper syntax and transforms it into a DL formula. The MX
Toolbox has three To DL translators.

A.2.1 Timed automata to DL

tg2dl generates from a file in KRONOS syntax describing a timed automaton
a difference logic formula characterizing a finite run of that automaton. It is
based on the translation described in Section 5.1. The program is invoked using:
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Figure A.1: MX Toolbox architecture
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tg2dl tg file run length dl file

Detailed information about the .tg file format can be found in [Oli94].

A.2.2 Asynchronous digital circuits to DL

adc2dl is based on an m4 script that processes a .adc file containing the de-
scription of an asynchronous digital circuit. A .acd file consists of one or more
definitions of gates with bi-bounded delays of the form:

( signal , ( gate function ), delay lower bound , delay upper bound )

where signal is the name of the output signal of the gate. gate function is a
Boolean function on the circuit signals. The delay operator is defined by the
parameters delay lower bound and delay upper bound. Successive definitions
are separated by commas.

For instance, the definition 1ba.adc of a simple 1-bit adder is:

(s,((x),xor,(y)),2,3),
(c,((x),&,(y)),2,3)

In that example, x and y are the input signals. The output signals sum s and
carry c stabilize after a delay that lasts between 2 and 3 units of time after the
excitement of their inputs.

Generating a DL formula corresponding to the asynchronous digital circuit
definition in 1ba.adc is achieved using:

adc2dl 1ba.adc 5 > 1ba-5.dl

For each step i in the generated run, the converter introduces for every
signal a Boolean variable called s_signal_i denoting the stability of the signal
in the gate output. The clock associated with the delay automaton of signal is
named X_signal_i and the Boolean value of the signal at that step is signal_i.
The time-stamp of that step is denoted by T_i.

Knowing these naming conventions, it is easy to produce a property file in
DL that can be concatenated to the formula generated from the circuit to verify
it.

For example, verifying if the 1-bit adder can stabilize in less than 4 time
units for a run of length 5 when its inputs are initially enabled consists in
concatenating the following DL formula chunk to 1ba-5.dl:

(T_0=0)
& (~x_0 & x_1 & x_2 & x_3 & x_4 & x_5)
& (~y_0 & y_1 & y_2 & y_3 & y_4 & y_5)
& (~s_x_0 & ~s_y_0)
& (s_x_5 & s_y_5)
& (T_5<=4)
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A.2.3 Job-shop to DL

jsp2dl reads a .jsp file containing the definition of a job-shop problem, as de-
scribed in Chapter 5, and outputs a DL file that characterizes the set of feasible
schedules. The program takes also a duration parameter that corresponds to
wd, the maximum length of the schedule that we try to find.

The definition of a job-shop consists in a header containing the number of
the tasks followed by the number of machines, and a matrix whose rows define
tasks. Each task is described by a succession of pairs, each of them contains a
machine index followed by its usage duration. When a usage duration is null,
the machine is not used. For example, the plant.jsp file below, corresponds
to the job-shop presented in Figure 5.4 on page 81:

3 3
1 2 2 2 3 0
1 1 3 3 2 0
2 1 3 2 1 0

In order to obtain in plant5.dl the DL formula expressing the problem “Is
there a scheduling of the job-shop described in plant.fig with a duration less
or equal to 5?”, the user should run the following command:

jsp2dl -d 5 plant.jsp > plant5.dl

A.3 DL to MX-CNF Translator

The program dl2mx converts DL files to a mixed CNF set of clauses directly
usable by the mixed solver. It starts by parsing and validating the DL formula,
builds a tree representation, and simplifies it using the following simple rules:

¬¬f → f

f ∨ true → true
f ∨ ¬true → f

f ∨ f → f
f ∨ ¬f → true

f ∧ true → f
f ∧ ¬true → ¬true

f ∧ f → f
f ∧ ¬f → ¬true

f → true → true
f → ¬true → ¬f

f → f → true
f → ¬f → ¬f
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f ⇔ true → f
f ⇔ ¬true → ¬f

f ⇔ f → true
f ⇔ ¬f → ¬true

Then, dl2mx uses Tseitin’s algorithm presented in Chapter 2 to do the
translation. During that process, additional boolean variables may be created.
To distinguish them from the original variables, their names begin with the
character #.

