
THÈSE
Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : Mathématiques et Informatique
Arrêté ministérial : 25 mai 2016

Présentée par

Irini-Eleftheria Mens

Thèse dirigée par Oded Maler,

préparée au sein du Laboratoire VERIMAG
dans l’Ecole Doctorale Mathématiques, Sciences et
Technologies de l’Information, Informatique

Learning Regular Languages
over Large Alphabets

Apprentissage de langages réguliers
sur des alphabets de grandes tailles

Thèse soutenue publiquement le 10 October 2017,
devant le jury composé de :

Monsieur Oded Maler
DIRECTEUR DE RECHERCHE, CNRS DÉLÉGATION ALPES, Directeur de
thèse
Madame Dana Angluin
PROFESSEURE, UNIVERSITÉ YALE A NEW HAVEN - USA, Rapporteur
Monsieur Peter Habermehl
MAÎTRE DE CONFÉRENCES, UNIVERSITÉ PARIS 7, Rapporteur
Monsieur Eric Gaussier
PROFESSEUR, UNIVERSITÉ GRENOBLE ALPES, Président
Monsieur Frits W. Vaandrager
PROFESSEUR, UNIV. RADBOUD DE NIMEGUE - PAYS-BAS, Examinateur
Monsieur Laurent Fribourg
DIRECTEUR DE RECHERCHE, CNRS DÉLÉGATION PARIS-VILLEJUIF,
Examinateur

Abstract

Learning regular languages is a branch of machine learning, a domain which
has proved useful in many areas, including artificial intelligence, neural networks,
data mining, verification, etc. In addition, interest in languages defined over large
and infinite alphabets has increased in recent years. Although many theories and
properties generalize well from the finite case, learning such languages is not an
easy task. As the existing methods for learning regular languages depend on the
size of the alphabet, a straightforward generalization in this context is not possible.

In this thesis, we present a generic algorithmic scheme that can be used for
learning languages defined over large or infinite alphabets, such as bounded subsets
of N or R or Boolean vectors of high dimensions. We restrict ourselves to the class
of languages accepted by deterministic symbolic automata that use predicates to
label transitions, forming a finite partition of the alphabet for every state.

Our learning algorithm, an adaptation of Angluin’s L∗, combines standard au-
tomaton learning by state characterization, with the learning of the static predicates
that define the alphabet partitions. We use the online learning scheme, where two
types of queries provide the necessary information about the target language. The
first type, membership queries, answer whether a given word belongs or not to the
target. The second, equivalence queries, check whether a conjectured automaton
accepts the target language and provide a counter-example otherwise.

We study language learning over large or infinite alphabets within a general
framework but our aim is to provide solutions for particular concrete instances.
For this, we focus on the two main aspects of the problem. Initially, we assume
that equivalence queries always provide a counter-example which is minimal in the
length-lexicographic order when the conjecture automaton is incorrect. Then, we
drop this “strong” equivalence oracle and replace it by a more realistic assump-
tion, where equivalence is approximated by testing queries, which use sampling
on the set of words. Such queries are not guaranteed to find counter-examples and
certainly not minimal ones. In this case, we obtain the weaker notion of PAC (prob-
ably approximately correct) learnability and learn an approximation of the target
language. All proposed algorithms have been implemented and their performance,
as a function of automaton and alphabet size, has been empirically evaluated.

i

ii

Résumé

L’apprentissage de langages réguliers est une branche de l’apprentissage au-
tomatique qui s’est révélée utile dans de nombreux domaines tels que l’intelli-
gence artificielle, les réseaux de neurones, l’exploration de données, la vérification,
etc. De plus, l’intérêt dans les langages définis sur des alphabets infinis ou de
grande taille s’est accru au fil des années. Même si plusieurs propriétés et théories
se généralisent à partir du cas fini, l’apprentissage de tels langages est une tâche dif-
ficile. En effet, dans ce contexte, l’application naı̈ve des algorithmes d’apprentissage
traditionnel n’est pas possible.

Dans cette thèse, nous présentons un schéma algorithmique général pour l’ap-
prentissage de langages définis sur des alphabets infinis ou de grande taille, comme
par exemple des sous-ensembles bornés de N or R ou des vecteurs booléens de
grandes dimensions. Nous nous restreignons aux classes de langages qui sont ac-
ceptés par des automates déterministes symboliques utilisant des prédicats pour
définir les transitions, construisant ainsi une partition finie de l’alphabet pour chaque
état.

Notre algorithme d’apprentissage, qui est une adaptation du L∗ d’Angluin,
combine l’apprentissage classique d’un automate par la caractérisation de ses états,
avec l’apprentissage de prédicats statiques définissant les partitions de l’alphabet.
Nous utilisons l’apprentissage incrémental avec la propriété que deux types de
requêtes fournissent une information suffisante sur le langage cible. Les requêtes
du premier type sont les requêtes d’appartenance, qui permettent de savoir si un
mot proposé appartient ou non au langage cible. Les requêtes du second type sont
les requêtes d’équivalence, qui vérifient si un automate proposé accepte le langage
cible; dans le cas contraire, un contre-exemple est renvoyé.

Nous étudions l’apprentissage de langages définis sur des alphabets infinis ou
de grande tailles dans un cadre théorique et général, mais notre objectif est de
proposer des solutions concrètes pour un certain nombre de cas particuliers. En-
suite, nous nous intéressons aux deux principaux aspects du problème. Dans un
premier temps, nous supposerons que les requêtes d’équivalence renvoient tou-
jours un contre-exemple minimal pour un ordre de longueur-lexicographique quand
l’automate proposé est incorrect. Puis dans un second temps, nous relâchons cette
hypothèse forte d’un oracle d’équivalence, et nous la remplaçons avec une hy-

iii

pothèse plus réaliste où l’équivalence est approchée par un test sur les requêtes qui
utilisent un échantillonnage sur l’ensemble des mots. Dans ce dernier cas, ce type
de requêtes ne garantit pas l’obtention de contre-exemples, et par conséquent de
contre-exemples minimaux. Nous obtenons alors une notion plus faible d’apprent-
issage PAC (Probably Approximately Correct), permettant l’apprentissage d’une
approximation du langage cible. Tout les algorithmes ont été implémentés, et leurs
performances, en terme de construction d’automate et de taille d’alphabet, ont été
évaluées empiriquement.

iv

Contents

Abstract i

Résumé iii

Notation ix

1 Introduction 1
1.1 Synopsis . 1
1.2 Motivation . 3
1.3 Outline . 4

2 Preliminaries 7
2.1 Regular Languages and Automata 7
2.2 Sets and Partitions . 10
2.3 Learning Partitions . 15

2.3.1 Learning Binary Decision Trees 15

3 Language Identification 21
3.1 Connection with Machine Learning 21
3.2 Learning Languages . 23
3.3 The L∗ Learning Algorithm . 24

3.3.1 Observation table . 25
3.3.2 The Learning Algorithm 26

4 Symbolic Automata 33
4.1 State of the Art . 33
4.2 Definition . 34
4.3 Operations on Symbolic Automata 36

v

4.4 Alphabets and Partitions . 39
4.4.1 Interval Automata . 39
4.4.2 Automata over Partially-ordered Alphabets 41
4.4.3 Boolean Vectors . 41

5 Learning Symbolic Automata 43
5.1 Definitions . 44
5.2 Comparison to Related Work . 47
5.3 The Symbolic Learning Algorithm 49

6 Learning with a Helpful Teacher 57
6.1 Learning Languages over Ordered Alphabets 57
6.2 Learning over Partially-ordered Alphabets 63

7 Learning without a Helpful Teacher 69
7.1 Approximating the Equivalence Query 70
7.2 Learning Languages over N,R 71
7.3 Learning Languages over Bn . 76

8 Theoretical Analysis 83
8.1 Updating the Hypothesis: Counter-Examples 83
8.2 Hypothesis Error . 84

8.2.1 A Probability Distribution on Σ∗ 85
8.2.2 Computing the Relative Volumes 86

8.3 Complexity and Termination . 88
8.3.1 Using a Helpful Teacher (Minimal Counter-Examples) . . 88
8.3.2 Equivalence using Random Tests 89

9 Empirical Results 93
9.1 General Comments on the Implementation 93
9.2 On the Behavior of the Symbolic Learning Algorithm 95
9.3 Comparison with Other Algorithms 97
9.4 Learning Passwords . 102
9.5 Learning over the Booleans . 104
9.6 Comparing Boolean Vectors to Numerical Alphabets 107
9.7 Conclusions . 111

10 Conclusions and Future Work 113

Bibliography 122

vi

List of Algorithms

1 Grow Tree . 16
2 Main Learning Algorithm . 27
3 Table Closing . 28
4 Make Table Consistent . 28
5 Counter-Example Treatment: L∗ 28
6 Counter-Example Treatment: Adding Suffixes 30
7 Counter-Example Treatment: Breakpoint 30
8 Symbolic Learning Algorithm 50
9 Table Initialization . 50
10 Symbol Initialization . 51
11 Table Closing . 51
12 Make Evidence Compatible . 52
13 Counter-Example Treatment . 55
14 Counter-Example Treatment (with Helpful Teacher) - R 59
15 Counter-Example Treatment (with Helpful Teacher) - Rn 64
16 Testing Oracle . 70
17 Make Evidence Compatible (without Helpful Teacher) - R 73
18 Make Evidence Compatible (without Helpful Teacher) - Bn 77

vii

viii

Notation

General notation

N the set of natural numbers
Q the set of rational numbers
R the set of real numbers
Bn the set {0, 1}n, where n ∈ N
|A| the cardinality of a finite set A
max(A) the maximum value in a set A
min(A) the minimum value in a set A
arg maxx{f(x)} the value x which maximizes the function f
A⊕B the symmetric difference of two sets
A]B the union of pairwise disjoint sets

Notation used in this thesis

Σ concrete alphabet (finite or infinite)
Σ symbolic alphabet, a finite set of symbols
a, b, . . . symbolic letters (or symbols)
[[a]] semantics of symbol a
V(a) set of symbols with adjacent semantics to [[a]]

Abbreviations

DFA Deterministic Finite Automaton
BDT Binary Decision Tree
DNF Disjunctive Normal Form
PBNF Pseudo-Boolean Normal Form
MQ Membership Query
EQ Equivalence Query

ix

x

1

C
H

A
P

T
E

R

Introduction

1.1 Synopsis

In its most general and abstract form, the problem of machine learning can be
phrased as follows. Given a function f : X → Y and a sample S consisting of
(x, f(x)) pairs, construct a function f ′ that agrees, exactly or approximately, with
f on the sample. In many cases, where X is a large domain and Y is a small one,
the function f is viewed as a classifier, i.e., a rule that classifies objects in X into
one of the finitely many categories in Y . In other words, X is partitioned into
finitely many subsets that share some property. In the case where Y = B = {0, 1},
f is the characteristic function of a set L ⊆ X , and the sample consists of positive
(f(x) = 1) and negative (f(x) = 0) examples.

Formal languages are subsets of Σ∗, that is, the (infinite) set of all finite se-
quences (words) over an alphabet Σ. The major topic of this thesis concerns the
problem of language identification, an instance of machine learning where one
wants to infer the characteristic function of a target language L ⊆ Σ∗. More
precisely, we work within the framework of active learning, that is, the learning al-
gorithm can select, in an adaptive manner, the words for which membership in L is
queried. Our starting point is the L∗ algorithm of Angluin [Ang87], a well-known
algorithm for learning regular languages based on membership queries, which also
makes use of counter-examples provided by a helpful teacher.

The essence of automaton learning algorithms, such asL∗, is to organize the in-
formation on word membership in a two-dimensional observation table whose rows
indicate words (prefixes) that lead to states in the minimal automaton for L and its
columns represent suffixes whose acceptance status after the prefix characterizes
the states based on the Nerode right-congruence relation [Ner58]. Depending on
the learning protocol, the number of queries needed to learn a language L is poly-

1

2 CHAPTER 1. INTRODUCTION

nomial or exponential in the number of states of the minimal automaton accepting
L. It is linear in the size of the alphabet Σ [BR05].

We extend this algorithm to work in situations where the size of the alphabet
is prohibitively large or even infinite, as in the case of Bn or R, and the accepting
automaton cannot be represented traditionally by writing down all the letters that
label its transitions. We represent languages on such large alphabets using sym-
bolic automata with a modest number of transitions, each labeled by a predicate on
the input alphabet. In each state, these predicates define a partition of the alphabet
resulting in a deterministic automaton.

We adapt the automaton learning framework to this setting in a generic way,
which does not make strong assumptions on the type of the large alphabet. The idea
is to associate with each state a symbolic alphabet whose letters label the transitions
outgoing from that state. Symbolic sequences serve as access sequences to states
(rows in the observation table) in the same manner as concrete sequences do for
the L∗ algorithm. The concrete semantics of the symbolic letters are defined via
predicates that map them to sets of concrete letters.

The crucial difference from the small alphabet setting is that, rather than the
entire alphabet, only a small sample (evidence) of the presumed semantics of each
symbolic letter is tested with membership queries. As a consequence, this seman-
tics is not guaranteed to be correct and it might be that the partition boundaries are
imprecise, or even that some symbolic letter (and its corresponding transition) has
not been discovered yet.

To explain this with a concrete example, let the alphabet be [0, 10) and suppose
that at some point in time we associate two symbolic letters a and b with a state
q1. Consider their respective semantics to be [[a]] = [0, 5) and [[b]] = [5, 10) with
transitions δ(q1,a) = q2 and δ(q1, b) = q3, respectively. At some later point in
time, we may discover that some concrete letters in [4, 6) behave differently. We
introduce then a new symbol c, modify the semantics to [[a]] = [0, 4), [[c]] = [4, 6),
and [[b]] = [6, 10), and add the transition δ(q1, c) = q1. As we will see, the
process of learning over large alphabets interleaves two activities: the discovery of
new states, as in standard automaton learning, and the modification of the partition
boundaries in each state. The latter part is done for each state using sampling and
static machine learning techniques, depending on the nature of the alphabet.

Algorithm L∗, in addition to membership queries, has a helpful teacher that,
whenever the learner conjectures an automaton, either confirms it or presents a
counter-example. Such a counter-example simplifies the discovery of new states.
One version of our algorithm uses such a helpful teacher and, moreover, assumes
the counter-example to be minimal in the lexicographic order (or partial order)
induced by the domain. This assumption simplifies the modification of the partition
boundaries due to counter-examples, allowing exact learning of the partitions.

1.2. MOTIVATION 3

In another version of the algorithm, we replace this teacher by a more real-
istic equivalence checking technique that uses random sampling and membership
queries. This may or may not lead to counter-examples. We develop a method for
analyzing these (non-minimal) counter-examples and see whether they lead to a
discovery of a new state or to a modification in the alphabet partition for an exist-
ing state. In this setting, a certain convergence to the exact target language cannot
be guaranteed and for this, it is replaced by the probably approximately correct
(PAC) condition.

We consider, then, the following types of alphabets and partitions/predicates.

1. Most of the work is done for one-dimensional numerical domains, such as
bounded sub-intervals of R or N, partitioned into finitely many intervals.
To this domain we apply algorithms with and without a helpful teacher that
provides counter-examples to conjectures;

2. For the domain Bn of Boolean vectors, we consider partitions expressed us-
ing decision trees and apply a teacher-free algorithm;

3. For multi-dimensional domains, such as bounded subsets of Rn or Nn, we
use monotone partitions that generalize intervals to partially-ordered sets and
apply an algorithm that uses a helpful teacher.

1.2 Motivation

Finite automata are among the corner stones of Computer Science. From a practi-
cal point of view, they are used routinely in various domains ranging from syntactic
analysis, design of user interfaces or administrative procedures to implementation
of digital hardware and verification of software and hardware protocols. Regular
languages admit a very nice, clean and comprehensive theory where different for-
malisms such as automata, logic, regular expressions, semigroups, and grammars
are shown to be equivalent.

One weakness, however, of the classical theory of regular languages and au-
tomata is that it mainly deals with alphabets that are rather “thin” and “flat”, that
is, sets that are small and do not admit any additional structure. In many appli-
cations, however, alphabets are large and structured. In hardware verification, for
example, behaviors are sequences of states and inputs ranging over valuations of
Boolean state variables that give rise to exponentially large alphabets, treated sym-
bolically using BDDs and other logical formalisms. As another motivation, one
can consider the verification of continues or hybrid systems against specifications
written in a formalism such as signal temporal logic (STL) [MN04, MNP08]. Au-
tomata over numerical alphabets, admitting an order or partially-order relation, can
define the semantics of such requirements.

4 CHAPTER 1. INTRODUCTION

Symbolic automata [VBDM10], like the ones we use here, give a more suc-
cinct representation for languages over large finite alphabets and can also represent
languages over infinite alphabets such as N, R, or Rn. Other applications that
benefit from the succinct representation of symbolic automata and the usage of
large alphabets include, among other, natural language processing [VNG01], reg-
ular expressions in the context of static and dynamic program analysis [VDHT10],
constraint solving and symbolic analysis with SMT solvers [VBDM10] or security
analysis of string sanitizers [Vea13].

Finally, learning automata from examples provides a crisp characterization of
what a state in a dynamical system is in terms of observable input-output behav-
ior. In contrast to classical machine learning, language inference aims to build
an automaton model that will be used later for further analysis rather than sim-
ple characterization and prediction of some unobserved behavior of a future input.
State system identification and language inference admit a variety of applications
ranging from linguistics and biology to computer science. It is also widely used
in software analysis and verification. Within software analysis, it is applied more
specifically, in program analysis [WBAH08], software testing [AJU10, MN10], se-
curity testing [CSS+10], dynamic testing [RMSM09], integration testing [Sha08],
and black-box components testing [Nie03, SL07, Sha08].

1.3 Outline

The rest of the thesis is organized as follows.

Preliminaries.
Chapter 2 provides the basic definitions and notations for the theory of regular

languages and automata. Moreover, it presents different types of domain partition-
ing as well as static machine learning algorithms that can be used to learn such
partitions from given sample points.

Chapter 3 provides a summary of learning algorithms over small alphabets.
The state of the art is followed by a presentation of the L∗ algorithm and a discus-
sion on the treatment of counter-examples.

In Chapter 4 one can find a full presentation of symbolic automata in general,
accompanied with special cases of domain-specific symbolic automata.

Contributions.
Chapter 5 first provides the basic elements that are used in the symbolic learn-

ing algorithm and then presents the algorithm without making any assumptions
neither on the nature of the teacher or on the alphabet. Moreover in this chapter,
one can find a comparison to related work.

1.3. OUTLINE 5

Chapter 6 provides an adaptation of the more general symbolic algorithm pre-
sented in Chapter 5 to the case of a helpful teacher that always provides a counter-
example when there is one, and in addition, this is a minimal one in the case of
ordered alphabets. We study the cases of numerical alphabets such as N, R and Rn

[MM14, MM15].
Chapter 7 describes the symbolic algorithm in the context of a teacher who

can only answer membership queries and thus counter-examples when provided,
are not necessarily minimal. We focus on the cases of one-dimensional numeri-
cal domains and Boolean alphabets, where the partitions are inferred using static
classification learning algorithms [MM17].

Chapter 8 provides some theoretical evaluation of the algorithm in terms of
termination and the trade-off between accuracy and complexity.

Chapter 9 presents case studies that we have tested to validate the algorithms,
evaluate their performance and compare them, when possible, with concrete learn-
ing algorithms.

Conclusion.
Chapter 10 provides the conclusion and future directions.

6 CHAPTER 1. INTRODUCTION

2

C
H

A
P

T
E

R

Preliminaries

In this chapter, we provide the basic definitions and notations that are used
throughout this thesis. Section 2.1 succinctly provides the definitions and notations
concerning regular languages and finite state automata; for a full reference on the
topic, the reader may consult the books [LP97, HMU06, Sip06]. In Section 2.2,
we explain what a domain partition into classes is, and present some specific cases
that are used in the subsequent chapters. Finally in Section 2.3, we discuss some
learning methods that can be applied to identify an unknown partition.

2.1 Regular Languages and Automata

An alphabet Σ is a non-empty set whose elements are called letters. A word (or
string) is a finite sequence of letters, i.e., w = a1 . . . an, chosen from the alphabet
Σ; the number of letters in this sequence determines the length of the word, i.e.,
|w| = n. The sequence of zero length is called the empty word and it is denoted by
ε. The set of all words over an alphabet Σ is denoted by Σ∗.

Let w = a1 . . . an and u = b1 . . . bm be two words. The two words w and
u are said to be equal when they have equal length and the same letter at each
position, i.e., w = u, if and only if n = m and ai = bi for all i = 1, . . . , n. The
concatenation of two words w and u is the sequence w · u = a1 . . . anb1 . . . bm. A
word u is a prefix (resp. suffix) of w, if there exists v ∈ Σ∗ such that w = u · v
(resp. w = v · u).

Let ≤ be an order relation over Σ. This can be naturally lifted to an order
relation over Σ∗. Some of the most interesting order relations defined on the set of
words are the following.

1. The prefix order, (Σ∗,≤pr), where u ≤pr w if and only if u is a prefix of w.

2. The lexicographic order, (Σ∗,≤lex), where u ≤lex w if and only if either

7

8 CHAPTER 2. PRELIMINARIES

u ≤pr w, or u = v ·a ·v′ and w = v · b ·v′′ for some v, v′, v′′ ∈ Σ∗, a, b ∈ Σ,
where a ≤ b and a 6= b.

3. The length-lexicographic order, (Σ∗,≤ll), where u ≤ll w if and only if
either |u| < |w|, or |u| = |w| and u ≤lex w.

Note that, if (Σ,≤) defines a total order, then the orders (Σ∗,≤lex) and (Σ∗,≤ll)
are also total.

Any subset of words L chosen from Σ∗ is called a language over Σ. To each
language L we can associate a characteristic function f : Σ∗ → {+,−}1 such
that f(w) = + if the word w belongs to L and f(w) = −, otherwise. Moreover,
with every s ∈ Σ∗ we can associate a residual characteristic function defined as
fs(w) = f(s · w).

Several operations can be defined on languages. The Boolean operations in-
clude the union, intersection, complementation, and difference. The symmetric
difference is also commonly used. Formally, let L and L′ be two languages over Σ,
these operations are defined, respectively, as

L ∪ L′ = {w ∈ Σ∗ : w ∈ L or w ∈ L′}
L ∩ L′ = {w ∈ Σ∗ : w ∈ L and w ∈ L′}
L̄ = {w ∈ Σ∗ : w 6∈ L}
L \ L′ = {w ∈ Σ∗ : w ∈ L and w 6∈ L′}
L⊕ L′ = (L \ L′) ∪ (L′ \ L)

The concatenation (or product) of two languages L and L′ is the set of words that
can be formed by taking any word in L and concatenating it with any word in L′,
that is,

L · L′ = {w · w′ : w ∈ L and w′ ∈ L′}.

The power of a language L is defined as Lk+1 = Lk · L = L · Lk for all k ≥ 1

where L0 = {ε}. The star operation is the union of all the powers of a language L
and it is defined as

L∗ =
⋃
k∈N

Lk.

The left quotient (resp. right quotient) of L is the language

u−1L = {v ∈ Σ∗ : uv ∈ L} (resp. Lu−1 = {v ∈ Σ∗ : vu ∈ L}).

A language L ⊆ Σ∗ is prefix-closed (resp. suffix-closed) if and only if for all
w, u ∈ Σ∗, w · u ∈ L implies w ∈ L (resp. u ∈ L).

1The notation {1, 0} or {True, False} is also commonly used.

2.1. REGULAR LANGUAGES AND AUTOMATA 9

A language L ⊆ Σ∗ is a regular language if it can be recursively constructed
by applying the union, concatenation and star operations finitely many times. By
default, the empty language, the language {ε}, and the one letter languages {a} for
all a ∈ Σ, are regular languages. Regular languages over finite alphabets can be
represented by deterministic finite automata.

A deterministic finite automaton (DFA) over Σ is a tupleA = (Σ, Q, q0, δ, F),
where Σ is a finite alphabet, Q is a non-empty finite set of states, q0 ∈ Q is the
initial state, δ : Q×Σ→ Q is a transition function, and F ⊆ Q is a set of final (or
accepting) states.

The transition function δ can be extended to δ : Q×Σ∗ → Q, where δ(q, ε) = q

and δ(q, u · a) = δ(δ(q, u), a) for q ∈ Q, a ∈ Σ and u ∈ Σ∗. A word w ∈ Σ∗ is
accepted by A if δ(q0, w) ∈ F , otherwise w is rejected. The language recognized
(or accepted) by A, denoted by L(A), consists of the set of all accepted words.

A language L ⊆ Σ∗ is recognizable if there exists an automaton A such that
L = L(A). Let REC(Σ) denote the set of all recognizable languages over the
alphabet Σ; this set coincides with the set of regular languages.

Two automata that recognize the same language are said to be equivalent.
Among all automata that are equivalent there exists a minimal automaton, also
known as the canonical automaton, which is minimal in the number of states and
unique up to isomorphism.

Let L ⊆ Σ∗ be a language. This induces an equivalence relation∼L on Σ∗, the
Nerode equivalence relation, where

s ∼L r if and only if fs = fr (2.1)

Intuitively, two words are Nerode equivalent whenever by appending the same
string to s and r, the resulting two strings are either both in L or both not in L.
The relation ∼L is a right congruence satisfying s ∼L r → s · a ∼L r · a and
is known as the syntactic congruence associated with L. Its equivalence classes
correspond to the states of the minimal automaton that accepts L. The following
theorem is part of what is known as the Myhill-Nerode Theorem

Theorem 2.1 (Nerode [Ner58]). Let L ⊆ Σ∗ be a language, and let ∼L be an
equivalence relation as defined in (2.1). Then, L is a regular language if and only
if ∼L is of finite index.

As a result, for any regular language L ⊆ Σ∗, one can find an automaton that is
minimal using the syntactic congruence ∼L. Based on Theorem 2.1, this automa-
ton can be defined as AM = (Σ, Q, q0, δ, F), where the set of states Q is the set of
equivalence classes, i.e, Q = Σ∗/ ∼L; the initial state is the class that contains the
empty word, i.e., q0 = [ε]; the transition function is defined as δ([u], a) = [u · a]

10 CHAPTER 2. PRELIMINARIES

for all a ∈ Σ; and, the final states are all those classes that contain accepted words,
F = {[u] : u · ε ∈ L}.

According to this, for an automaton to be considered minimal, all pairs of states
in it should be distinguishable and thus not be equivalent. Two states p, q are
distinguishable if there exists a word w such that δ(p, w) ∈ F and δ(q, w) 6∈ F (or
δ(p, w) 6∈ F and δ(q, w) ∈ F).

As the minimal representation is useful in many areas, several minimization
algorithms have been proposed. One can refer to [Moo56, Brz62, Hop71] for the
most well known automaton minimization algorithms. The Nerode congruence
and the identification of minimal automata play a crucial role in most automata
learning algorithms since [Gol72]. We discuss further this topic in Chapter 3.

2.2 Sets and Partitions

Let Σ be a finite or an infinite alphabet. A representation of Σ as the finite union
of a family of pairwise disjoint subsets is called a partition of Σ into classes. This
representation plays an important role in many problems [KF70]. Such partition is
usually based on certain criteria that allow the assignment of elements from Σ to
one class or another.

Let C = {a1, · · · ,ak} be a finite set of classes (or labels). A partition of Σ

into classes can be defined as a mapping ψ : Σ → C that associates each letter in
Σ with a class in C. Such a mapping is known as a classification function, and the
tuple (Σ, ψ) is often called a labeled alphabet. The Σ-semantics of a label a ∈ C
denotes the set of elements from Σ that are associated to the same class a, i.e.,
[[a]] = {a ∈ Σ : ψ(a) = a}.

In the following, we provide some examples of such partitions. For readability,
the alphabet Σ is presented in these examples as a subset of N, R, R2 or B4, but
one should consider that Σ can be any subset of Nn, Rn and Bn, where n ∈ N.

Intervals

Let Σ be a subset of the reals that admits the usual order relation ≤. We consider
as an interval any connected segment2 of R. Let a, b ∈ R be the endpoints of an
interval, we can determine the following interval types:

– open interval: (a, b) = {x ∈ R : a < x < b},

– closed interval: [a, b] = {x ∈ R : a ≤ x ≤ b},

– closed-open interval: [a, b) = {x ∈ R : a ≤ x < b}, and

2A connected segment of R is a non-empty subset X of R such that for all a, b ∈ X and c ∈ R,
a ≤ c ≤ b implies c ∈ X .

2.2. SETS AND PARTITIONS 11

x < 4

a
4 ≤ x < 6

b

x ≥ 6

c

0 1 2 3 4 5 6 7 8 9 10

Figure 2.1: Partition of Σ = [0, 10] ⊆ R (or N) into three intervals.

– open-closed interval: (a, b] = {x ∈ R : a < x ≤ b}.

An interval is empty when b < a (or b ≤ a when the interval is not closed). By
abuse of notation, we use the interval notation also for other numerical domains
such as N, e.g., [a, b) = {x ∈ N : a ≤ x < b}. An example of a partition of Σ =

[0, 10] into intervals is shown in Figure 2.1. In this example, Σ is partitioned into
three intervals, each designated to a class from C = {a, b, c}. The classification
function is given by

ψ(x) =

a, for x ∈ [0, 4)

b, for x ∈ [4, 6)

c, for x ∈ [6, 10]

.

For a given partition of Σ, distinct classes with adjacent semantics can be consid-
ered as neighbors. Formally, a class b ∈ C is a right (resp. left) adjacent to class
a ∈ C (a 6= b), if a ∈ [[a]]∧c ∈ [[b]] (resp. a ∈ [[b]]∧c ∈ [[a]]) implies b ∈ [[a]]∪[[b]],
for any three letters a, b, c ∈ Σ such that a < b < c. The set of all right and left
adjacent classes to a ∈ Σ forms the neighborhood of a, denoted by V(a). Intu-
itively, the neighborhood of a consists of all those classes b ∈ C \ {a} with which
a shares the same boundaries in their semantics. Referring to the example of Fig-
ure 2.1, class b is a right adjacent to a and a left adjacent to c, but a and c are
not adjacent. The neighborhoods of a and b are V(a) = {b} and V(b) = {a, c},
respectively.

Monotone Partitions

Let Σ be a partially-ordered alphabet of the form Σ = Xn, where X is a totally-
ordered set such as an interval [0, k) ⊆ R. Letters of Σ are n-tuples of the form
x = (x1, . . . , xn) with minimal element 0 = (0, . . . , 0). The usual partial order
on this set is defined as x ≤ y if and only if xi ≤ yi for all i = 1, . . . , n. When
x ≤ y and xi < yi for some i, the inequality is strict, denoted by x < y, and we
say then that x dominates y. Two elements are incomparable, denoted by x||y, if
xi < yi and xj > yj for some i and j.

For partially-ordered sets, a natural extension of the partition of an ordered set
into intervals is a monotone partition, where for each partition block P there are

12 CHAPTER 2. PRELIMINARIES

x

0

y > x

B+(x)

y < x y||x

y||x

(a)

x1

x2

xl

. . .

. . .

. . .

0

B+(x1, . . . ,xl)

(b)

x1

x2

x3

x4

y1

y2

y3

y40

a1

a2

a3

(c)

Figure 2.2: (a) Backward and forward cone for x, (b) union of cones, (c) an alphabet
partition into three classes C = {a1,a2,a3}.

no three points such that x < y < z, x, z ∈ P , and y 6∈ P . We will see in the
following that a monotone partition with a finite number of partition blocks can be
represented by a finite set of points.

A forward coneB+(x) ⊆ Σ is the set of all points dominated by a point x ∈ Σ,
see Figure 2.2a. For a set of points F = {x1, . . . ,xl}, this cone can be extended
to B+(F) = B+(x1) ∪ . . . ∪ B+(xl), as shown in Figure 2.2b. When x1, . . . ,xl
are mutually incomparable, they constitute the set of minimal elements of F .

From a family of sets of points F = {F0, . . . , Fm−1}, which satisfies F0 =

{0} and for every i: 1) ∀y ∈ Fi, ∃x ∈ Fi−1 such that x < y, and 2) ∀y ∈
Fi, ∀x ∈ Fi−1, y 6< x; one can define a monotone partition of the form P =

{P1, . . . , Pm−1}, where Pi = B+(Fi−1)−B+(Fi).
An example of such a partition appears in Figure 2.2c. The partition is defined

by the family of sets of incomparable points F = {F0, F1, F2}, where F0 = {0},
F1 = {x1, . . . , x4}, and F2 = {y1, . . . , y4}. The classification function can be
given by ψ(x) = ai for all x ∈ Pi.

The extension of the notions of adjacent classes and neighbors to the case of
partially-ordered sets is straightforward. Hence in the example, the label a1 is a
left adjacent to a2, but is not an adjacent to a3, and for the labels a1 and a2 the
neighborhoods are V(a1) = {a2} and V(a2) = {a1,a3}, respectively.

Partitions of the Boolean Cube

Let Σ = Bn be the n-dimension Boolean hyper-cube, where letters are boolean
vectors and can be accessed by the Boolean variables X = {x1, . . . , xn}. A literal
is either a Boolean variable x, or its negation x̄. A sub-cube (or term) of Bn is a
conjunction of literals. We denote a sub-cube by φk =

∏
i∈Ak xi ·

∏
j∈Bk x̄j where

Ak, Bk are disjoint sets of indices from {1, . . . , n}.
A possible way to partition a Boolean cube into classes is to partition it into

sub-cubes, not necessarily of equal size, and associate each sub-cube with a class.

2.2. SETS AND PARTITIONS 13

A classification function for the Boolean cube is thus a pseudo-boolean function3

ψ : Bn → C. Such a function can be represented in several ways; we either
use a pseudo-boolean normal form or a binary decision tree to represent it, but in
the case where the number of variables n is small, we often use a Karnaugh map
representation as it offers a better visualization of the partition.

A pseudo-boolean normal form (PBNF), an analogous of a disjunctive normal
form (DNF) for Boolean functions, is defined as:

ψ =
m∑
k=1

ak(
∏
i∈Ak

xi)(
∏
j∈Bk

x̄j) =
m∑
k=1

ak · φk (2.2)

where the coefficients a1, . . . ,am are labels from C and Ak, Bk are sets of indices
such that i) Ak, Bk ⊆ {1, . . . , n}, ii) Ak ∩ Bk = ∅, iii) Ak ∪ Bk 6= ∅, and iv)
(Ak ∩Bl) ∪ (Al ∩Bk) 6= ∅ for k, l = 1, 2, . . . ,m, k 6= l.

Each one of the four conditions is required for the function ψ to be well defined
and to form a partition of Σ. More precisely, we letAk∪Bk 6= ∅ to avert redundant
terms in ψ; the function

∑
k(
∏
i∈Ak xi)(

∏
j∈Bk x̄j) is a DNF only whenAk∩Bk =

∅; and moreover, it is orthogonal when no two terms intersect, i.e., (Ak ∩ Bl) ∪
(Al ∩ Bk) 6= ∅ for k 6= l. Orthogonality guarantees that ψ partitions Σ. The set
of all letters a ∈ Σ that model φk form the Σ-semantics of the class labeled by ak,
i.e., [[ak]] = [[φk]] = {a ∈ Σ : φk(a)}.

A binary decision tree (BDT) (or classification tree) takes a letter as an input
and, based on its attributes, assigns it to a class. A BDT is a tree T which at each
node either tests some variable of the given input, or provides a class label. A BDT
can hence be seen as a binary tree4 T equipped with a mapping d : Pos(T) →
X] C, where Pos(T) is the set of nodes in the tree, X is the set of attributes,
and C is the set of classes. Let leaves(T) denote the set of all leaf nodes in T .
A mapping d interprets a BDT if and only if d(t) ∈ C when t ∈ leaves(T), and
d(t) ∈ X otherwise.

To assign a class to a letter a ∈ Σ, one needs to follow a path in T . This path
is a sequence of nodes, which starts at the root of the tree and traverses it until
reaching a leaf node. Formally, a path in T as a sequence pathT (a) : t0, . . . , tm,
such that t0 = ε, tj ∈ {tj−10, tj−11} for all j = 1, . . . ,m, and tm ∈ leaves(T).
The path is computed as follows: start at the root; when at inner node tj , which is
mapped to the variable xi, make a test on a; proceed to the left child node tj0 if
xi = 0, proceed to the right child node tj1, otherwise; repeat until reaching a leaf

3A pseudo-boolean function is the analogous of a Boolean function, with the difference that the
range of the function is any set other than B.

4 A binary tree T is a prefix closed set of positions Pos(T) ⊆ {0, 1}∗ with ε representing its
root, such that (i) for every inner node t ∈ Pos(T), nodes t0 and t1 are the left and right child nodes,
respectively, and (ii) a node t is a leaf node when t0 6∈ Pos(T) and t1 6∈ Pos(T).

14 CHAPTER 2. PRELIMINARIES

x1
x2 x3

x4

(a)

a1

a2

a3

x̄3

x̄1x3

x1x3

(b)

00

01

11

10

00 01 11 10

a1

a2

a3

x
1
x
2

x3x4

(c)

x3

a1

0

x1

a2

0

a3

1

1

(d)

ψ(a) =

a1, if x̄3

a2, if x̄1 · x3

a3, if x1 · x3

(e)

Figure 2.3: The (a) hypercube of four dimensions B4, and (b) a partition of it into three
sub-cubes {x̄3, x̄1x3, x1x3}, each one assigned to one class from C = {a1,a2,a3}. A
representation of the classification function can be given as (c) a Karnaugh map, (d) a
BDT, or (e) a pseudo-boolean function.

node. For each letter a ∈ Σ, there exists a unique path in T . We use T (a) to denote
the label of the leaf node reached by pathT (a).

Each node t ∈ Pos(T) is naturally associated with a sub-cube [[t]] of Σ, which
consists of all letters a ∈ Σ whose path in T contains the node t. Consequently,
for every BDT T there exists an equivalent PBNF ψ that represents the same clas-
sification function. To find this PBNF, we work as follows. Let φt denote the cube
associated to node t. This can be defined recursively as φε = 1 and φt·a = φt · xκi ,
where xi is the variable carried by node t and xκ denotes x and x̄ when κ = 1 and
κ = 0, respectively. Let T a BDT, we define its equivalent PBNF as

ψ =
∑

t∈leaves(T)

d(t) · φt

where d(t) is the label associated to the leaf node t. To emphasize the relation
between a PBNF ψ and its equivalent BDT we denote the latter by Tψ.

A Karnaugh map is a classical representation of Boolean functions that offers
a better visualization of functions involving a small number of variables (up to 5
or 6). A Karnaugh map is given in a matrix structure, where rows and columns
are indexed by the values of some variables, and each cell contains the value of
the function in the corresponding Boolean vector. For instance, in Figure 2.3c,
rows and columns are indexed by the values of the pairs of variables (x1, x2) and

2.3. LEARNING PARTITIONS 15

(x3, x4), respectively, and the cell in the second row and third column of the map
contains the value (label) a2 since ψ(0111) = a2.

Example 2.2. Let the alphabet be the Boolean cube Σ = B4, see Figure 2.3a.
A possible partition of this cube into three classes C = {a1,a2,a3} is shown in
Figure 2.3b. This partition can be equivalently represented by either the BDT in
Figure 2.3d, or the Karnaugh map in Figure 2.3c, or the PBNF ψ = a1 · x̄3 +

a2 · x̄1 · x3 + a3 · x1 · x3. Using the classification tree representation, the letter
a = (0, 0, 1, 0) follows the path pathT (a) = ε, 1, 10 in the tree, and thus it is
assigned to the class a2, i.e., ψ(a) = a2. �

2.3 Learning Partitions

In the previous section, we have defined classification functions and have shown
how a domain, an alphabet Σ, can be partitioned into classes. Moreover, we have
presented various classification functions ψ : Σ → C, where C denotes a set of
classes, typically finite and small.