The translator is invoked by the command line:

dl2mx dl file mx file

A.4 The Mixed SAT Solver

mxsolver and mx3solver read a .mx file containing the mixed SAT instance to
solve. The solution process can be monitored at the will of the user. The result
is dumped at the end on the screen or is saved in a file.

The solvers support a variety of command line parameters to change and
control their behavior:

mxsolver/mx3solver [mx file] [-n rule]* [-z heuristic] [-d max depth]
[-s] [-q] [-a] [-r] [-o trace file]
[-h]

The meaning of the parameters is as follows:

• mx file: The name of the .mx input file containing the mixed SAT instance
to solve. If not specified, input is read from stdin.

• -n rule: Disable the reduction rule whose acronym is rule. By default, all
the rules are used. One or more rules can be disabled at the same time us-
ing multiple -n switches. Reduction rules abbreviations and availabilities
are listed in the following table:

Rule Abbreviation mxsolver mx3solver
Unit resolution ur

√ √

Pure literals resolution plr
√ √

Equivalence detection ed
√ √

DBM updating du
√ √

DBM Analysis da
√ √

Restricted Boolean DP bdp
√

Restricted numerical DP ndp
√ √

• -z heuristic: The branching heuristic to use. Two are currently imple-
mented, namely mom, MOM’s heuristic, and first which is the default
heuristic that selects the first free variable.
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• -d max depth: The maximum branching depth that DPLL is allowed to
reach. By default, DPLL has no limit on that parameter.

• -s: Print a summary on the solution process when it is over. This sum-
mary contains the satisfiability of the mixed SAT instance, the maximum
amount of used memory, and the execution time.

• -q: Be quiet when solving and do not print a status line.

• -a: Dump the solution trace.

• -r: Dump the assignments when the solution processes ends.

• -o trace file: The file where the solution trace should be dumped. By
default, the trace is output to stdout.

• -h: Print a help screen.

A.5 DL file format

A DL file is a text file containing a formula whose syntax is defined by the
following BNF notation:

formula ::= variable
| variable relation constant
| variable - variable relation constant
| variable - constant relation variable
| constant - variable relation variable
| not formula
| formula and formula
| formula or formula
| formula imply formula
| formula equivalent formula
| formula xor formula
| ( formula )

variable ::= alpha (alpha|digit)∗

constant ::= digit+

alpha ::= A−Z|a−z|_

digit ::= 0−9

relation ::= <
| <=
| >
| >=
| =
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not ::= ~

and ::= &

or ::= |

imply ::= ->

equivalence ::= <->

xor ::= xor

Blanks, carriage returns, and line feeds are ignored in DL files. Two variable
names have special meanings:

• true: It refers to the special boolean variable true. ~true refers to false.

• zero: It refers to the special numerical variable 0.

A.6 Credits

• tg2dl has been written by Navendu JAIN1 in 2001 based on a previous
work done by the KRONOS team at VERIMAG2.

• jsp2dl has also been written by Navendu JAIN in 2001 and modified by
Moez MAHFOUDH3 in 2002.

• adc2dl was written by Marius BOZGA4 and has been modified and ex-
tended by Moez MAHFOUDH in 2002.

• dl2mx, mxsolver, and mx3solver were developed by Moez MAHFOUDH
from 2001 to 2003.

1navendu@cse.iitd.ac.in
2kronos@imag.fr
3moez.mahfoudh@imag.fr
4marius.bozga@imag.fr
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Appendix B

SCC Decomposition
Algorithm

Strongly Connected Components or SCC decomposition algorithm operates on
a directed graph and finds subgraphs in which every vertex can reach any other
vertex by a path. It has been developed by Tarjan in 1972 [Tar72, CLR+01].

B.1 Definitions

A graph G consists of two sets:

• V is a finite and non-empty set of vertices;

• E is a set of pairs of vertices, called edges.