However, a typical problem is to find such a representation, a classification
function, when only a small set of classified elements from Σ is given. This
problem is commonly encountered in machine learning and belongs in the con-
text of predictive or supervised learning. To formalize the problem, let S =

{(a1, y1), . . . , (ar, yr)} ⊆ Σ × C be a labeled sample. We assume the existence
of an underlying classification function ψ, which is unknown outside S, such that
yi = ψ(ai) for all i = 1, . . . , r. Our aim is to find a function ψ′ which approx-
imates well ψ on the labeled data from S, and, moreover, it generalizes well to
make predictions on novel unseen inputs from Σ.

Depending on the set of labels C, the problem is known as classification or
pattern recognition when C is finite, or as regression when C is the set of reals. In
this thesis, we restrict ourselves to a finite number of classes, and in this section,
we describe classification learning techniques that are commonly used to learn the
partitions on Boolean cubes presented in Section 2.2.

2.3.1 Learning Binary Decision Trees

Let S be a labeled sample from an unknown classification function ψ. In this
section, we discuss the problem of learning a BDT to represent ψ that is compatible
with the given sample S. As many such trees can be found, we prefer an optimal
tree. Optimality usually refers to the tree size, such as its depth; the node purity,
like the number of mismatching points in the sample; or other criteria such as

16 CHAPTER 2. PRELIMINARIES

Ockham’s razor. Since finding a globally optimal tree is NP-hard [BFSO84], a
greedy splitting algorithm is commonly used to build the tree.

A greedy splitting algorithm works roughly as follows. It starts with a tree
that consists of a single root node; all sample points are associated with this node.
A node is said to be pure if all its sample points have the same label. For each
impure node, two descendants are created and the sample is split among them
based on the value of some selected variable xi. The variable is chosen according
to some purity measure, such as information gain, that characterizes the quality of
the split based on each variable. The selection is greedy and does not depend on
the optimality of following splits. The algorithm terminates when the tree becomes
sample compatible and sends each sample point to a pure leaf node.

In the following, we describe more formally this learning algorithm. First,
we present the case where the labeled sample is assumed to be given in advance.
This algorithmic scheme is used by the most popular implementations for learning
BDTs such as CART [BFSO84], ID3 [Qui86] and C4.5 [Qui93]. Then, we discuss
the problem of learning a BDT when the sample is not completely provided before
hand, but is updated during the learning process by adding new sample points.
Popular incremental algorithms of this kind are, among others, the ID4 [SF86],
ID5 [E88], and ID5R [Utg89] algorithms.

Using a Fixed Labeled Sample

Let S = {(a1, y1), . . . , (ar, yr)} be a labeled sample, where yi = ψ(ai) and
ψ : Σ→ C is an unknown classification function. We want to learn a BDT T such
that T ' Tψ. Each node t ∈ Pos(T) associates to a set S|t = {(x, y) ∈ S : t ∈
path(x)} that consists of all sample points reaching node t. Note that S|ε = S for
any labeled sample S ⊆ Σ × C. A node t ∈ leaves(T) is said to be consistent
with S whenever T (x) = y for all (x, y) ∈ S|t. A BDT is consistent with a labeled
sample S if all its leaf nodes are consistent with S. A node t ∈ Pos(T) is pure
when all points in S|t carry the same label, i.e., |{y : (x, y) ∈ S|t}| = 1.

Algorithm 1 Grow Tree

1: initialize (T, d), such that Pos(T) = {ε} and d(ε) = label(S)

2: while ∃ t ∈ leaves(T) such that t is not pure do
3: Let xi = best attribute(S|t, X)

4: Pos(T) = Pos(T) ∪ {t0, t1}
5: d(t) = xi; d(t0) = label(S|t0); d(t1) = label(S|t1)

6: end while

The greedy splitting algorithm is shown in Algorithm 1. The algorithm uses a
quality measure to do splitting; the most common quality measures are presented

2.3. LEARNING PARTITIONS 17

in detail below. We denote by label(S) the most common label encountered in a
sample S, that is, label(S) = arg maxc∈C |{(x, y) ∈ S : y = c}|; we let label(S)

be equal to a random label from C when S is empty. The best attribute(S,X)

denotes the Boolean variable that performs the best split of a sample S into two
subsets. The algorithm performs as follows. After being initialized to a one node
tree, the BDT T is extended by splitting its leaf nodes until it becomes consistent
with the sample. Whenever a leaf node t in T is not pure it becomes an inner node
and two child leaf nodes t0 and t1 are added to Pos(T) (line 4). The inner node t
updates and maps to the attribute xi ∈ X that performs the best split according to
the chosen quality measure (line 3); note that this variable does not appear so far
in the path reaching the node t. The two new leaf nodes map to the most common
label encountered in the sub-sample associated to them (line 5).

Splitting Quality Measures

To measure the spitting quality of an attribute and decide whether a split is better
than another, we need to compare the gain achieved when splitting the sample S
using each attribute. We compare on the gain on the node impurity and for this we
use impurity measures. Other measures, as for instance on the size of the tree, are
not considered here. As a further reference, one can consult [BFSO84, Mur12].

The set ∆k ⊆ Rk, known as the standard k-simplex, is the set of all real tuples
(t1, · · · , tk) ∈ ∆k such that

∑k
i=1 ti = 1 and ti ≥ 0 for all i. A function I :

∆k → R is an impurity measure if i) it is symmetric with regard to its arguments,
ii) it has minima at the vertices of ∆k, and iii) it has one maximum at (1

k , . . . ,
1
k).

One can measure the impurity of a labeled sample S, with labels chosen from
C = {c1, · · · , ck}, by letting

I(S) = I(p1, . . . , pk) and pi =
|{(x, y) ∈ S : y = ci}|

|S|
.

The impurity measures, most widely used in learning BDT, are the misclassifica-
tion rate, the entropy measure, and the Gini index. These are defined on a tuple
(p1, . . . , pk) as:

Misclassification rate: Ierror(p1, . . . , pk) = 1−maxi pi

Entropy measure: H(p1, . . . , pk) = −
∑k

i=1 pi log2 pi

Gini index: IG(p1, . . . , pk) = 1−
∑k

i=1 p
2
i

Now we can measure the impurity gain when S is split using a specific attribute,
and see whether a split is better than another. Let xi ∈ X be an attribute that splits
S into two sub-samples Sxi=0 and Sxi=1, each containing the sample points that
satisfy xi = 0 and xi = 1, respectively. The impurity gain achieved by splitting

18 CHAPTER 2. PRELIMINARIES

0001

1100 0111

1110

1011

x1
x2 x3

x4

(a)

00

01

11

10

00 01 11 10

r

r

b

g

gx
1
x
2

x3x4

(b)

x3

r

0

x1

b

0

g

1

1

0001, 1100

1011, 11100111

(c)

Figure 2.4: The hypercube and Karnaugh map of B4 with the sample points indicated by
their labels red (r), green (g), and blue (b). On the right is the BDT learned from S using
Algorithm 1.

using attribute xi is given by

GainI(S, xi) = I(S)−
∑
j=0,1

|Sxi=j |
|S|

· I(Sxi=j),

where I is the impurity measure used. Let us demonstrate the learning algorithm
with a simple example.

Example 2.3. Let the alphabet Σ be the Boolean hypercube B4 and let C =

{r, g, b} be the set of labels, which correspond to the color names red (r), green
(g), and blue (b), respectively. We use the learning algorithm described above to
build a BDT. We let the labeled sample be S = {(0001, r), (0111, b), (1011, g),

(1100, r), (1110, g)}. Figure 2.4a shows a 4-dimensional cube whose vertices de-
note the Boolean vectors and the sample points are denoted by label colors. The
Karnaugh map in Figure 2.4b provides a more intuitive representation. As a split
quality measure we use information gain (entropy measure). All the calculations
needed for this example are shown in Table 2.1.

First, we initialize the BDT to (T, d) such that Pos(T) = {ε} and d(ε) =

label(S) = r. The node ε is not pure, i.e., H(S|ε) > 0. For this reason, the
root node needs to be split. Comparing all possible splits, we find that the maxi-
mum information gain is achieved by splitting over x3. Hence, the tree updates to
Pos(T) = {ε, 0, 1}, d(ε) = x3, d(0) = label(S|0) = r, and d(1) = label(S|1) =

g. The leaf node t = 0 is pure, i.e., has entropy 0, and does not need to split further.
The leaf node t = 1, on the other hand, is not pure. The best split is given for x1,
and the tree updates to Pos(T) = {ε, 0, 1, 00, 01}, d(1) = x1, d(00) = b, and
d(01) = g. Now, all leaf nodes are pure and the algorithm terminates. The final
tree can be seen in Figure 2.4c. �

2.3. LEARNING PARTITIONS 19

S (r, g, b) H(S) GainH(S, x1) GainH(S, x2) GainH(S, x3) GainH(S, x4)

S|ε (2, 2, 1) 1.52193 0.570951 0.170951 0.970951 0.170951

S|0 (2, 0, 0) 0 - - - -
S|1 (0, 2, 1) 0.918296 0.918296 0.251629 0 0.251629

S|00 (0, 0, 1) 0 - - - -
S|01 (0, 2, 0) 0 - - - -

Table 2.1: Information gain for all samples and sub-samples of Example 2.3

Incremental Learning Algorithm

In this section, we change the setting of the learning problem and let the labeled
sample be a stream of sample points received during the learning process. That is,
the tree is learned and made compatible with the current sample when another new
sample point arrives. The new observation incorporates to the sample and the tree
updates according to the new information that is now available.

Formally, let Si = {(a1, y1), . . . , (ai, yi)} denote the sample that consists of
i sample points, and let (T i, di) be a BDT tree compatible to Si. When a new
observation (ai+1, yi+1) arrives, we want to update T i according to this new in-
formation. Several algorithms have been proposed in the literature to handle this
problem. In the following, we explain some of these algorithms and discuss on
their efficiency and complexity results.

One naive algorithm, which also appears in [SF86] for comparison purposes,
uses Algorithm 1 as an incremental algorithm. Whenever a new observation or a
set of new observations arrives, this is added to the sample. Then, the Algorithm 1
is called and outputs a new tree which is constructed from scratch based on the
updated sample.

It is observed that a large part of the tree need not change at all, making the
previous method unnecessarily costly. In [SF86], the authors propose an incre-
mental algorithm where only a sub-tree needs to be rebuilt. The existing tree T i

is revised based on the new sample point (ai+1, yi+1), which traverses the nodes
of the tree starting from the root. The quality measures are updated including the
new sample point. If for a node t ∈ Pos(T i) the selected attribute is not the best
anymore, then the sub-tree rooted at t is deleted and rebuilt. The sub-tree with root
t is reconstructed using Algorithm 1 on the sample Si|t ∪ {(a

i+1, yi+1)}.
To avoid preserving the whole set of sample points that have been seen so far,

the ID4 algorithm [SF86] uses a series of tables, located at each node, that carry all
information needed to calculate the quality measures when revising the tree.

Finally, another algorithm that is proposed is the ID5 algorithm [E88], which
is followed by two improved versions, the ID5R [Utg89] and ITI [UBC97] algo-
rithms. These algorithms use an alternative revising mechanism. That is, whenever

20 CHAPTER 2. PRELIMINARIES

a sub-tree of T i is found such that the splitting attribute at its root is not the best
split, then this is only restructured instead of reconstructed as in ID4. To restruc-
ture the sub-tree, the algorithm uses a pull-up method in a way that all attributes at
the nodes are the same.

A worst-case analysis and comparison of these incremental algorithms can be
found in [Utg89]. It is shown that the ID4 algorithm cannot incrementally learn the
parity function when the sample is given in a certain order, because it has always
to update the whole tree. The cost of calculating the gain function and choosing
the best attribute is significantly lower in the case of ID5R.

In this section, we restricted our discussion to algorithms where a) the order in
which sample points arrive does not impact the final result, and b) the final BDT,
which is constructed incrementally, is the same as if the tree is built using the non-
incremental algorithm discussed in Section 2.3.1.

In the literature, one can find many extensions and variations of the algorithms
discussed above that handle the same or slightly different settings of the learning
BDT problem. For instance, when the sample is noisy or incomplete, most algo-
rithms include a pruning phase after the tree has been fully constructed in order
to avoid overfitting of the data [BFSO84, Qui93]. During this phase the stopping
criteria are relaxed and some branches of the tree are pruned back whenever they
do not add any significant gain to the final tree.

3

C
H

A
P

T
E

R

Language Identification

This chapter introduces in more detail the problem of learning formal lan-
guages, that is a subset of Σ∗, also known as language identification. We start,
in Section 3.1, by connecting language identification to the more general machine
learning context. Then, in Section 3.2, we provide the state of the art in the field
and explain the notions of identification in the limit and query learning. The pre-
sentation of the active learning algorithm L∗ is given in Sections 3.3, and it is
followed by a description of some well-known variations. A full reference on the
topics presented in this chapter can be found in [Ang87, BR05, DlH10].

3.1 Connection with Machine Learning

Machine learning has gained popularity in the last decade with a variety of appli-
cations being associated with the field. Recognizing patterns after having observed
a relatively small amount of data is the main task of almost all machine learning
techniques.

A general and abstract description of a problem in this context is the following.
Let f : Σ → C be a function, where Σ is a set of objects and C is a set of labels.
Given a labeled sample S that consists of pairs (a, f(a)) ∈ Σ × C, construct a
function f ′ that exactly or approximately agrees with f on S, and behaves well on
unseen data. Depending on whether the labels are taken from a finite or infinite set
C, the problem is known as classification or regression problem, respectively.

Machine learning problems, in the setting described above, are called super-
vised. In an unsupervised setting, the values of C are not provided, and the objects
from S are grouped, clustered and classified, according to similarity measures.

Another important factor in learning problems is whether the learning is done
online or offline. In online learning, the sample S gets updated during the learning

21

22 CHAPTER 3. LANGUAGE IDENTIFICATION

process and the classification or regression function can be updated to accommo-
date the new information that arrives. On the other hand, in offline problems the
learning process starts after all sample data is given.

The learning algorithm can have an active role in the process by choosing the
sample points that are believed to provide more information. In such a case the
algorithm is called active. The algorithm is called passive otherwise.

Even though the primary goal of machine learning is to learn a model (or func-
tion) and then use it for prediction, a conjectured model can be useful also in other
contexts. For instance, data may come from a system that needs to be analyzed or
checked for correctness. Such a system might be a complex program or a cyber-
physical system with multiple components and embedded sub-systems. Often, a
formal model of such a system is not available or particular components of the
system are not accessible. As a result, the system can be viewed as a black box,
or sometimes a gray box, where learning is used to identify the underlying formal
model.

One main characteristic that differentiates learning models as system represen-
tations from conventional machine learning problems is that typically the inputs are
sequences of events in contrast to the static objects that are more commonly used
in machine learning. Typically, instances stand for behaviors of some dynamical
system, a continuous one or an automaton.

Formally, the problem of learning an unknown system or model from obser-
vations is known as inductive or model inference or, more generally, system iden-
tification. To characterize the type of the inductive inference problem, one needs
to define three main aspects of the problem. First, the type of model that is to be
learned; second, the way the observations are given; and third, the rules used to
measure success. For instance, data may be given in an on-line fashion or in a
batch; data may contain observations that are labeled or not; the underlying model
is assumed to be of a certain type.

When the target model is assumed to be a language, the problem of induc-
tive inference is called language identification. In this case, the learned model is
usually a grammar or an automaton. Language identification can be found in the
literature under the names of grammatical inference, grammar induction, automata
learning, or automata inference. Language identification is concerned with learn-
ing language representations from information, which can be text, examples and
counter-examples, or anything that can provide an insight into the elements of the
languages being acquired.

Although, the terms induction and inference are interchangeably used, their
meaning is not identical [DlH10]. In particular, when one has data and tries to
find a representation that better explains them, e.g., a grammar or an automaton,
the term induction is used; the derived model is basically used for prediction. On

3.2. LEARNING LANGUAGES 23

the other hand, the term inference refers to problems where we assume that there
exists an underlying target language, from which the data emerge, and one tries to
discover it; the learning process, which is being examined and measured, is more
important in this case.

Language identification is considered a sub-field that lies at the intersection of
many fields such as: artificial intelligence, algorithmic learning theory, machine
learning, statistics, formal languages and automata theory.

3.2 Learning Languages

The problem of learning finite state systems was first suggested by Moore [Moo56],
who described the situation where you find a black box with buttons and lights and
try to infer the internal structure (identification) and solve other problems based
on pushing the buttons and observing the lights. One of the first positive results
on automata was given by Gold in the context of inductive inference, in an on-
line and passive setting, where one observes a sequence of classified words and at
each point in time maintains an automaton compatible with the sample seen so far.
He showed that an algorithm based on the enumeration of all finite automata, will
identify regular languages in the limit [Gol67, OG92]. This means that given any
presentation of any language in the class the learner will produce only a finite num-
ber of wrong representations, and therefore converge on the correct representation
in a finite number of steps, without however necessarily being able to announce
its correctness since a counter-example to that representation could appear as an
element arbitrarily long after.

Most algorithms for learning automata from examples, starting with the sem-
inal work of Gold [Gol72] and culminating in the well-known L∗ algorithm of
Angluin [Ang87], are based on the concept of Nerode right-congruence relation
[Ner58], which declares two input histories as equivalent if they lead to the same
future continuations. In passive learning problems, given a sample of labeled ex-
amples, learning the smallest deterministic finite state automaton representation
of the target regular language is NP-complete [Gol78]. Additionally, it cannot be
approximated within any polynomial [PW93].

We are interested in active learning algorithms where the learner can interact
with the teacher and select the words in the membership queries. The L∗ algorithm
[Ang87], on which this thesis is based, is one such algorithm. It overcomes the
negative complexity results by introducing a minimally-adequate teacher, who can
answer also equivalence queries that either confirm a conjectured automaton or
provide a counter-example. In this setting, regular languages have been shown to
be learnable using a polynomial number of queries.

24 CHAPTER 3. LANGUAGE IDENTIFICATION

Learner

learning
algorithm

start q0

q4

3, 4

q6

2

q3

0, 1

0 1, 2, 3, 4

q2
q5

0, 1, 2, 3, 4

3, 4

2

0, 1

0, 1, 2, 3, 4

1

q1
0, 2, 3, 4

2, 3, 4 0

1

hypothesis H

Teacher

L ⊆ Σ∗

MQ(·)

w
?
∈ L

+/−

EQ(·)
L(H)

?
= L

cex

H
True

Figure 3.1: The Teacher-Learner model consists of a learner (the learning algorithm) and
a teacher. The teacher can answer two types of queries about the target language, member-
ship queries (MQ), and equivalence queries (EQ). The learner asks MQ’s until being able
to construct a hypothesis H . Then, the validity of an hypothesis is checked by an EQ. If
H is correct the algorithm terminates returning H , otherwise, a counter-example (cex) is
returned and the learner improves the hypothesis.

3.3 The L∗ Learning Algorithm

Represented by the learner, the learning algorithm is designed to infer an unknown
regular language L, the target language. The learner aims to construct a determin-
istic finite state automaton that recognizes the target language by gathering infor-
mation from a teacher. The teacher, who knows the target language, can provide
information about it by answering queries.

The algorithmic scheme used in L∗, is shown in Figure 3.1. The learner starts
by asking membership queries, i.e., whether a word belongs to the target language
or not. All information provided is suitably gathered in a table structure, the obser-
vation table. When the information is sufficient, the learner constructs a hypothesis
automaton and poses an equivalence query to the teacher. If the answer is positive,
i.e., the hypothesis suggested by the learner is the right one, the algorithm termi-
nates and returns the conjectured automaton. Otherwise, the teacher responds to
the equivalence query with a counter-example, a word misclassified by the conjec-
tured automaton. Then, the learner incorporates the information provided by the
counter-example into the table and repeats the procedure until a correct hypothesis
is constructed.

3.3. THE L∗ LEARNING ALGORITHM 25

3.3.1 Observation table

An active learner organizes all information about the target language in a table
structure, called the observation table. To construct a deterministic automaton,
the learner needs to determine a set of states, with a subset of those determined
as accepting, and a transition function. Hence, the observation table consists of
three main parts: a set of candidate states and transitions, that is, a set of prefixes
S∪R ⊆ Σ∗ that label the rows of the table; a set of distinguishing suffixesE ⊆ Σ∗

that label the columns of the table and help to distinguish between states; and, the
main body of the table, which consists of the classification of sequences whose
membership is known. The rows in the table induce a Nerode right-congruence
which is used to construct the hypothesis automaton.

The elements of S admit a tree structure isomorphic to a spanning tree of the
transition graph, rooted in the initial state. Each s ∈ S corresponds to a state q of
the automaton for which s is an access sequence, that is, one of the shortest words
that lead from the initial state to q. The elements of R hold information about the
back- and cross-edges in the automaton.

Formally, let Σ be a finite alphabet. A prefix-closed set S]R ⊂ Σ∗ is a finite
balanced Σ-tree if for all letters a ∈ Σ: 1) for every s ∈ S, s · a ∈ S ∪ R, and 2)
for every r ∈ R, r · a 6∈ S ∪ R. Elements of R are called boundary elements (or
leaves).

Definition 3.1 (Observation Table). An observation table is a tuple T = (Σ, S,R,

E, f) such that Σ is a finite alphabet; S]R is a finite balanced Σ-tree, withR being
its boundary; E is a suffix-closed subset of Σ∗; and f : (S ∪ R) · E → {−,+} is
a classification function.

Let L ⊆ Σ∗ be the target language. The classification function f of the table is a
restriction of the characteristic function of L. The setM = (S∪R) ·E consists the
sample associated to the table. For all s · e ∈ M , the element f(s · e) is placed in
the (s, e) position of the table. We say that a table has no holes when membership
is known for all words in M .

With every prefix s ∈ S ∪ R, we associate the residual fs : E → {−,+},
defined as fs(e) = f(s · e), which characterizes the row of the observation table
labeled by s. Two sequences s and r are considered as Nerode equivalent with
respect to L, i.e, s ∼L r, if fs = fr. Based on this right congruence relation,
the learner can build an automaton from the table which, moreover, is minimal.
However, the table should satisfy certain conditions.

Definition 3.2. An observation table T = (Σ, S,R,E, f) is:

– closed if for every r ∈ R, there exists an s ∈ S, such that fr = fs;

26 CHAPTER 3. LANGUAGE IDENTIFICATION

– reduced if for every s, s′ ∈ S, fs 6= fs′ ;

– consistent if for every s, s′ ∈ S, fs = fs′ implies fs·a = fs′·a,∀a ∈ Σ.

Theorem 3.3. From a closed and reduced table, one can construct a finite deter-
ministic automaton that is compatible with the sample.

Proof. Let T = (Σ, S,R,E, f) be a closed and reduced observation table. For a
closed and reduced table we let g : R→ S be a function that maps every r ∈ R to
the unique s ∈ S such that fs = fr.

We can define the automaton AT = (Σ, Q, q0, δ, F) such that Q = S, q0 = ε,
F = {s ∈ S : fs(ε) = +} and

δ(s, a) =

{
s · a, when s · a ∈ S
g(s · a), when s · a ∈ R

�

Note that a reduced table is trivially consistent. Moreover, every consistent non
reduced table has a reduced form.

To explain this better, a table is not reduced when there exist s1 and s2 ∈ S such
that fs1 = fs2 . To reduce the table, we select one out of the two prefixes, preferably
the longest one, and move it from S to R. This step may repeat several times until
the table becomes reduced and S consists of rows that distinct. Note that, after
converting a non reduced table to a reduced one, the set R is not necessarily equal
to S · Σ, and it may contain redundant elements.

To construct a finite deterministic automaton of a closed and consistent ob-
servation table that is compatible with the sample, we let the set of states of the
automaton, which is a subset of S, to be the set of all the prefixes s ∈ S with
distinguishable residuals fs. The transition function is constructed similarly as for
a reduced table.

3.3.2 The Learning Algorithm

The learning algorithm, shown in Algorithm 2, proceeds as follows. The learner
initializes the table to T = (Σ, S,R,E, f) such that S = E = {ε} and R = Σ.
The table is then filled in, i.e., the classification f is determined for all words in the
sample M that are missing, by asking membership queries to the teacher.

The learner attempts to keep the table closed and consistent at all times. The
table T is not closed when there exists a prefix r ∈ R such that fr is different from
fs for all s ∈ S. To close the table, the learner moves r from R to S and adds to R
the Σ-successors of r, i.e., all words r · a for a ∈ Σ, see Procedure 3. The table T

3.3. THE L∗ LEARNING ALGORITHM 27

Algorithm 2 Main Learning Algorithm

1: learned = false

2: Let T = (Σ, S,R,E, f) such that S = E = {ε} and R = Σ . initialize table
3: Ask MQ’s to fill in T
4: repeat
5: while T is not closed or not consistent do
6: CLOSE

7: CONSISTENT

8: end while
9: Construct AT

10: if EQ(AT) then . check hypothesis
11: learned = true

12: else . a counter-example w is provided
13: COUNTEREX(AT , w) . process counter-example
14: end if
15: until learned
16: return AT

is inconsistent when there exist s1, s2 ∈ S, e ∈ E, and a ∈ Σ such that fs1 = fs2
but fs1(a · e) 6= fs2(a · e). To fix the inconsistency, the string a · e is added to E as
a new distinguishing experiment, see Procedure 4. In both cases the extended table
is filled in by asking membership queries.

When the observation table T = (Σ, S,R,E, f) becomes both closed and con-
sistent, following Theorem 3.3, the learner makes a hypothesis automaton AT =

(Σ, Q, ε, δ, F), where Q ⊆ S is the set of states, F ⊆ Q is the set of final states,
and δ is the transition function. The set of states consists of all elements s ∈ S

with distinct residual, i.e., s, s′ ∈ Q if and only if fs 6= fs′ , and moreover, for all
s ∈ S there exists s′ ∈ Q such that fs = fs′ . When the table is reduced, then
Q = S. A state s ∈ Q is final when fs(ε) = +. The transition function is defined
as δ(s, a) = s′ such that fs′ = fs·a, for all s ∈ Q and a ∈ Σ.

When a counter-example is presented, the learner incorporates this into the
sample and tries to construct another hypothesis. Variants of theL∗ algorithm differ
in the way they treat counter-examples. Subsequently, we present how a counter-
example is treated in the algorithm L∗, followed by two variations, proposed in
[MP95] and [RS93], respectively.

In any case, the table is extended and new states are added to the hypothesis.
The learner asks new membership queries to fill in the table, closes the table and
makes it consistent when needed, before making the new conjecture. This repeats
until the teacher responds positively to an equivalence query.

28 CHAPTER 3. LANGUAGE IDENTIFICATION

Procedure 3 Table Closing

1: procedure CLOSE

2: Given r ∈ R such that ∀s ∈ S, fr 6= fs
3: S = S ∪ {r}
4: R = (R− {r}) ∪ r · Σ
5: Ask MQ’s to fill in T
6: end procedure

Procedure 4 Make Table Consistent

1: procedure CONSISTENT

2: Given s, s′ ∈ S, a ∈ Σ and e ∈ E such that
3: fs = fs′ and fs·a(e) 6= fs′·a(e)

4: E = E ∪ {a · e}
5: Ask MQ’s to fill in T
6: end procedure

Counter-Example Treatment

The classic L∗ algorithm. The original algorithm [Ang87] adds all the prefixes
of a counter-example w to S, see Procedure 5. Then all continuations of the new
prefixes are added to R, such that S · Σ ⊆ S ∪ R holds. The learner fills in the
table by asking membership queries. The counter-example treatment creates an
inconsistency or renders the table non closed.

Notice that this treatment of the counter-example adds many redundant rows to
the table and only a subset of S forms the set of states in the conjectured automaton.

Procedure 5 Counter-Example Treatment: L∗

1: procedure COUNTEREX

2: let w ∈ Σ∗ be a counter-example
3: for u ∈ Σ∗ such that w = u · v, v ∈ Σ∗ do
4: S = S ∪ {u} . add w and all its prefixes to S
5: R = R ∪ u · Σ
6: end for
7: Ask MQ’s to fill in T
8: end procedure

Adding Suffixes. This version is proposed in [MP95] and was initially used for
learning ω-regular languages. The learner adds all the suffixes of a counter-example

3.3. THE L∗ LEARNING ALGORITHM 29

w to E, see Procedure 6. Then the learner fills in the table.
The advantage of this approach is that the table always remains reduced and

thus consistent, with S corresponding exactly to the set of states. A disadvantage,
however, is the possible introduction of redundant columns that do not contribute
to further discrimination between states.

Breakpoint. Another variation of the counter-example treatment in this algorithm
is due to [RS93] and is referred in [BR05] as the reduced algorithm. In this vari-
ation, the counter-example is first processed by the so-called breakpoint method,
and then only the suffixes necessary to detect a new state are added to E.

The breakpoint method, see Procedure 7, searches for a cut point in the counter-
example, the breakpoint. This provides a factorization of the counter-example
whose suffix detects a new state. Formally, let w = a1 · · · a|w| be a counter-
example to a hypothesis AT associated with a table T . An i-factorization of w is
w = ui·ai·vi such that ui = a1 · · · ai−1 and vi = ai+1 · · · a|w|. Let si = δ(ε, ui·ai)
be the state of AT (element of S in table T) reached after reading ui · ai and let s0

be the initial state.

Proposition 3.4 (Breakpoints [RS93]). If w is a counter-example toAT then there
is an i-factorization of w such that f(si−1 · ai · vi) 6= f(si · vi).

In other words, adding vi to E distinguishes si−1 · ai from si, makes the table not
closed and leads to the identification of si−1 · ai as a new state. The breakpoint
method iterates over i values between 1 and |w| to find new states and experiments
that distinguish them from old states. Note that a counter-example may admit more
than one breakpoint.

We let i take values in a monotonically decreasing order. The reason for doing
this is to favor the detection of smaller distinguishing strings that are added as
suffixes to the table. The iteration in an increasing order can be used as well,
making the breakpoint method more effective when we need to add prefixes to the
table. Alternatively, we can proceed by choosing the values i in a binary search
manner and be sure to find a breakpoint in logarithmic time, or in an exponential
search manner when of favor to short suffixes. These different iteration methods
are experimentally tested in [IS14].

Example 3.5. We illustrate the behavior of the L∗ algorithm while learning the
target language L = a · Σ∗ over Σ = {a, b}. We use +w to indicate a counter-
example w ∈ L rejected by the conjectured automaton, and −w otherwise.

Initially, the observation table is T0 = (Σ, S,R,E, f) with S = E = {ε} and
R = Σ. We ask membership queries for all words in (S ∪ R) · E = {ε, a, b} to
obtain table T0, shown in Figure 3.2. The table is not closed so we move a to S,
add its continuations, a · a and a · b to R, and ask membership queries to obtain the

30 CHAPTER 3. LANGUAGE IDENTIFICATION

Procedure 6 Counter-Example Treatment: Adding Suffixes

1: procedure COUNTEREX

2: let w ∈ Σ∗ be a counter-example
3: for each v ∈ Σ∗ such that w = u · v, u ∈ Σ∗ do
4: E = E ∪ {v} . add w and all its suffixes to E
5: end for
6: Ask MQ’s to fill in T
7: end procedure

Procedure 7 Counter-Example Treatment: Breakpoint

1: procedure COUNTEREX

2: let w ∈ Σ∗ be a counter-example
3: for i = |w|, . . . , 1 do
4: let ui · ai · vi be the i-factorization of w
5: if f(si−1 · ai · vi) 6= f(si · vi) then
6: E = E ∪ {vi}
7: break
8: end if
9: end for

10: Ask MQ’s to fill in T
11: end procedure

T0

ε

ε −
a +
b −

T1

ε

ε −
a +

b −
a · a +
a · b +

T2

ε

ε −
a +
b −

b · a −
a · a +
a · b +
b · b −

b · a · a −
b · a · b −

T3

ε a

ε − +
a + +
b − −

b · a − −
a · a + +
a · b + +
b · b − −

b · a · a − −
b · a · b − −

Figure 3.2: Observation tables of Example 3.5 when learning a · Σ∗ using the counter-
example treatment method that is used in the classic L∗ algorithm.

3.3. THE L∗ LEARNING ALGORITHM 31

A1 A3

q0 q1
a

b a, b

q0

q1

q2

a

b

a, b

a, b

Figure 3.3: Hypothesis automata of Example 3.5 when learning a · Σ∗.

closed table T1. From T1 we construct the hypothesis automaton A1 of Figure 3.3.
In response to the equivalence query for A1, counter-example −b · a is presented.

First, let us use the classical counter-example treatment used by the L∗ algo-
rithm. In this case, the learner adds all prefixes of the counter-example b · a to the
set of prefixes, that is, it adds the prefixes b and ba to S. All successors are added
to R, resulting in table T2 of Figure 3.2. This table is not consistent since the two
elements ε and b in S are considered equivalent but their a-successors a and b·a are
not. Adding a to E and asking membership queries yields a closed and consistent
table T3. The derived automaton A3 is the desired automaton that recognizes the
target language L and the algorithm terminates.

In the following, we will use the same example, but we will apply another
method for treating the counter-example−b ·a. We have chosen an example where
the hypotheses remain the same, but this is frequently not the case. We focus here
on the different observation tables T2 and T3 that are produced for each method.

Let us use the suffixes method for treating−b ·a, we add all suffixes, i.e., a and
b · a, to E. The resulting table is thus Tm2 , see Figure 3.4. We recall here, that with
this method the learner need not check for consistency, as the table is always kept
consistent. After closing the table Tm2 updates Tm3 . The hypothesis associated to
this table is A3, shown in Figure 3.3. The algorithm terminates as A3 is correct.

Finally, we analyze the counter-example −b · a using the breakpoint method.
This results in finding one distinguishing string that is enough to be added to the
table and to distinguish some states. The i-factorization for i = 1 yields such a
suffix, since f(b · a) 6= f(ε · a), as Procedure 7 indicates. As a result, the suffix
v1 = a is added to E and the new table is T b2 is shown in Figure 3.5. After
making it closed, the table updates to T b3 and the hypothesis A3, see Figure 3.3, is
conjectured. The algorithm terminates with this hypothesis being correct.

32 CHAPTER 3. LANGUAGE IDENTIFICATION

Tm2

ε a b · a
ε − + −
a + + +

b − − −
a · a + + +
a · b + + +

Tm3

ε a b · a
ε − + −
a + + +
b − − −

a · a + + +
a · b + + +
b · a − − −
b · b − − −

Figure 3.4: Observation tables of Example 3.5 when learning a · Σ∗ using the counter-
example treatment of the suffixes method.

T b2

ε a

ε − +
a + +

b − −
a · a + +
a · b + +

T b3

ε a

ε − +
a + +
b − −

a · a + +
a · b + +
b · a − −
b · b − −

Figure 3.5: Observation tables of Example 3.5 while learning a ·Σ∗ and using the counter-
example treatment of the breakpoint method.

4

C
H

A
P

T
E

R

Symbolic Automata

4.1 State of the Art

In recent years, interest in languages defined over large and infinite alphabets has
increased both for theoretical and practical consideration [Seg06]. When regular
languages are defined over a large or infinite domain it is impractical or unfea-
sible to use standard finite automata to represent them. Several authors consider
automata models that use infinite alphabets, namely, finite memory automata, also
known as register automata, [KF94, NSV04]; pebble automata [NSV04]; data
automata [BMS+06]; and variable automata [GKS10]. These are finite state au-
tomata that use a finite memory, e.g., registers, pebbles, or variables, to handle the
infinite nature of the alphabet.

Other automata models over infinite alphabets are finite state automata, where
transitions are labeled by predicates applicable to the alphabet in question. Hence,
transitions are associated with formulas representing sets of letters rather than in-
dividual letters resulting in automata with finitely many transitions and thus with a
finite representation. No memory is used and predicates are evaluated only on the
current input. The idea of such automata was mentioned already in [Wat96]. How-
ever, it was formally introduced and studied later, in [VNG01], under the name of
predicate-augmented finite state recognizers. In a similar flavor, lattice automata
[LGJ07] use elements of an atomic lattice to label transitions rather than general
predicates. Interval automata, which are automata where a move is realized when-
ever the input letter belongs to a predefined interval, can be viewed as a special
case of both lattice automata and predicate-augmented finite state recognizers. Au-
tomata with predicates were further studied in [VDHT10, Vea13], under the name
symbolic automata and predicates are chosen from a Boolean Algebra. Finally,
one can find a special variant of symbolic automata in [HJJ+95, BKR96, YBCI08],

33

34 CHAPTER 4. SYMBOLIC AUTOMATA

where transition relations are represented as Multi-terminal Binary Decision Dia-
grams.

Hereafter, we use the automata, as defined in [VNG01, Vea13], and refer to
them as symbolic automata. The input, which comes from a concrete alphabet that
may be large or infinite, is treated in a symbolic way. Transitions are labeled by
symbols taken from a finite symbolic alphabet. Each symbol stands for a pred-
icate and represents a non-empty set of concrete letters. Symbolic automata are
shown to be closed under union, complement, concatenation, and star operations
[VNG01, YBCI08]. Using the product construction one can show that they are
also closed under intersection and difference [VNG01, VBDM10, HV11]. More-
over, symbolic automata are determinizable, they can be made complete, and ε-
transitions can be eliminated [VNG01, VDHT10]. Minimization algorithms are
adapted to the symbolic setting and studied in detail in [DV14]. Equivalence check-
ing is decidable and counter-examples can be found in the case where two symbolic
automata are not equivalent [VHL+12, DV14].

Their succinct representation makes symbolic automata suitable for language
representation not only when the input alphabet is infinite, but also when the al-
phabet is finite but large, e.g., the Unicode alphabet UTF-16. The smaller size
of the automaton allows faster implementation of various operations [VNG01].
The necessity of introducing and studying symbolic automata derives from sev-
eral applications which have their roots in quite diverse areas such as natural lan-
guage processing [VNG01]; support for regular expressions in the context of static
and dynamic program analysis [VDHT10]; constraint solving and symbolic anal-
ysis with SMT solvers [VBDM10]; support for some specific regular expressions,
e.g., LIKE-patterns, used in the context of symbolic analysis of database queries
[VGDHT09, VTDH10]; and security analysis of string sanitizers [Vea13].

In this chapter, we first introduce symbolic automata (Section 4.2) and then
discuss their closure properties and canonical form (Section 4.3). We end the chap-
ter with some examples of symbolic automata defined over specific domains, such
as numerical alphabets, e.g., N,R, or sets of vectors, e.g., Bn.

4.2 Definition

Let Σ be a large, possibly infinite, alphabet, to which we will refer from now on as
the concrete alphabet. A symbolic automaton over Σ is a finite automaton where
each state has a small number of outgoing transitions labeled by symbolic letters
(or symbols) taken from a finite alphabet Σ; we call this the symbolic alphabet.
Symbols represent subsets of Σ, which may differ from state to state.

Formally, let Σ be a disjoint union of finite symbolic alphabets of the form
Σq, each associated with a state q of the automaton. We choose a state-depended

4.2. DEFINITION 35

alphabet as being more intuitive and efficient for the purposes of the current thesis.
Nevertheless, for language-theoretic studies, one may find that a globally defined
symbolic alphabet, where the alphabet is the same for all states, is a more suitable
option. A state local alphabet can be easily transformed into a global one; the
procedure is presented in detail at the end of this section.