G is denoted by G = (V, E). We will also use V (G) and E(G) to represent
the sets of vertices and edges of a graph G.

When every pair of vertices in a graph is ordered, the graph is said to be
directed. In that case, we use 〈v1, v2〉 to represent an ordered pair or a directed
edge.

A path from vi to vj in a directed graph G is a finite sequence of directed
edges 〈vi, vi+1〉, . . . , 〈vj−1, vj〉 where every two successive edges share a vertex.

A graph is said to be connected iff ∀v1, v2 ∈ V (G),there exists a path from
v1 to v2.

A connected component is a connected subgraph of a graph.
A strongly connected component is a connected subgraph of a directed graph.
The transpose of graph G = (V, E) is GT = (V, ET ) where

ET = {〈v2, v1〉 | 〈v1, v2〉 ∈ E}
The edge 〈v1, v2〉 is said to be incident at v2.

B.2 Depth-First search

The Depth-First search algorithm applied to a graph or DFS explores the edges
that are incident at the most recently discovered vertex v and that have not
yet been explored.
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When all the edges incident at v have been explored, the search backtracks
to explore edges at a higher level in the search tree. The search stops when all
edges reachable from the source vertex have been explored.

The DFS algorithm takes a graph G(V, E) and a source vertex s as input.
To each vertex v ∈ V (G), we associate:

• d(v): The time when DFS is beginning to explore edges incident at v.

• f(v): The time when DFS finished exploring edges incident at v.

• c(v): The color of v that can be white, gray, or black.

• π(v): The predecessor of v. If π(v) = ⊥, v has no predecessor.

It starts by initializing the global variable time to 0 as well as all the pre-
decessors, and the color of each vertex is set to white. Then it explores each
white vertex.

A vertex v that is being explored has first its color set to to gray. time is
then incremented and recorded in d(v) as the exploration starting time. Each
white adjacent vertex to v is explored after setting its predecessor to v. At the
end of the exploration of v, its color is set to black while time is incremented
and recorded in f(v).

Algorithm 12 (DFS)

global time

DFS(G)
begin

time := 0

for each v ∈ V (G)
begin

π(v) := ⊥
c(v) := white

end

for each v in V (G)
if c(v) = white
then

DFS-Visit (G, v)
end

DFS-Visit(G, v)
begin

c(v) := gray
time := time + 1
d(v) := time
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for each 〈u1, u2〉 ∈ E(G)
if u1 = v and c(u2) = white
then

begin
π(u2) := v
DFS-Visit (G, u2)

end

c(v) := black
time := time + 1
f(v) := time

end

Example: Consider a directed graph made of four vertices s, x, y, and z. DFS
starts by the source vertex s and requires 8 steps to finish the exploration (see
Figure B.1). In this figure, each vertex v contains its start and finishing time
written as d(v)/f(v). �

Theorem 1 (Parenthesis theorem) In any depth-first search of a graph G,
only one of the following three conditions holds for any two vertices v1, v2 ∈
V (G):

1. [d(v1), f(v1)] ∩ [d(v2), f(v2)] = ∅;

2. [d(v1), f(v1)] � [d(v2), f(v2)] and v1 is the descendant of v2 in the depth
first tree;

3. [d(v1), f(v1)] � [d(v2), f(v2)] and v2 is the descendant of v1 in the depth
first tree;

Remark 23 We call the interval of a vertex v in a DFS the interval [d(v), f(v)].

According to the Parenthesis theorem, intervals of descendants vertices in
a DFS are nesting. Moreover, for each vertex v, its immediate descendants
intervals are disjoint and included in the interval of v.

B.3 SCC Algorithm

The SCC algorithm uses DFS in order to decompose a given directed graph G
into a set of strongly connected components. It applies DFS to G to compute
finishing time of each vertex in V (G). Next, it computes the transpose of G and
applies a special DFS on GT . In that special DFS, vertices in the main loop
are considered in the order of their decreasing finishing time f(v) as computed
in the first DFS.
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Figure B.1: Step-by-step DFS example
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Using the results from the last computed DFS, we can extract the set of
strongly connected components. According to the Parenthesis theorem, each
SCC is made of a set of vertices v1, . . . , vk such that:

∀i ∈ {2, k}, [d(vi), f(vi)] � [d(v1), f(v1)]

That property leads to a simple and efficient SCC extraction algorithm:

• The vertices in V (G) are sorted in the order of their increasing starting
time as computed by the DFS.

• That order guarantees that there exists a subdivision of the array such
that each sub-array starts by a vertex v1 and all subsequent vertices in-
tervals are fully included in the interval of v1. The array is then scanned
sequentially to subdivide it with respect to that property.

Algorithm 13 (SCC)

SCC(G)
begin

S := ∅

DFS(G)
DFS-sort-descending-f(GT )

V ′ := sort-increasing-d(V (GT ))

for i := 1 to size(V ′)
begin

W := {V ′
i }

for j := i + 1 to size(V ′)
if d(V ′

i ) < d(V ′
j ) < f(V ′

j ) < f(V ′
i )

then
W := W ∪ {V ′

j }
else

break

S := S ∪ {W}
end

return S
end

Example: To illustrate the above algorithm, we apply it on the same graph
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4/7

5/6 3/8

1/2

xz

y s

Figure B.2: SCC example: DFS(G)

G already used in the previous example. Figure (B.2) represents the result of
DFS on G.

Figure (B.3) depicts the transpose of G. It is simply obtained by reversing
the edges directions.

4/7

5/6 3/8

1/2

xz

y s

Figure B.3: SCC example: GT

Figure (B.4) shows the result of applying DFS on GT with respect to the
order of their decreasing finishing time according to the first DFS. The main
loop of that DFS is applied successively on x, y, z, and s.

Sorting the vertices in the order of their increasing start time in the last
DFS gives the array x, z, y, and s. We can deduce that the first SCC is made
of vertices x, z, and y. In fact, [d(z), f(z)] � [d(x), f(x)] and [d(y), f(y)] �

[d(x), f(x)]. The second SCC contains only the vertex s. �
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Figure B.4: SCC example: DFS(GT )
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RÉSUMÉ : Dans cette thèse, nous développons un solveur SAT mixte pour
la logique des différences (DL) pour réaliser la vérification bornée de modèles
sur des systmes temporisés.
DL est définie comme une extension de la logique propositionnelle avec des con-
traintes de différences de la forme (x−y < c). Nous présentons des algorithmes
pour convertir des formules de cette logique à la forme normale conjonctive
mixte appropriée pour la résolution. Nous examinons les solveurs SAT booléens
existants et les techniques qu’ils utilisent. Certaines sont étendues et intégrées
dans le solveur mixte avec de nouvelles méthodes développées spécifiquement
pour les contraintes de différences.
Nous nous intéressons à trois classes de systmes temporisés, nommément les
automates temporisés, les circuits asynchrones digitaux, et les job-shops, et ex-
pliquons leur expression en DL. Des problèmes issus de ces classes sont générés
pour évaluer la performance d’une implémentation expérimentale d’un solveur
SAT mixte.

MOTS-CLÉS : Satisfaction, Logique des différences, Systèmes temporisés,
Vérification formelle, Vérification bornée de modèles, Solveur.

ABSTRACT: In this thesis, we develop a mixed SAT solver for difference
logic (DL) to carry out bounded model checking for timed systems. We define
DL as an extension of propositional Boolean logic with difference constraints
of the form (x-y¡c). We present algorithms to convert formulae in this logic to
the mixed conjunctive normal form, which is appropriate for solving purposes.
We examine the architecture of existing Boolean SAT solvers and the techniques
they use. Some of them are extended and integrated in the mixed solver along
with newly developed methods specific to difference constraints.
We focus on three classes of timed systems, namely timed automata, asyn-
chronous digital circuits, and non-preemptive job-shops, and explain how they
can be expressed in DL. Problems belonging to these classes are generated to
evaluate the performance of an experimental implementation of a mixed SAT
solver.

KEYWORDS: Satisfiability, Difference logic, Timed systems, Formal verifi-
cation, Bounded model checking, Solver.
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