Concrete letters are mapped to symbols through a family of mappings ψ de-
composable into state-specific mappings ψq : Σ → Σq, where q is a state in the
automaton. The Σ-semantics of a symbolic letter a ∈ Σ denotes the subset of
concrete letters from Σ that take the transition labeled by a in the automaton. This
can be seen as a mapping [[·]] : Σ→ 2Σ defined as [[a]] = {a ∈ Σ : ψq(a) = a} for
any symbol a ∈ Σq. We often omit ψ and ψq from the notation and use [[a]] when
ψ, which is always present, is clear from the context.

The Σ-semantics is extended to symbolic words of the formw = a1 · · ·a|w| ∈
Σ∗ as the concatenation of the concrete one-letter languages associated with the
respective symbolic letters or, recursively speaking, by letting [[ε]] = {ε} and [[w ·
a]] = [[w]] · [[a]] for w ∈ Σ∗, a ∈ Σ.

The symbolic automaton is deterministic when the family ψ consists of func-
tions; and, it is complete when the mappings in ψ are total. Moreover, if the func-
tions in ψ are surjective, there are no redundant symbols in Σ, i.e., symbols whose
semantics is empty. As a result, a total surjective function ψq, where q is a state
in the symbolic automaton, implies that the set of Σ-semantics of all symbols in
Σq, {[[a]] : a ∈ Σq}, forms a partition of Σ. This should hold for all states in the
automaton for it to be complete and deterministic. Formally,

Definition 4.1 (Symbolic Automaton). A deterministic symbolic automaton is a
tuple A = (Σ,Σ, ψ,Q, δ, q0, F), where

– Σ is the input alphabet,

– Σ is a finite alphabet, decomposable into Σ =
⊎
q∈Q Σq,

– ψ = {ψq : q ∈ Q} is a family of total surjective functions ψq : Σ→ Σq,

– Q is a finite set of states,

– q0 is the initial state,

– F is the set of accepting states, and

– δ : Q ×Σ → Q is a partial transition function decomposable into a family
of total functions of the form δq : {q} ×Σq → Q.

Let w = a1 · · · an ∈ Σ∗ be a concrete word. A run of w on A produces a path
P (w) : q0

a1−→ q1
a2−→ . . .

an−→ qn that corresponds to the symbolic path P (w) :

q0
a1−→ q1

a2−→ . . .
an−−→ qn, where qi ∈ Q, ai ∈ Σqi−1 , ai ∈ [[ai]], and δ(qi−1,ai) =

qi for all i ∈ {1, · · · , n}.

36 CHAPTER 4. SYMBOLIC AUTOMATA

Hence, a symbolic automaton A can be viewed as an alternative representation
of a concrete deterministic automaton whose concrete transition function δ : Q ×
Σ → Q is defined as δ(q, a) = δ(q, ψq(a)). That is, when at q and reading a
concrete letter a, the automaton takes the transition δ(q,a), where a is the unique
element of Σq satisfying a ∈ [[a]]. The transition function extends to words as in
the concrete case. The language recognized by the symbolic automaton, denoted
by L(A), consists of all concrete words whose run leads from q0 to a state in F .

A language L ⊆ Σ is symbolic recognizable if there exists a symbolic automa-
ton A such that L = L(A). Let us denote by SREC(Σ) the set of all symbolic
recognizable languages defined over the large alphabet Σ. One can easily verify
that when Σ is a finite alphabet, then REC(Σ) ≡ SREC(Σ). As for the classical
case, two symbolic automata are equivalent when they accept the same language.

As mentioned before, the association of a symbolic language with a symbolic
automaton is more subtle because we allow different partitions of Σ and hence
different symbolic alphabets at different states, rendering the transition function
partial with respect to Σ. When in a state q and reading a symbol a 6∈ Σq, the
transition to be taken is well defined only when [[a]] ⊆ [[a′]] for some a′ ∈ Σq. The
model can, nevertheless, be made deterministic and complete over a refinement of
the symbolic alphabet. For this, let

Σ′ =
∏
q∈Q

Σq, with the Σ-semantics [[(a1, . . . ,an)]] = [[a1]] ∩ . . . ∩ [[an]]

and let Σ̃ = {b ∈ Σ′ : [b] 6= ∅}. An ordinary automaton Ã = (Σ̃, Q, δ̃, q0, F)

can be defined, where, by construction, for every b ∈ Σ̃ and every q ∈ Q, there
is a ∈ Σq such that [[b]] ⊆ [[a]] and hence one can define the transition function as
δ̃(q, b) = δ(q,a). This model is more comfortable for language-theoretic studies
but we stick hereafter to Definition 4.1 as it is more efficient.

4.3 Operations on Symbolic Automata

After defining and understanding symbolic automata and symbolic recognizable
languages, it is important to discuss closure properties as well as decidability of
classical problems of this class of languages. In the following, one can find that
the set of symbolic recognizable languages is closed under the Boolean and regu-
lar operations. Moreover, decidability problems such as membership, emptiness,
determinization, and equivalence do not depend on the decidability of the predi-
cate theory that is used and thus they are easily adaptable in the case of symbolic
automata [VNG01, HV11, DV14]. Finally, symbolic automata admit a canoni-
cal representation which is minimal in the number of states. This is an important

4.3. OPERATIONS ON SYMBOLIC AUTOMATA 37

property, especially when inferring symbolic recognizable languages.

Proposition 4.2 (Closure under Boolean Operations). Languages accepted by de-
terministic symbolic automata are closed under the Boolean operations.

Proof. Closure under complementation is immediate by complementing the set of
accepting states. For the intersection, we adapt the standard product construction.
Then, closure under union follows.

Let L1, L2 be two languages recognized, respectively, by the symbolic au-
tomata A1 = (Σ,Σ1, ψ1, Q1, δ1, q1

0, F
1) and A2 = (Σ,Σ2, ψ2, Q2, δ2, q2

0, F
2).

The intersection of the two languages is then recognized by the symbolic automa-
ton A = (Σ,Σ, ψ,Q, δ, q0, F), where

– Q = Q1 ×Q2, q0 = (q1
0, q

2
0), F = F 1 × F 2

– For every (q1, q2) ∈ Q

- Σ(q1,q2) = {(a1,a2) ∈ Σ1 ×Σ2 : [[a1]] ∩ [[a2]] 6= ∅}
- ψ(q1,q2)(a) = (ψ1

q1(a), ψ2
q2(a)) ∀a ∈ Σ

- δ((q1, q2), (a1,a2)) = (δ1(q1,a1), δ2(q2,a2)), ∀(a1,a2) ∈ Σ(q1,q2)

It is sufficient to observe that the corresponding implied concrete automataA1,A2

and A satisfy δ((q1, q2), a) = (δ1(q1, a), δ2(q2, a)) and the standard proof that
L(A) = L(A1) ∩ L(A2) follows. �

One can use the same construction as for the intersection, just by changing the set
of final states, to construct a symbolic automaton that recognizes the difference or
symmetric difference of two languages. Algorithms for the product and difference
constructions for symbolic automata appear in [HV11], as well as experimental
evaluation on their performance. Moreover, it is shown that symbolic recogniz-
able languages are closed under the regular operations of concatenations and star
[VNG01], following the corresponding constructions for classical finite automata.

A symbolic automaton with ε-transitions is a symbolic automaton that contains
transitions of the form δ(q, ε) = q′, where ε, which is a symbol that represents the
empty word, is not a symbol of Σq. An ε-free symbolic automaton is an automaton
that does not contain such transitions. Any symbolic automaton can be transformed
to an equivalent ε-free symbolic automaton. To eliminate ε-transitions from a sym-
bolic automaton A the ε-closure method [HMU06] is used, where transitions need
to adapt to the symbolic setting [VDHT10].

A symbolic automaton can be made complete simply by adding a sink state
qsink. Then, whenever

⋃
a∈Σq

[[a]] 6= Σ, add a new symbol asink to Σq, and let
δ(q,asink) = qsink and [[asink]] = Σ \

⋃
a∈Σq

[[a]].

38 CHAPTER 4. SYMBOLIC AUTOMATA

Determinization of symbolic automata also follows the same idea as for the
concrete case. The set of states in the deterministic automaton is a subset of 2Q.
A small but nevertheless important difference is that when we handle symbolic au-
tomata the transitions should be defined more carefully not to overlap. To explain
this, let us assume non determinism at a state q such that there are two transitions
(q,a, q1) and (q, b, q2), where a, b ∈ Σq and [[a]]∩ [[b]] 6= ∅. To make the state de-
terministic we replace the involved states by new states, and replace the transitions
by the new ones ({q},a1, {q1}), ({q},a12, {q1, q2}), and ({q},a2, {q2}), where
[[a1]] = [[a]]\ [[b]], [[a12]] = [[a]]∩ [[b]], and [[a2]] = [[b]]\ [[a]], as long as the semantics
remain non empty.

Finally, symbolic automata admit a canonical representation. For any symbolic
recognizable language, there exists a unique minimal automaton recognizing it, up
to isomorphism on the states. As in the classical case, we can define a Nerode
equivalence relation and then construct the minimal automaton.

The left quotient can be extended to a symbolic prefix u ∈ Σ∗ as follows:

u−1L = {v ∈ Σ∗ : uv ∈ L, u ∈ [[u]]}.

A Nerode equivalence relation, induced by the language L ⊆ Σ∗, can be lifted to
symbolic words as follows

u ≡L v if and only if u−1L = v−1L.

Based on the Nerode Theorem (Theorem 2.1) we build a minimal symbolic au-
tomaton A using the syntactic congruence. We define this automaton as A =

(Σ,Σ, Q, q0, δ, F), where Q is the set of left quotients of L, i.e., Q = Σ∗/ ≡L;
the initial state is the class that contains the empty word, i.e., q0 = [ε]; and final
states are all those classes that contain accepted words, i.e., F = {[u] : u · ε ∈ L}.
Defining the symbolic letters is a bit more tricky and only symbols with non-empty
semantics are allowed. Let p and q be two states from Q that correspond to the
classes [u] and [v] respectively, we define Σp as the set of letters apq whose se-
mantics is defined as [[apq]] = {a ∈ Σ : [u · a] ≡L [v]} and it is not empty. The
symbolic transition function is then given by δ(p,apq) = q. By construction, this
automaton has no redundant symbols, moreover, it is complete and deterministic.
Therefore, A is minimal [DV14].

Moreover, A is unique up to renaming of states and up to the equivalence of
the Σ-semantics of the symbols. That is, if p, q are two states in A, and p′, q′ are
two states in B, which is another minimal automaton that recognizes L, such that
p ∼ p′ and q ∼ q′, then [[apq]] = [[bp′q′]] where apq and bp′q′ are symbolic letters in
A and B, respectively.

4.4. ALPHABETS AND PARTITIONS 39

Algorithms for minimization of symbolic automata can be found in [DV14].
In this paper, the authors present an adaptation of the classical minimization algo-
rithms, such as Moore’s and Hopcroft’s algorithms, to the symbolic setting as well
as a symbolic minimization algorithm.

4.4 Alphabets and Partitions

Symbolic automata, as defined in the two previous sections, can be defined over
any type of alphabet and the predicates can be of arbitrary form. However, we
restrict ourselves to predicates that form a partition over the alphabet at each state,
and thus to deterministic symbolic automata. This section presents some examples
of symbolic automata over specific alphabet domains and partitions. Details on
sets and partitions can be found in Section 2.2

4.4.1 Interval Automata

In this section, we assume an ordered alphabet that is a finite or infinite subset of
a numerical set such as N, Q, or R. We let the Σ-semantics of each symbol form
closed-open intervals. To preserve convexity1, unions of intervals are not allowed
in the semantics. This practice is preferable due to simplicity, even though it may
cause the symbolic automaton to not be minimal with respect to the number of
transitions, as defined in Section 4.3. Assuming a small number of intervals in
each partition, the symbolic automaton can still be well defined and have a finite
symbolic alphabet. In the following, we provide some concrete examples.

Example 4.3. Let A be an interval symbolic automaton as the one shown in Fig-
ure 4.1. The symbolic transition function δ is finite and can be given as a ta-
ble. The symbolic alphabet Σ = {a0, . . . ,a7} can also be viewed as the union
of the state-depended symbolic alphabets Σq0 = {a0,a1}, Σq1 = {a2,a3},
Σq2 = {a4,a5,a6}, and Σq3 = {a7}. The concrete input alphabet of A is
Σ = [0, 100) ⊆ R. The Σ-semantics for the symbols are defined as [[a0]] = [0, 50),
[[a1]] = [50, 100), [[a2]] = [0, 30), etc., see Figure 4.2.

A similar symbolic automaton can be defined by letting the concrete input al-
phabet be a subset of the natural numbers N, that is Σ = {0, 1, . . . , 99}. This
automaton has the same structure as A and differs only in its Σ-semantics, which
should be intersected with N for all ai ∈ Σ, e.g., [[a0]] = {0, . . . , 49}, [[a1]] =

{50, . . . , 99}, [[a2]] = {0, . . . , 29}, etc.

1A subset Σ of Rn is said to be convex if it contains all the line segments connecting any pair of
its points. Every interval is, by definition, a convex set.

40 CHAPTER 4. SYMBOLIC AUTOMATA

q0

q1

q2

q3

a0

a
1

a
2

a3

a4
a5

a6

a7

(a)

δ q0 q1 q2 q3

q0 − a0 a1 −
q1 − − a3 a2

q2 a4 − a6 a5

q3 − − a7 −

(b)

Figure 4.1: A symbolic automaton A with its symbolic transition function δ.

0 20 30 50 80 100

Σq3

Σq2

Σq1

Σq0

ψ

a0 a1

a2 a3

a4 a5 a6

a7

Figure 4.2: The concrete semantics of the symbols of automaton A of Figure 4.1. The
input alphabet is Σ = [0, 100) ⊆ R.

ψq0 ψq1 ψq2 ψq3

(0, 0) (60, 0)

(0, 70)

(45, 50)

a0

a1

(0, 0) (80, 0)

(40, 15)

(30, 30)

(0, 80)

a2

a3

(0, 0) (20, 0)

(0, 30)

(70, 50)

(0, 90)

(60, 70)

(90,0)

a4

a5

a6

(0, 0)

a7

Figure 4.3: The monotone partitions over the concrete alphabet Σ = [0, 100)2 as defined
by ψq at each state q of the automaton A (Figure 4.1).

4.4. ALPHABETS AND PARTITIONS 41

4.4.2 Automata over Partially-ordered Alphabets

In this section we assume the input alphabet to be a partially-ordered set of the
form Σ = Xd, where X is a totally-ordered set such as an interval [0, k) ⊆ R. We
can define a symbolic automaton A where at each state q the function ψq forms
a monotone partition of the concrete alphabet defined as a finite union of cones,
see Section 2.2. Such a partition is of the form P = {P1, . . . , Pm−1}, where
Pi = B+(Fi−1)−B+(Fi) andF = {F0, . . . , Fm−1} is a family of sets of minimal
incomparable points in Σ. Each symbol ai ∈ Σq associates to the partition block
Pi, such that [[ai]] = Pi. We assume that partition blocks are simply-connected and
the Σ-semantics does not form unions of non-connected subsets of Σ.

Example 4.4. Let the alphabet be Σ = [0, 100)2. A symbolic automaton A with a
monotone partition at each state is shown in Figure 4.1. The semantics function ψ,
which is shown in Figure 4.3, forms at each state a monotone partition of Σ. The
partitions are defined from the following families of points:

Pq0 =
{
{(0, 0)}, {(0, 70), (45, 50), (60, 0)}

}
,

Pq1 =
{
{(0, 0)}, {(0, 80), (30, 30), (40, 15), (80, 0)}

}
,

Pq2 =
{
{(0, 0)}, {(0, 30), (20, 0)}, {(0, 90), (60, 70), (70, 50), (90, 0)}

}
, and

Pq3 =
{
{(0, 0)}

}
.

4.4.3 Boolean Vectors

Let us define a symbolic automaton A over the concrete alphabet Σ = Bn, that is,
the Boolean hyper-cube of dimension n ∈ N where letters are vectors accessed by
the Boolean variables X = {x1, . . . , xn}. We let the Σ-semantics of the symbolic
letters form sub-cubes of Σ, represented by a family of functions {ψq}q∈Q as usual.
Hence, for each state q of a symbolic automaton, the function ψq is a pseudo-
boolean function ψq : Bn → Σq. There are multiple ways to represent such a
function. We choose the representations of a binary decision tree (BDT), a pseudo-
boolean normal form (PBNF), or Karnaugh maps when the number of variables n
is small. We refer the reader to Section 2.2 for a brief description of partitions over
a Boolean Cube and its different representations.

Example 4.5. Let the symbolic automaton A have the same structure as the one
of Figure 4.1. Transitions are taken based on the same transition function but the
semantics are determined by a family ψ = {ψq}q∈Q of pseudo-boolean functions.

42 CHAPTER 4. SYMBOLIC AUTOMATA

ψq0 ψq1 ψq2 ψq3

00

01

11

10

00 01 11 10

a0

a1

x
1
x
2

x3x4

00

01

11

10

00 01 11 10

a2

a2

a3

x
1
x
2

x3x4

00

01

11

10

00 01 11 10

a4

a5a6

x
1
x
2

x3x4

00

01

11

10

00 01 11 10

a7

x
1
x
2

x3x4

Figure 4.4: The partitions over the concrete alphabet Σ = B4 as defined by ψq at each state
q of the automaton A (Figure 4.5).

The Σ-semantics, which are shown in Figure 4.4 as Karnaugh maps, are defined as

ψq0 = a0 · x̄1 + a1 · x1,

ψq1 = a2 · x̄2 + a3 · x2,

ψq2 = a4 · x1 + a5 · x̄1x3 + a6 · x̄1x̄3, and

ψq3 = a7.

The symbolic automaton A can be seen in Figure 4.5 where the symbols are re-
placed by Boolean guards.

q0

q1

q2

q3

x̄1

x1

x̄2

x2

x1
x̄1x3

x̄1x̄3

>

Figure 4.5: The symbolic automaton A of Figure 4.1 where a symbolic transition is taken
when a guard, which is a Boolean function, is satisfied.

5

C
H

A
P

T
E

R

Learning Symbolic Automata

Learning algorithms, as presented in Chapter 3, infer an automaton from a finite
set of words (the sample) for which membership is known. Over small alphabets,
the sample should include the set of the shortest words that lead to each state and,
in addition, the set of all their Σ-continuations, where Σ is the input alphabet. Over
large alphabets, these algorithms do not scale well. As an alternative, we develop a
symbolic learning algorithm over symbolic words, which are only partially backed
up by the sample. In a sense, our algorithm is a combination of automaton learning
and learning of non-temporal predicates.

In this chapter, we introduce the symbolic learning algorithm, an algorithm
for learning languages over large alphabets that can be represented by symbolic
automata models (see Chapter 4). Our algorithm can be seen as a symbolic adap-
tation of the L∗ algorithm. We assume an oracle, the teacher, that knows the target
language and can answer membership (MQ) and equivalence queries (EQ). The
learner first asks MQ’s and collects all the information in a table structure, the
symbolic observation table, and then, when the information in the symbolic ob-
servation table is sufficient, the learner constructs a hypothesis. The hypothesis
is tested by posing an EQ; whenever the teacher returns a counter-example, the
learner revises the hypothesis, it terminates otherwise.

The entries of the symbolic observation table constitute statements about the
inclusion or exclusion of a large set of concrete words in the language. To prevent
asking MQ’s concerning all concrete words, only a small subset of words is chosen,
the evidences; to avoid exponential growth of the table, only one of them, the
representative, will be used for subsequent queries.

Handling multiple evidences to determine partitions is a crucial feature in learn-
ing automata over large alphabets. Evidences of the same partition should behave
the same; if they do not, this causes evidence incompatibility. Finding and re-
solving evidence incompatibility is a major novel feature that is used in symbolic

43

44 CHAPTER 5. LEARNING SYMBOLIC AUTOMATA

learning algorithms, as presented in this chapter.
However, parts of the algorithm can be adapted to the particularities of a spe-

cific learning problem, for the algorithm to become more efficient or result in a
better hypothesis. For instance, the inferred model cannot be precise when the
equivalence query is approximated. Furthermore, the input alphabet of the target
language, or knowledge of the nature of the partitions, affects the way we learn
transitions. Specialized methods to select evidences may result in more precise
conjectures.

We are not the first to study the application of automaton learning to large
alphabets. In order to make a comparison between related work and ours meaning-
ful, we postpone it to Section 5.2, after the relevant notions have been introduced.
In Section 5.1, we give formal definitions of symbolic observation tables and their
properties, define evidences and representatives, and explain the notion of evidence
incompatibility. The main algorithm and procedures follow and are presented in a
general form in Section 5.3. The instantiation of the algorithm to specific alphabets
and equivalence checking methods are discussed separately in Chapters 6 and 7,
respectively.

5.1 Definitions

To identify states and transitions and finally conjecture a hypothesis, the learner
organizes all the examples and information that is available in a data-structure that
is called the symbolic observation table. The rows of such a table correspond to
symbolic words, which represent access sequences to the states; the columns con-
sist of concrete words that are used to distinguish the states; and the entries of the
table are instances of the symbolic characteristic function of the target language,
which are incrementally filled in after posing MQ’s to the teacher. Individual sym-
bols represent transitions and need not be the same in each state. Each symbol has
its own semantics, evidences and representatives.

Learning an automaton is like growing a spanning tree, where nodes stand for
states and edges are transitions. With the initial state placed at the root of the tree,
it is sufficient to grow the tree until all leaf nodes correspond to states that have
been already reached via another path in the tree. In the following, we present such
trees, which we call balanced trees, and relate them to the symbolic observation
tables.

The structure of a balanced tree appears in Figure 5.1b together with its cor-
responding automaton in Figure 5.1c. The underlying intuition is that elements
of S, also known as access sequences, correspond to a spanning tree of the tran-
sition graph of the automaton to be learned, while elements of the boundary R
correspond to back- and cross-edges relative to this spanning tree.

5.1. DEFINITIONS 45

T
E

ε v

S
ε − +
a1 + −
a2 + +

a1a4 − −

R
a1a3 − +
a2a5 + −

a1a4a6 + +
a1a4a7 − −

(a)

S

R

ε

a1 a2

a3 a4 a5

a6 a7

(b)

ε

a1 a2

a3

a4

a5

a6

a7

(c)

Figure 5.1: (a) A symbolic observation table, (b) its balanced symbolic Σ-tree, and (c) the
conjectured automaton.

Let Σ be a large input alphabet; let S] R be the set of access sequences,
a prefix-closed subset of Σ∗, where Σ is a symbolic alphabet such that Σ =⊎
s∈S Σs; and, let ψ = {ψs}s∈S be a family of total surjective functions of

the form ψs : Σ → Σs, that defines the semantics of the symbols. A balanced
symbolic Σ-tree is a tuple (Σ,S,R, ψ), where for every s ∈ S and a ∈ Σs,
s · a ∈ S ∪R, and for any r ∈ R and a ∈ Σ, r · a 6∈ S ∪R. Elements of R are
called boundary elements of the tree.

Definition 5.1 (Symbolic Observation Table). A symbolic observation table is a
tuple T = (Σ,Σ,S,R, ψ,E,f , µ, µ̂) such that

– Σ is an alphabet,

– (Σ,S,R, ψ) is a balanced symbolic Σ-tree,

– E ⊆ Σ∗ is a set of distinguishing words,

– f : (S ∪R)× E → {−,+} is the symbolic classification function,

– µ : Σ→ 2Σ−{∅} is the evidence function, where µ(a) ⊆ [[a]] for all a ∈ Σ,

– µ̂ : Σ→ Σ is the representative function, where µ̂(a) ∈ µ(a) for all a ∈ Σ.

The evidence and representative functions are extended to symbolic words inS∪R
as follows:

µ(ε) = {ε} µ̂(ε) = ε

µ(s · a) = µ̂(s) · µ(a) µ̂(s · a) = µ̂(s) · µ̂(a).
(5.1)

The symbolic characteristic function values are based on the representative of the
symbolic prefix rather than the set of all evidences, i.e., to fill the (s, e) entry in
the table we let f(s, e) = f(µ̂(s) · e) where f is the characteristic function of the
target language. By this, an undesirable growth in the size of the queries and size

46 CHAPTER 5. LEARNING SYMBOLIC AUTOMATA

of the table is avoided. With every s ∈ S∪R we associate a residual classification
function fs : E → {−,+} defined as fs(e) = f(s, e), e ∈ E.

The symbolic sample associated with T is the set MT = (S ∪R) · E while
the concrete sample, the set of all words whose classification is known, is MT =

µ(S∪R)·E, and coincides with the domain of f . Note that for each wordw ∈MT

there is at least one concrete w ∈ µ(w) whose membership in L is known.
Let µs =

⋃
a∈Σs

µ(a) be the set of all evidences for a state s ∈ S. Evidences
of the same symbol should behave the same and when this is not the case, that
is, when two concrete letters in the evidence of a symbol lead to different resid-
ual functions, we call this a manifestation of evidence incompatibility. Evidence
incompatibility can be characterized and measured as follows.

Definition 5.2 (Incompatibility Instance). A state s ∈ S has an incompatibility
instance at evidence a ∈ µs when fµ̂(s)·a 6= fµ̂(s·a), and ψs(a) = a; this fact is
denoted by INC(s, a), where

INC(s, a) =

{
1, if fµ̂(s)·a 6= fµ̂(s)·µ̂(ψs(a))

0, otherwise

Definition 5.3 (Incompatibility Degree). The evidence incompatibility degree as-
sociated to a state s ∈ S is the total number of incompatibility instances that the
state s has. We denote this by M(s), where M(s) = |{a ∈ µs : INC(s, a)}|.

Naturally, the evidence incompatibility of a table T is the sum of the incompat-
ibility degree over all its states s ∈ S, i.e., M(T) =

∑
s∈S M(s). Note that

the incompatibility degree is bounded by the number of states times the maximum
number of evidences per state.

Definition 5.4 (Table Properties). A table T = (Σ,Σ,S,R, ψ, E,f , µ, µ̂) is

– Closed if ∀r ∈ R, ∃s ∈ S, fr = fs,

– Reduced if ∀s, s′ ∈ S, fs 6= fs′ , and

– Evidence compatible if M(s) = 0, ∀s ∈ S.

The properties of the table, as defined above, are crucial to hold when one wants
to conjecture a target language and build a symbolic automaton compatible with
the concrete sample. A reduced table does not include any redundant prefixes and
thus restricts the set of states to be exactly S. A closed table leads to a well defined
transition function. Finally, evidences should be compatible and behave as their
representatives for the automaton to be compatible with MT .

The following result is the natural generalization of the derivation of an au-
tomaton from an observation table to the symbolic setting, see Theorem 3.3. Fig-
ure 5.1 illustrates the connection of the observation table to an automaton.

5.2. COMPARISON TO RELATED WORK 47

Theorem 5.5 (Automaton from Table). From a closed, reduced and evidence com-
patible table one can construct a deterministic symbolic automaton compatible
with the concrete sample.

Proof. Let T = (Σ,Σ,S,R, ψ, E,f , µ, µ̂) be a symbolic observation table that is
closed, reduced, and evidence compatible. We define a function g : R → S, such
that g(r) = s if and only if fr = fs. The automaton derived from the table is then
AT = (Σ,Σ, ψ,Q, δ, q0, F) where:

– Q = S, q0 = ε

– F = {s ∈ S : fs(ε) = +}

– δ : Q×Σ→ Q is defined as δ(s,a) =

{
s · a, when s · a ∈ S
g(s · a), when s · a ∈ R

By construction and like in [Ang87], AT classifies correctly via f the symbolic
sample and, due to evidence compatibility, this classification agrees with the char-
acteristic function f on the concrete sample. �

5.2 Comparison to Related Work

To start with, our work on symbolic automata should not be confused with work
dealing with register automata, a popular extension of automata to infinite alpha-
bets [KF94, BLP10, HSJC12]. These are automata augmented with additional
variables that can store in registers some input letters encountered while reading a
word. Newly-read letters can be compared with the registers but typically not with
constants in the domain. With register automata one can express, for example, the
requirement that the password at login is the same as the password at sign-up. In
the most recent work on learning register automata [CHJS16], a strong tree oracle
is used. Given a concrete prefix and a symbolic prefix, the teacher returns a special
type of a register automaton that has a tree structure. This fills in the entries of the
observation table and provides the information about the registers and guards in
the automaton. This algorithm is efficient only in the presence of shortest counter-
examples and, in addition, when applied to a theory of inequalities and extended to
use constants, these constants should be known in advance.

Our approach, which uses symbolic automata, is different. First, no auxiliary
variables are added to the automaton. The values of the input symbols influence
transitions via predicates, possibly of a restricted complexity. These predicates
involve domain constants and they partition the alphabet into finitely many classes.
For example, over the integers, a state may have transitions labeled by conditions

48 CHAPTER 5. LEARNING SYMBOLIC AUTOMATA

of the form c1 ≤ x ≤ c2, which give real (but of limited resolution) access to the
input domain. On the other hand, we insist on finite (and small) memory so that
the exact value of x cannot be registered and has no future influence beyond the
transition it has triggered. Many control systems, artificial (sequential machines
working on quantized numerical inputs) as well as natural (central nervous system,
the cell), are believed to operate in this manner.

Ideas similar to ours have been suggested and explored in a series of papers
[BJR06, HSM11, IHS13] that also adapt automaton learning and Angluin’s algo-
rithm to large alphabets and are the closest conceptually to our work. These papers
have some design decisions which are similar, for example, the usage of distinct
symbolic alphabets at every state [IHS13], the notion of evidence or the adaptation
of the breakpoint method [HSM11].

In contrast to our learning algorithm, the scheme presented in [BJR06] is al-
ways based on alphabet refinement and has the potential of generating new symbols
indefinitely. On the other hand, the algorithms in [HSM11, IHS13] result in a par-
tially defined hypothesis, where the transition function is not defined outside the
observed evidence.

The main distinguishing feature in our framework is that it is more rigorous
and comprehensive in the way it treats evidence incompatibility and the modifica-
tion of partition boundaries. We do not consider each modification as a partition
refinement, but rather try first to modify the boundaries and only add a new sym-
bol when necessary. As a result, we have the following properties, whenever we
conclude the treatment of evidence incompatibility. First, the number of symbolic
letters is never larger than the minimal number needed; and second, the mapping
of concrete letters to symbols is always sample-compatible and it is well-defined
for the whole concrete alphabet.

Recently, new results presented in [DD17] in the context of learning symbolic
automata give a more general justification for a learning scheme like ours by prov-
ing that learnability is closed under product and disjoint union.

Moreover, some similarities can also be expected between our symbolic algo-
rithm and the S∗ algorithm in [BB13]. However, this work seems to be incom-
parable to ours as they use a richer model of transducers as well as more general
predicates on inputs and outputs. Their termination result is weaker and is closely
related to the termination of the counter-example guided abstraction refinement
procedure.

To conclude, we believe that our algorithm for learning languages over large
alphabets is unique in employing all the following features:

1. It is based on a clean and general definition of the relation between the con-
crete and symbolic alphabets;

5.3. THE SYMBOLIC LEARNING ALGORITHM 49

2. It treats the modification of alphabet partitions in a rigorous way which guar-
antees that no superfluous symbols are introduced;

3. It accommodates for a teacher free setting, where counter-examples need not
be minimal, and PAC learnability can be achieved;

4. It employs an adaptation of the breakpoint method to analyze in an efficient
way the information provided by counter-examples;

5. It is modular, separating the general aspects from those that are alphabet
specific, thus providing for a relatively easy adaptation to different alphabets.

5.3 The Symbolic Learning Algorithm

In this section, we present the symbolic learning algorithm in a general and ab-
stract way that does not assume any structure on the alphabet. Moreover, the type
of equivalence checking is not specified. As one might notice, some of the pro-
cedures and methods cannot be fully specified in this general setting. The input
alphabet, the nature of the partitions, and the type of equivalence oracle are all im-
portant elements that can affect the way transitions are learned, the efficiency of
the algorithm, and sometimes, even its termination.

The main sampling-based symbolic learning algorithm, summarized in Algo-
rithm 8, alternates between two phases. In the first phase it attempts to make the
table closed (line 5) and evidence compatible (line 6) so as to construct a symbolic
automaton (line 8). In the second phase, after formulating an equivalence query
(line 9), it processes the provided counter-example (line 12), which renders the
table not closed or evidence incompatible. These phases alternate until no counter-
example is found. Note that the table, by construction, is always kept reduced. The
procedures that appear in Algorithm 8 are explained in detail hereafter.

Whenever MQ is invoked for word w, then w is added to the concrete sample
and the characteristic function f is updated such that f(w) = MQ(w).

Table Initialization (Procedure 9). The algorithm builds an initial observation
table T , with Σε = {a}, S = {ε}, R = {a}, E = {ε}. The newly introduced
symbol a is initialized with concrete semantics, evidences and a representative, via
the procedure INITSYMBOL which is invoked each time a new state is introduced.
Then membership queries are posed to update f and fill the table.

Symbol Initialization (Procedure 10). For a new symbolic letter a, we let
[[a]] = Σ and as an evidence µ(a) we take a set of k concrete letters, denoted
by sample(Σ, k). One element of the evidence, denoted by select(µ(a)), is cho-
sen as a representative and will be used to fill table entries for all rows where a
appears.

50 CHAPTER 5. LEARNING SYMBOLIC AUTOMATA

Algorithm 8 Symbolic Learning Algorithm

1: learned = false

2: INITTABLE(T)
3: repeat
4: while T is not closed or not evidence compatible do
5: CLOSE

6: EVCOMP

7: end while
8: Construct AT
9: if EQ(AT) then . check hypothesis AT

10: learned = true

11: else . a counter-example w is provided
12: COUNTEREX(AT , w) . process counter-example
13: end if
14: until learned
15: return AT

Procedure 9 Table Initialization

1: procedure INITTABLE(T)
2: Σε = {a}; S = {ε};R = {a}; E = {ε} . a is a new symbol
3: INITSYMBOL(a)
4: Ask MQ(u) for all u ∈ µ(a) ∪ {ε}
5: f(ε) = f(ε); f(a) = f(µ̂(a))

6: T = (Σ,Σ,S,R, ψ, E,f , µ, µ̂)

7: end procedure

The sample(Σ, k) or select methods can use a uniform distribution, but one
can think of evidence or representative selection as a more adaptive process that
may depend on the outcome of membership queries or other assumptions we have
made, e.g., the minimality on the counter-examples, a case explained in more de-
tail in Section 6.1, allows us to select as evidence and representative always the
minimal element of a partition.

Table Closing (Procedure 11). A table is not closed when there exists some
r ∈ R without any equivalent element s ∈ S such that fr = fs. To render the
table closed, r should be considered as a new state. To this end, r is moved from
R to S with alphabet Σr = {a}, where a is a new symbol which is initialized.
To balance the table the new word r · a is added to R, its evidence µ(r · a) and
representative µ̂(r · a) are computed following (5.1) and membership queries are

5.3. THE SYMBOLIC LEARNING ALGORITHM 51

Procedure 10 Symbol Initialization

1: procedure INITSYMBOL(a)
2: [[a]] = Σ

3: µ(a) = sample(Σ, k)

4: µ̂(a) = select(µ(a))

5: end procedure

Procedure 11 Table Closing

1: procedure CLOSE

2: Given r ∈ R such that ∀s ∈ S, fr 6= fs
3: S = S ∪ {r} . declare r a new state
4: Σr = {a} . introduce a new symbol a
5: INITSYMBOL(a)
6: R = (R− {r}) ∪ {r · a} . add new boundary element
7: Ask MQ(u) for all u ∈ µ(r · a) · E
8: fr·a = fµ̂(r·a)

9: end procedure

posed to update f and fill the table.

Fixing Evidence Incompatibility (Procedure 12). A table is not evidence com-
patible when the evidence incompatibility degree of a state s ∈ S is greater than
zero. This happens when there exist a letter a ∈ µs and a suffix e ∈ E such
that f(µ̂(s) · µ̂(ψ(a)) · e) 6= f(µ̂(s) · a · e). Evidence incompatibility can oc-
cur already at symbol initialization or as a result of adding a new evidence due
to a counter-example treatment that is described in the sequel. Some elements of
µ(a) may behave differently from the representative and this will flag an evidence
incompatibility condition to be treated subsequently.

To fix evidence incompatibility, the evidence function µ and the semantics
function ψ should be updated such that the total evidence incompatibility degree
becomes zero. This is done incrementally and for each state s separately by con-
secutive calls to EVCOMP until the total incompatibility degree of the observation
table becomes zero.

For a state s, an incompatibility instance at a indicates either that the partition
boundary is imprecise or that a transition (and its corresponding symbol) is miss-
ing. Let s ∈ S be a state; let a be an evidence of the symbol a ∈ Σs which
is incompatible, i.e., a ∈ µ(a) and INC(s, a) ≥ 1. The algorithm searches for a
symbol b ∈ Σs for which f(µ̂(s) · µ̂(b) ·e) = f(µ̂(s) ·a ·e). In the favorable case,
where such a symbol b exists and belongs to the neighborhood of a, the partition

52 CHAPTER 5. LEARNING SYMBOLIC AUTOMATA

Procedure 12 Make Evidence Compatible
1: procedure EVCOMP

2: Let s ∈ S be a state with M(s) > 0

3: repeat
4: Let a ∈ µs such that INC(s, a) = 1 and ψs(a) = a

5: if there exists b ∈ Σs such that fµ̂(s)·µ̂(b) = fµ̂(s)·a then
6: µ(a) = µ(a)− {a}; µ(b) = µ(b) ∪ {a}
7: else
8: Σs = Σs ∪ {b} . introduce new symbol b
9: R = R ∪ {s · b} . add new boundary element

10: µ(b) = {a}; µ̂(b) = a

11: end if
12: Let ψ(a) = b

13: until M(s) = 0

14: Update ψs
15: end procedure

and boundaries can be modified while preserving convexity of the partition blocks
when defining the semantics; the letter a is moved from µ(a) to µ(b). Otherwise, a
new symbol b is introduced; the letter a becomes both evidence and representative
of b and the incompatibility degree decreases by one. This is repeated for the next
incompatible evidence, until M(s) = 0 for all s ∈ S.

Finally, the semantics are updated according to the new evidence function. This
may depend on the type of the alphabet but a general approach is to define the
semantics according to the closest evidence point. That is ψ(a) = a, where a
is the symbol whose evidences are closest to a. In other words, we let ψ(a) =

arg mina∈Σs
minb∈µ(a) d(a, b), where d denotes some distance measure over the

concrete letters.

When the table becomes both closed and evidence compatible we construct from
it the hypothesis automaton and pose an equivalence query.

Processing Counter-Examples (Procedure 13). A counter-example is a word
w misclassified by the current hypothesis. The conjectured automaton should be
modified to classify w correctly while remaining compatible with the evidence
accumulated so far. These modifications can be of two major types that we call
vertical and horizontal. The first type, which is the only possible modification in
concrete learning, involves the discovery of a new state s · a. A counter-example
which demonstrates that some letter a took a wrong transition δ(s, a) has an hori-
zontal effect that fixes a transition or adds a new one. The procedure described in

5.3. THE SYMBOLIC LEARNING ALGORITHM 53

ε

s s′

µ̂(ai)

µ̂(ui)

vi

vi

6=

ε

s s′

new

µ̂(ai)

µ̂(ui)

vi

vi

6=

6=

s · ai is
a state

(a) vertical expansion

ε

s

µ̂(ui)

µ̂(ai) ai

vi vi

6=

ε

s

µ̂(ui)

µ̂(ai) ai

vi vi

6=

6=

refine [[ai]]

(b) horizontal expansion

Figure 5.2: A counter-example expands a hypothesis either (a) vertically, discovering a
new state; or (b) horizontally, modifying the alphabet partition in a state.

the sequel reacts to the counter-example by adding a to the evidence of s and thus
modifying the table, which should then be made closed and evidence compatible
before the learner continues with a new hypothesis.

Counter-examples are treated using a symbolic variant of the breakpoint method,
which is described hereafter (for the classical breakpoint method, one can refer to
Section 3.3.2). As a matter of fact, a counter-example w may be misclassified also
in the new updated hypothesis due to multiple breakpoints. Hence, w can be used
again as a counter-example until finding a hypothesis that classifies it correctly.

Let AT be a symbolic automaton derived from a symbolic table T , and let
w = a1 · · · a|w| be a counter-example whose symbolic image is a1 · · ·a|w|. An
i-factorization of w is w = ui · ai · vi such that ui = a1 · · · ai−1 and vi =

ai+1 · · · a|w|. For every i-factorization of w, let ui be the symbolic image of ui,
and si = δ(ε,ui ·ai) be the symbolic state (an element of S) reached in AT after
reading ui · ai.

Proposition 5.6 (Symbolic Breakpoint). If w is a counter-example to AT then
there exists an i-factorization of w such that either

f(µ̂(si−1) · ai · vi) 6= f(µ̂(si−1) · µ̂(ai) · vi) (5.2)

or
f(µ̂(si−1 · ai) · vi) 6= f(µ̂(si) · vi) (5.3)

54 CHAPTER 5. LEARNING SYMBOLIC AUTOMATA

Proof. Condition (5.2) states that ai is not well represented by µ̂(ai) while Con-
dition (5.3) implies si−1 · ai is a new state different from si, see Figure 5.2. We
prove the proposition assuming that none of the inequalities above hold for any i-
factorization of w. Then, by alternatively using the negations of (5.2) and (5.3) for
all values of i, we conclude that f(µ̂(s0)·a1 ·v1) = f(µ̂(s|w|)), where µ̂(s0)·a1 ·v1

is the counter-example and s|w| is the state reached in AT after reading w. Hence,
w is not a counter-example, which is not true.

This argument is illustrated in more detail below. The actual counter-example
w = a1 . . . am is shown as an upper-script, such that the factorization of w is clear
at each step.

f(w) = f(
ε

µ̂(s0) · a1a1 ·
a2...am
v1)

(5.2)
= f(

ε

µ̂(s0) ·
a1

µ̂(a1) · a2...amv1)
(5.3)
=

= f(
a1

µ̂(s1) · a2a2 ·
a3...am
v2)

(5.2)
= f(

a1
µ̂(s1) ·

a2
µ̂(a2) · a3...amv2)

(5.3)
=

...

= f(
a1...ai−1

µ̂(si−1) · aiai ·
ai+1...am
vi)

(5.2)
= f(

a1...ai−1

µ̂(si−1) ·
ai

µ̂(ai) ·
ai+1...am
vi)

(5.3)
=

...

= f(
a1...am−1

µ̂(sm−1) · amam ·
ε
vm)

(5.2)
= f(

a1...am−1

µ̂(sm−1) ·
am

µ̂(am) ·
ε

vm)
(5.3)
=

= f(
a0...am
µ̂(sm))

�

Let us consider a hypothesis automatonAT for whichw ∈ Σ∗ is given as a counter-
example. We use the symbolic breakpoint method to treat this counter-example and
update the symbolic table accordingly. As we can see in Procedure 13, the learner
iterates over i values and checks whether one of the conditions (5.2) and (5.3)
holds for some i-factorization of the counter-example. We can choose i in any
order, as described in Section 3.3.2, either to retain smaller prefixes or suffixes,
or to find a breakpoint faster. We let i take values in a monotonically descending
order and keep the suffixes as short as possible. In this case, it suffices to compare
f(µ̂(si−1 · ai) · vi) and f(µ̂(si−1) · ai · vi) with the classification of the counter-
example, which is kept in a flag variable. When we iterate (line 3) in a descending
order, the flag value (line 2) should be set to flag = f(w), that is, the classification
of the counter-example by the Teacher.

The two main conditions of the breakpoint method are checked in lines 5 and
9. Specifically, the learner checks first condition (5.3) in line 5, where its satisfac-
tion implies that a new distinguishing string has been found. Adding vi to E will
distinguish between states si−1 ·ai and si, resulting a non closed table. Otherwise,
if condition (5.2) holds, a check made in line 9, it means that the letter ai does not

5.3. THE SYMBOLIC LEARNING ALGORITHM 55

Procedure 13 Counter-Example Treatment
1: procedure COUNTEREX(AT , w)
2: flag = f(µ̂(δ(ε,w))) . flag = f(w) when iterating over 1, . . . , |w|
3: for i = |w|, . . . , 1 do
4: For an i-factorization w = ui · ai · vi
5: if f(µ̂(si−1 · ai) · vi) 6= flag then . check (5.3)
6: E = E ∪ {vi} . add vi as a new distinguishing word
7: Ask MQ(u) for all u ∈ µ(S ∪R) · vi
8: break
9: else if f(µ̂(si−1) · ai · vi) 6= flag then . check (5.2)

10: µ(ai) = µ(ai) ∪ {ai} . add ai as new evidence
11: Ask MQ(u) for all u ∈ µ̂(si−1) · ai · E
12: if M(si) = 0 then
13: E = E ∪ {vi} . add distinguishing word when needed
14: Ask MQ(u) for all u ∈ µ(S ∪R) · vi
15: end if
16: break
17: end if
18: end for
19: end procedure

behave as its representative in the hypothesis. As a result, the letter ai is added
to the evidence of ai and new membership queries are posed to fill in the table.
These queries will render the table evidence incompatible and will lead to refining
of [[ai]]. If no evidence incompatibility occurs after introducing the new evidence
and filling in the table, this is due to a missing distinguishing string, which is vi that
is not yet part of the table. In such a case, also the suffix vi is added to E, as it is
the only witness for the incompatibility, see lines 12-15. The procedure terminates
when either condition (5.2) or condition (5.3) is satisfied (line 9 and line 5).

Note here that checking the conditions involves supplementary membership
queries that are based on the suffix of the counter-example w where the prefix ui
of w is replaced by µ̂(si−1), the representative of its shortest equivalent symbolic
word in the table. Both cases will lead to a new conjectured automaton that might
still not classify w correctly. Hence, if w remains a counter-example for the new
conjecture, Procedure 13 should be invoked with the same counter-example until
the new hypothesis AT classifies w correctly.

56 CHAPTER 5. LEARNING SYMBOLIC AUTOMATA

6

C
H

A
P

T
E

R

Learning with a Helpful Teacher

In this chapter, we present an instantiation of the learning algorithm that uses
the strong assumption of a helpful teacher. Such a teacher responds positively to an
equivalence query EQ(A), where A is an automaton conjectured by the learning
algorithm, only if L(A) is indeed equivalent to the target language; otherwise, it
returns a minimal counter-example which is a counter-example of minimal length
which is also minimal with respect to a lexicographic order. A minimal counter-
example helps the learner to localize the modification site. This strong assumption
improves the performance of the algorithm resulting in an exact conjecture; its
relaxation is discussed in Chapter 7. In the following sections, we discuss the
learning problem for the cases of totally and partially-ordered input alphabets, re-
spectively.

6.1 Learning Languages over Ordered Alphabets

In this section, we assume Σ to be a totally-ordered alphabet with minimum and re-
strict ourselves to interval symbolic automata (see Section 4.4.1). In these automata
the concrete alphabet is any left-closed subset of N,Q or R, and the semantics, in
the case of a dense order as in R, form closed-open intervals.

The order on the alphabet is extended naturally to a lexicographic order on Σ∗.
The minimality of the counter-example, in length and lexicographically, improves
the learning procedure. The treatment of counter-examples becomes cleaner and
learning the semantics is accurate. Minimality allows us to use fewer evidences,
keep the concrete sample as small as possible, and avoid posing unnecessary mem-
bership queries.

In Section 5.3 we have seen that new symbolic letters are introduced on two
occasions: when a new state is discovered or when a partition is modified due to

57

58 CHAPTER 6. LEARNING WITH A HELPFUL TEACHER

a counter-example. In both cases, we set the concrete semantics [[a]] to the largest
possible subset of Σ, given the current evidence.

The assumption of a minimal counter-example allows us to specialize some of
the procedures of Chapter 5, which results in fewer evidences and a cleaner and
cheaper counter-examples treatment.

For each symbol a in Σ we choose exactly one letter as evidence, that is the
smallest possible a ∈ [[a]]. As this minimal element is the only evidence, we choose
it also as the representative. Let us denote by a0 the minimal element of the input
alphabet, a0 = min Σ. We adapt Procedure 10, the initialization of a new symbol,
to this setting. We replace sample(Σ, k) by {a0}; the evidence, representative, and
semantics functions are updated such that, for each symbol a ∈ Σ, the following
holds:

µ(a) = {µ̂(a)} = {min[[a]]}. (6.1)

A misclassified word in the conjectured automaton is due to a wrong transition that
has been taken. This happens in two cases: either some evidence is missing, or
the target state has not been discovered yet. Unlike the general case described in
Section 5.3, minimality assures that the counter-example uses the representatives,
which are the smallest elements of each transition, to reach states in the automa-
ton through a loop-free path. After detecting the state at which the hypothesis is
problematic, the missing state or a transition is added appropriately. Let w be a
counter-example, since this is minimal it admits an i-factorization w = ui · ai · vi,
with ui being the largest prefix of w such that ui ∈ µ(ui) for some ui ∈ S ∪R
but ui · ai /∈ µ(u′) for any prefix u′ in S ∪R. We consider two cases, ui ∈ S and
ui ∈ R.

In the first case, when ui is already a state in the hypothesis, i.e., ui ∈ S, the
letter ai indicates that the partition boundaries are not correctly defined and need
refinement. Letter ai is wrongly considered to be part of [[ai]]; a new symbol b
is added to Σui , with µ̂(b) = ai, and solves the evidence incompatibility. Due
to minimality of the counter-example, all letters in [[ai]] less than letter ai behave
like µ̂(ai). We assume that all remaining letters in [[ai]] behave like ai and map
them to b. The semantics function ψui is updated such that ψui(a) = b for all
a ∈ [[ai]], a ≥ ai, and ψui(a) stays unchanged otherwise. Finally, the prefix ui · b
is added toR.

In the second case, when the symbolic wordui is part of the boundary, ui ∈ R;
we infer that ui is not equivalent to any of the existing states in the hypothesis. Let
s ∈ S be the prefix that was considered to be equivalent to ui for which fui = fs.
Since the table is reduced s is unique. Because w is minimal, the classification of
words in [[s]] · ai · vi in the hypothesis automaton is correct; otherwise, there exists
some s ∈ [[s]] such that s·ai ·vi constitutes a shorter counter-example. From this we

6.1. LEARNING LANGUAGES OVER ORDERED ALPHABETS 59

Procedure 14 Counter-Example Treatment (with Helpful Teacher) - R

1: procedure COUNTEREX(w)
2: Find an i-factorization w = ui · ai · vi, ai ∈ Σ, ui, vi ∈ Σ∗ such that
3: ∃ui ∈ S ∪R, ui ∈ µ(ui) and ui · ai /∈ µ(u′),∀u′ ∈ S ∪R
4: if ui ∈ S then
5: Let ai ∈ Σui such that ai ∈ [[ai]] . refinement of [[ai]]
6: Σui = Σui ∪ {b} . introduce new symbol b
7: µ(b) = {ai} ; µ̂(b) = ai
8: [[b]] = {a ∈ [[ai]] : a ≥ ai}
9: [[ai]] = [[ai]] \ [[b]]

10: R = R ∪ {ui · b}
11: Ask MQ(u) for all u ∈ µ(ui · b) · E
12: else . if ui ∈ R
13: S = S ∪ {ui}; E = E ∪ {ai · vi} . ui becomes a new state
14: if ai = a0 then
15: Σui = {b}
16: µ(b) = {a0}; µ̂(b) = a0; [[b]] = Σ
17: else
18: Σui = {b, b′}
19: µ(b) = {a0}; µ̂(b) = a0 ; [[b]] = {a ∈ Σ : a < ai}
20: µ(b′) = {ai}; µ̂(b′) = ai; [[b′]] = {a ∈ Σ : a ≥ ai}
21: end if
22: R = (R− {ui}) ∪ ui ·Σui

23: Ask MQ(u) for all u ∈ µ(ui ·Σui) · E
24: end if
25: end procedure

conclude that ui is a new state and the hypothesis automaton should be expanded
vertically moving ui to S. To distinguish between ui and s, the suffix ai · vi is
added to E. The letter ai is an evidence for the new state ui and, for 5.1 to hold,
we distinguish the following two sub-cases. If ai is the smallest element of Σ, i.e.,
ai = a0, one symbolic letter b is initialized and added to Σui . Otherwise, if ai is
not the smallest and ai > a0, two new symbolic letters, b and b′, are added to Σui

with [[b]] = {a : a < ai}, [[b′]] = {a : a ≥ ai}, µ̂(b) = a0, and µ̂(b′) = ai. The
prefixes u ·Σui are added toR.

The counter-example treatment for ordered alphabets and minimal counter-
examples is summarized in Procedure 14. This procedure significantly differs from
the general Procedure 13 discussed in the previous section. More precisely, evi-
dence incompatibility appears only during the counter-example treatment where it
is instantly solved. Hence, when the Procedure 13 is replaced by Procedure 14,

60 CHAPTER 6. LEARNING WITH A HELPFUL TEACHER

[0, 5
0)

[50, 100)

[0, 30)

[30, 100)

[0, 20) [20, 5
0)

[50, 80)

[80, 100)

Σ

Figure 6.1: Minimal automaton accepting the target language used in Example 6.1.

then EVCOMP in Algorithm 8 is never invoked.
However, one can use Procedure 13 instead of Procedure 14, with one minor

modification in line 2, where the iteration order should be changed to increasing,
and the flag should be initialized to f(w). In such a case, the procedure EVCOMP

should be called whenever necessary. Although the final conjecture will be the
same, the algorithm becomes less efficient in the sense that more repetitions in the
main algorithm are needed to reach the same result. Moreover, the algorithm calls
COUNTEREX (Procedure 13) more times, and a number of additional MQ’s are
posed in order to perform the tests in lines 5 and 9. Note that MQ’s are not required
at all when the counter-example is treated using Procedure 14.

Example 6.1 (Learning Interval Symbolic Automata with Minimal Counter-Ex-
amples). Let the concrete alphabet be Σ = [0, 100) ⊂ R equipped with the usual
order, and let L ⊆ Σ∗ be a target language whose automaton is shown in Fig-
ure 6.1. Figure 6.2 shows the evolution of the symbolic observation tables and
Figure 6.3 depicts the corresponding automata and the concrete semantics of the
symbolic alphabets after each update.

The learner initializes the table by letting S = {ε}, Σ = {a0}, R = {a0},
µ(a0) = {0}, and E = {ε}. The initial observation table T0 is filled in after
membership queries are posed for ε, which is rejected, and for 0, which is accepted.
To close the table, the learner makes a0 a new state and introduces Σa0 = {a1},
where a1 is a new symbol with µ(a1) = {0}. The symbolic word a0 · a1 is then
added to R. A membership query MQ(0 · 0) fills the table. The new observation
table is T1 and it is closed. The symbolic automaton A1 derived from T1 has two
states, one accepting and one rejecting.

The learner poses an equivalence query for A1 and obtains (50,−) as a mini-
mal counter-example. The counter-example’s minimality implies that all one-letter
words smaller than 50 are correctly classified, in contrast to words greater than

6.1. LEARNING LANGUAGES OVER ORDERED ALPHABETS 61

T0

ε

ε -
a0 +

T1

ε

ε -
a0 +

a0 · a1 +

T2

ε

ε -
a0 +

a0 · a1 +
a2 -

T3

ε

ε -
a0 +

a0 · a1 +
a2 -

a0 · a3 -

T4

ε 0

ε - +
a0 + +
a2 - -

a0 · a1 + -
a0 · a3 - -
a2 · a4 - +

T5

ε 0

ε - +
a0 + +
a2 - -

a0 · a1 + -
a0 · a3 - -
a2 · a4 - +

a0 · a1 · a5 - -

T6

ε 0

ε - +
a0 + +
a2 - -

a0 · a1 + -
a0 · a3 - -
a2 · a4 - +

a0 · a1 · a5 - -
a2 · a6 + -

T7

ε 0

ε - +
a0 + +
a2 - -

a0 · a1 + -
a0 · a3 - -
a2 · a4 - +

a0 · a1 · a5 - -
a2 · a6 + -
a2 · a7 - -

T8

ε 0

ε - +
a0 + +
a2 - -

a0 · a1 + -
a0 · a3 - -
a2 · a4 - +

a0 · a1 · a5 - -
a2 · a6 + -
a2 · a7 - -
a2 · a8 + +

Figure 6.2: Observation tables used in Example 6.1.

50. For this reason, the symbol a0 is not a good representation for all Σ, and a
new symbol a2 is added to Σε. The concrete semantics for this state is updated to
[[a0]] = {a ∈ Σ : a < 50} and [[a2]] = {a ∈ Σ : a ≥ 50}. As an evidence the
smallest possible letter is selected, i.e., µ(a2) = {50}. The learner asks member-
ship queries, fills in the table, which is closed and appears in Figure 6.2 as T2, and
constructs the new hypothesis A2.

As the symbolic automaton A2 is not the correct one, the teacher returns the
counter-example (0 · 30,−). The prefix 0 already exists in the sample, which
means that the misclassification must occur in the second transition, that is, at
a1. Therefore, the alphabet partition for state a0 is refined by introducing a new
symbol a3 and by letting [[a1]] = {a ∈ Σ : a < 30} and [[a3]] = {a ∈ Σ : a ≥ 30}.
The new table T3 is closed, and the new hypothesis automaton is A3. Again, this
hypothesis automaton does not recognize the target language, and (50 · 0,−) is a
new minimal counter-example. The prefix 50 belongs to the evidence of a2; this
signifies that a2 goes to a state that is different from ε. The suffix 0 of the counter-
example is added to E to distinguish the two states. The learner moves a2 to the
set of states and introduces the set Σa2 = {a4}, where a4 is a new symbol with

62 CHAPTER 6. LEARNING WITH A HELPFUL TEACHER

A1 A2 A3

0 100

Σa0

Σε

ψ
a0

a1

0 50 100

Σa0

Σε

ψ
a0 a2

a1

0 30 50 100

Σa0

Σε

ψ
a0 a2

a1 a3

ε a0

a0

a1

ε a0

a0

a2 a1

ε a0

a0

a2

a3

a1

A5 A6

0 30 50 100

Σa0a1

Σa2

Σa0

Σε

ψ
a0 a2

a1 a3

a4

a5

0 20 30 50 100

Σa0a1

Σa2

Σa0

Σε

ψ
a0 a2

a1 a3

a4 a6

a5

ε

a0

a2

a0a1

a0

a
2

a
1

a3
a4 a5

ε

a0

a2

a0a1

a0

a
2

a
1

a3
a4 a6

a5

A7 A8

0 20 30 50 80 100

Σa0a1

Σa2

Σa0

Σε

ψ
a0 a2

a1 a3

a4 a6 a7

a5

0 20 30 50 80 100

Σa0a1

Σa2

Σa0

Σε

ψ
a0 a2

a1 a3

a4 a6 a8 a7

a5

ε

a0

a2

a0a1

a0

a
2

a
1

a3
a4 a6

a7

a5

ε

a0

a2

a0a1

a0

a
2

a
1

a3
a4 a6

a8

a7

a5

Figure 6.3: Hypotheses and Σ-semantics as learned in Example 6.1.

µ(a4) = {0}. Then, a2 · a4 is added to R. After all updates, the new table T4

is made closed, resulting in T5 and the conjectured automaton A5, which has two
new states.

In the following, three more counter-examples (50 · 20,+), (50 · 80,−) and
(50 · 50 · 0,+) are provided. Progressively, each of them expands horizontally

6.2. LEARNING OVER PARTIALLY-ORDERED ALPHABETS 63

the hypothesis by adding a new transition. The automata, after each update, are
A6, A7 and A8, respectively. The learner terminates with the last automaton A8

accepting the target language.
At this point, it is important to note that the language L that is defined over a

subset of R cannot be learned by the classical L∗ algorithm. To be able to compare
it with this algorithm, we restrict the problem to a finite discrete alphabet, such that
Σ = {1, . . . , 100}, and let the target language be recognized from the same sym-
bolic automaton. The L∗ algorithm requires approximately 1000 queries to learn
L, in contrast to a total of 17 queries that are required by the symbolic algorithm.
�

6.2 Learning over Partially-ordered Alphabets

Let Σ be a partially-ordered alphabet such as a bounded sub-rectangle of Rn, i.e.,
Σ = Xd, where X is a totally-ordered set such as a sub-interval [0, k) ⊆ R.
The target language L is accepted by a canonical symbolic automaton where par-
titions are monotone, as described in Section 4.4.2. Monotone partitions of this
kind are defined using finite unions of forward cones, and equivalently, a parti-
tion block can be determined by a finite set of minimum mutually incomparable
letters from Σ. We denote a monotone partition by P = {P1, . . . , Pm−1}, where
Pi = B+(Fi−1) − B+(Fi) and B+(F) is a forward cone defined by a set of in-
comparable points F ⊆ Σ.

The partial order on the alphabet extends to a partial lexicographic order over
Σ∗. The teacher is assumed to return a minimal counter-example, which in this
case is chosen from a finite set of incomparable minimal counter-examples. As
for totally-ordered alphabets, the minimality of the counter-examples improves the
learning algorithm, resulting in fewer membership queries for counter-example
treatment, and to a precise final hypothesis. Evidences derived from counter-
examples denote the minimal points of a partition block. Hence, multiple evidences
are used to determine each partition block. In the following, we present the sym-
bolic learning algorithm adapted to this special nature of the partitions. We mainly
describe the modifications that should be considered to handle the evidences and
solve incompatibility whenever this occurs.

The main algorithm (Algorithm 8) is applied and the procedure of table ini-
tialization, symbol initializations, and table closure (see Procedures 9, 10 and 11)
remain unchanged.

Counter-examples either discover new states or refine partitions. When refine-
ment occurs, minimality of the counter-examples constrains the teacher to provide
all the counter-examples needed to find the minimal points that completely define

64 CHAPTER 6. LEARNING WITH A HELPFUL TEACHER

Procedure 15 Counter-Example Treatment (with Helpful Teacher) - Rn

1: procedure COUNTEREX(w)
2: Find a i-factorization w = ui · ai · vi, ai ∈ Σ, ui, vi ∈ Σ∗ such that
3: ∃ui ∈ S ∪R, ui ∈ µ(ui) and ui · ai /∈ µ(u′),∀u′ ∈ S ∪R
4: if ui ∈ S then
5: Let ai ∈ Σui such that ai ∈ [[ai]]
6: Let a ∈ Σui such that a > ai adjacent to ai . a ∈ V(ai)
7: if ai||a for all a ∈ µ(a) and fui·ai = fui·µ̂(a) then
8: µ(a) = µ(a) ∪ {ai} . change boundary
9: [[a]] = [[a]] ∪ {a ∈ [[ai]] : a ≥ ai}

10: [[ai]] = [[ai]] \ {a ∈ Σ : a ≥ ai}
11: else . partition refinement
12: Σui = Σui ∪ {b} . introduce new symbol b
13: µ(b) = {ai} ; µ̂(b) = ai
14: [[b]] = {a ∈ [[ai]] : a ≥ ai}
15: [[ai]] = [[ai]] \ [[b]]
16: R = R ∪ {ui · b}
17: Ask MQ(u) for all u ∈ µ(ui · b) · E
18: end if
19: else . if ui ∈ R
20: S = S ∪ {ui}; E = E ∪ {ai · vi} . ui becomes a new state
21: if ai = a0 then
22: Σui = {b} . introduce new symbol b
23: µ(b) = {a0}; µ̂(b) = a0; [[b]] = Σ
24: else
25: Σui = {b, b′} . introduce new symbols b and b′

26: µ(b) = {ai}; µ̂(b) = ai ; [[b]] = {a ∈ Σ : a ≥ ai}
27: µ(b′) = {a0}; µ̂(b′) = a0; [[b′]] = Σ \ [[b]]
28: end if
29: R = (R− {ui}) ∪ ui ·Σui

30: Ask MQ(u) for all u ∈ µ(ui ·Σui) · E
31: end if
32: end procedure

the new partition. Even though the counter-examples are provided in an arbitrary
order, defined by the teacher, this does not affect the behavior of the algorithm.

Let s ∈ S be a state in the observation table T , and let a be a symbol in
Σs. The set of evidences of a is the set of the mutually-incomparable minimum
elements belonging to its semantics. These evidences are sufficient to define each
partition block as the set difference between two unions of cones, each cone defined
by a letter a ∈ µ(a). When s is a new state, we let Σs = {a}, where a is a new

6.2. LEARNING OVER PARTIALLY-ORDERED ALPHABETS 65

ai

a

ai

ai

a

ai

Figure 6.4: Modifying the alphabet partition for state ui after receiving ui · ai · vi as
counter-example. Letters greater than ai are moved from [[ai]] to [[a]].

symbol which is initialized; the concrete semantics [[a]] is set to Σ and the minimal
element a0 = 0 serves as evidence and representative. Evidences are added later,
given by counter-examples. New evidences refine the partition either by adding
a new symbol, or by modifying the set of cones for an existing partition block.
Symbols may have many evidences, but keep as representative the first evidence
admitted.

Procedure 14, that treats the counter-examples for ordered alphabets, should be
modified in the case where the counter-example only modifies a partition boundary,
without adding new states or transitions. For this an additional condition should be
checked. The prefix ui belongs to a state, but the new letter ai ∈ [[ai]], behaves like
the adjacent symbol a > ai. There is no need of a new symbol and the evidence in-
compatibility is solved by moving ai from [[ai]] to [[a]] along with all letters greater
or equal to it. The letter ai is then added to the evidences of a. Figure 6.4 shows
this update of the semantics. The full modification of the procedure appears in
Procedure 15. In the lines 8-10, the learning handles the case of boundary modifi-
cation. The rest of the procedure remains unchanged, and one or two new symbols
are introduced to refine the existing partition block that is evidence incompatible.

Example 6.2. Let us illustrate the working of the algorithm on a target language
L defined over Σ = [0, 100]2. We assume partitions to be monotone. All resulting
tables, hypotheses automata and alphabet partitions for this example are shown in
Figures 6.5, 6.6, and 6.7, respectively.

The learner starts by asking a membership query about the empty word. A
symbolic letter a0 is chosen to represent the continuations from the initial state,
initially placed in the boundary. The learner chooses the minimal element of Σ

as evidence, i.e., Σε = {a0}, µ(a0) = {
(

0
0

)
}, and [[a0]] = Σ. The table is not

closed, and for this, the learner declares a0 a state, introduces Σa0 = {a1} with
µ(a1) = {

(
0
0

)
}, [[a1]] = Σ, and R = {a0 · a1}. The resulting table T0 is now

closed; the first hypothesis A0 is constructed.

66 CHAPTER 6. LEARNING WITH A HELPFUL TEACHER

T0

ε

ε -
a0 +

a0 · a1 +

T1−3

ε

ε -
a0 +

a0 · a1 +
a2 -

T4−7

ε

ε -
a0 +

a0 · a1 +
a2 -

a0 · a3 -

T8

ε
(
0
0

)
ε - +
a0 + +
a2 - -

a0 · a1 + -
a0 · a3 - -
a2 · a4 - +

T9

ε
(
0
0

)
ε - +
a0 + +
a2 - -

a0 · a1 + -
a0 · a3 - -
a2 · a4 - +

a0 · a1 · a5 - -

T10−11

ε
(
0
0

)
ε - +
a0 + +
a2 - -

a0 · a1 + -
a0 · a3 - -
a2 · a4 - +

a0 · a1 · a5 - -
a2 · a6 + -

T12−15

ε
(
0
0

)
ε - +
a0 + +
a2 - -

a0 · a1 + -
a0 · a3 - -
a2 · a4 - +

a0 · a1 · a5 - -
a2 · a6 + -
a2 · a7 - -

T16−18

ε
(
0
0

)
ε - +
a0 + +
a2 - -

a0 · a1 + -
a0 · a3 - -
a2 · a4 - +

a0 · a1 · a5 - -
a2 · a6 + -
a2 · a7 - -
a2 · a8 + +

Figure 6.5: Observation tables for Example 6.2.

The counter-example (
(

45
50

)
,−) arrives, to refine the partition at the initial state

by introducing a new symbol, and thus to add a new transition to the automaton.
The symbolic alphabet is extended to Σε = {a0,a2} with [[a2]] = {a ∈ Σ :

a ≥
(

45
50

)
}, [[a0]] = Σ − [[a2]], and µ(a2) = {

(
45
50

)
}. The new observation table

and hypothesis are T1 and A1, respectively. Two more counter-examples, namely
(
(

60
0

)
,−) and (

(
0
70

)
,−), are provided and they refine the partition at the initial

state causing a boundary modification. No new state or symbol is added to the
automaton, which leaves the structure of the automaton unchanged, see Figure 6.6.
However, the semantics function for the initial state updates to ψ1, ψ2 and ψ3 (Fig-
ure 6.7), where all letters greater than

(
60
0

)
and

(
0
70

)
are moved to the Σ-semantics

of a2. An equivalence query on hypothesis A3 will result in the counter-example
(
(

0
0

)(
0
80

)
,−), which, in turn, adds a new symbol a3 to Σa0 and a new transition in

the hypothesis.
The three counter-examples that follow, namely, (

(
0
0

)(
80
0

)
,−), (

(
0
0

)(
40
15

)
,−),

and (
(

0
0

)(
30
30

)
,−), refine the Σ-semantics for the symbols in Σa0 as shown in ψ4

though ψ7. The next counter-example (
(

45
50

)(
0
0

)
,+) discovers a new state. Its prefix(

45
50

)
already exists in µ(a2) and a2 ∈ R, indicating that the prefix a2 is a distinct

state. To distinguish it from the initial state, the learner adds the suffix
(

0
0

)
to E.

The resulting table T8 is not closed. To render it closed, the prefix a0a1 moves
to S. From the resulting table T9, which is both closed and evidence compatible,

6.2. LEARNING OVER PARTIALLY-ORDERED ALPHABETS 67

A0 A1−3 A4−7

ε a0

a0

a1

ε a0

a0

a2 a1

ε a0

a0

a2

a3

a1

A9 A10−11

ε

a0

a2

a0a1

a0

a
2

a
1

a3
a4 a5

ε

a0

a2

a0a1

a0

a
2

a
1

a3
a4 a6

a5

A12−15 A16−18

ε

a0

a2

a0a1

a0

a
2

a
1

a3
a4 a6

a7

a5

ε

a0

a2

a0a1

a0

a
2

a
1

a3
a4 a6

a8

a7

a5

Figure 6.6: Hypothesis automata for Example 6.2.

we conclude the hypothesis A9. This automaton has four states. The updated Σ-
semantics for each state can be seen in ψ9. Partitions at state a2 are refined further
due to some more counter-examples, see A10−18 and ψ10 − ψ18 for the updates.
The algorithm terminates with A18 as its final hypothesis, after using a total of 20

queries and treating 17 counter-examples. �

68 CHAPTER 6. LEARNING WITH A HELPFUL TEACHER

Σε ψ0 ψ1 ψ2 ψ3−18

0

a0

0

(45, 50)

a0

a2

0 (60, 0)

(45, 50)

a0

a2

0 (60, 0)

(0, 70)

(45, 50)

a0

a2

Σa0 ψ0−3 ψ4 ψ5 ψ6 ψ7−18

0

a1

0

(0, 80)

a1

a3

0 (80, 0)

(0, 80)

a1

a3

0 (80, 0)

(40, 15)

(0, 80)

a1

a3

0 (80, 0)

(40, 15)

(30, 30)

(0, 80)

a1

a3

Σa2 ψ8−10 ψ11−14 ψ15−17 ψ18

0

a4

0 (20, 0)

(0, 30)

a4

a6

0 (20, 0)

(0, 30)

(70, 50)

(0, 90)

(60, 70)

(90,0)

a4

a6

a7

0 (20, 0)

(0, 30)
(55, 35)

(0, 50) (70, 50)

(0, 90)

(60, 70)

(90,0)(70,0)

a4
a6

a8
a7

Σa0a1 ψ9−18

0

a5

Figure 6.7: Σ-semantics as updated in Example 6.2. The rows correspond to states ε, a0,
a2 and a0 · a1, respectively. The function ψi refers to the hypothesis Ai.

7

C
H

A
P

T
E

R

Learning without a Helpful Teacher

In this chapter, we relax the strong assumption of a helpful teacher. In the new
relaxed setting, equivalence queries are approximated by testing queries: a call to
EQ yields membership queries for a set of randomly selected words; when all of
them agree with the hypothesis, the algorithm terminates with a non-zero proba-
bility of misclassification; otherwise, we have a counter-example to process. The
number of such queries may depend on what we assume about the distribution over
Σ∗ and what we want to prove about the algorithm, for example, PAC learnability,
which is further discussed in Section 8.

The main learning algorithm used in this chapter is Algorithm 8 as it appears
in Section 5.3 and counter-examples are treated by applying the symbolic break-
point method (Procedure 13). In the following, we discuss how we specialize the
treatment of evidence incompatibility for alphabets having a particular structure.
Specifically, we show alternative methods and convenient modifications that we
can apply on the procedures sample(Σ, k), select and EVCOMP.

To improve the learning procedure and make it more efficient, we use multiple
evidences per state. However, we let only one evidence, the representative, take
part in the construction of the observation table and the hypothesis. By doing
this we avoid the exponential growth of the concrete sample. The sampling and
selection criteria we use to define the evidences and representatives vary and rely
upon the type of the alphabet and the partitions. We discuss different types of
alphabets and semantics such as interval subsets of countable or uncountable sets
and sets of Boolean vectors.

In the previous chapter, the symbolic learning algorithm manages to exactly
learn an automaton representation for the target language. Nevertheless, the key to
learn such languages, without error, is the presence of a teacher able to answer to
equivalence queries and return counter-examples that are minimal. Minimality is
what allows the learner to precisely determine the boundaries of each partition.

69

70 CHAPTER 7. LEARNING WITHOUT A HELPFUL TEACHER

In this chapter, we assume a teacher who is not that helpful and is able to answer
only to membership queries. As we shall see, the symbolic algorithm is able to
learn a symbolic automaton to represent the target language, but this time as an
approximation. Since minimality of the counter-examples cannot be guaranteed,
we choose to use a PAC learning criterion for termination. The set of symbolic
recognizable languages is shown to be PAC learnable resulting, almost always, in
an automaton that accepts the target language approximately well.

7.1 Approximating the Equivalence Query

We approximate equivalence queries by testing as follows. First, a word w ∈ Σ∗

is generated according to some probability distribution P over Σ∗ (line 4). Then
a membership query MQ(w) is posed and the learner checks whether the outcome
matches the conjectured hypothesis. If not, the testing procedure terminates return-
ing the word w as a counter-example. If no counter-example has been found after
a sufficiently large number of tested words, the equivalence query terminates and
the hypothesis is considered correct with some probability of error. The probability
distribution that is used to generate words need not be known to the learner.

Let ε and δ be the accuracy and confidence parameters. A hypothesis automa-
ton A is an ε-approximation of the target L with a probability higher than 1 − δ.
In such a case we say that the hypothesis is probably approximately correct (PAC).
For more details on the PAC learnability see Chapter 8.3.2. To guarantee a PAC
hypothesis, the testing method should successfully test at least ri random words,
where ri = 1

ε

(
log 1

δ + (i+ 1) log 2
)
, and i is the number of hypotheses that have

already been tested.

Procedure 16 Testing Oracle

1: procedure TEST(Ai, ε, δ) . ε accuracy, δ confidence
2: counter = 1
3: while counter < ri do
4: w = random wordP(Σ∗) . P is a prob. distribution over Σ∗

5: if MQ(w) 6= Ai(w) then
6: return w . counter-example found
7: end if
8: counter = counter + 1
9: end while

10: return True
11: end procedure

7.2. LEARNING LANGUAGES OVER N,R 71

7.2 Learning Languages over N,R

As in Section 6.1, we consider bounded subsets of N or R as the input alphabet Σ,
such that the semantics of each symbol is an interval. We disallow disconnected
partition blocks, for example, two subsets of even and odd numbers, respectively.
Thus, if two disconnected intervals take the same transition, two symbolic letters
will be considered. In this setting, the endpoints of an interval associated with a
symbolic letter are such that all evidence points between them have the same resid-
ual function, while the nearest points outside the interval have different residuals.
In an interval setting, semantics can be interpreted as conjunctions of inequalities
where the partitioning points reside between two consecutive evidences with dif-
ferent residual functions.

To infer the partition for a state s and define the outgoing transitions in the con-
jectured automaton we use evidences. Having no prior knowledge of the behavior
of a new symbol, when initializing it, we use multiple evidences to get a better
approximation. For this reason, when s is a new state, the partition is formed from
a sample set of evidences. However, a new evidence may arrive later, introduced
by some counter-example, in order to fix an incorrectly conjectured partition.

The initial set of evidences can be any set of k concrete letters denoted by
sample(Σ, k), see line 3 of Procedure 10. This set can be selected randomly or be
the result of a fixed step quantization of Σ, that is, sample(Σ, k) = {a + i · ∆ :

i = 0, . . . k − 1} where a = min Σ and ∆ = |Σ|/(k − 1). Moreover, it can be the
same each time INITSYMBOL is evoked. One can think of evidence selection by a
more adaptive process that depends on the outcome of membership queries. Each
symbol admits one element from the set of evidences, usually randomly chosen, as
a representative.

Evidence incompatibility appears either right after symbol initialization or af-
ter a counter-example treatment. Evidence incompatibility is solved by consecu-
tive calls to EVCOMP until the total incompatibility degree of the observation table
becomes zero. Note that partition blocks form convex intervals and, as a conse-
quence, several symbols in the symbolic alphabet may have the same behavior,
that is, label a transition that leads to the same target state in the automaton.

For a state s, an incompatibility instance at a ∈ [[a]] indicates either that the
partition boundary is imprecise or that we missed a symbol and its corresponding
transition. In the first case, the incompatible evidence a appears next to the bound-
ary of the interval and its classification matches the classification of a neighboring
symbol a′ ∈ V(a). In this situation, modifying the boundary so that a is moved
to [[a′]] resolves the incompatibility. On the other hand, when the evidence a is in
the interior of an interval, or does not behave as a neighboring symbol in V(a),
the incompatibility is resolved by adding a new symbol and refining the existing

72 CHAPTER 7. LEARNING WITHOUT A HELPFUL TEACHER

[[aj]]

ai
I

[[aj+1]]

Σ

[[aj]]

ai
I

[[aj+1]]

change boundary

[[aj−1]]

I
ai−1

[[aj]]

[[aj−1]]

ai−1
I

[[aj]]

change boundary

Figure 7.1: Evidence incompatibility solved by boundary modification. The incompatible
evidence ai matches the classification of its neighboring symbol, and a boundary update
solves the incompatibility without adding a new symbol.

new transition

Σ

[[aj]]

ai
I

[[aj+1]]

Σ

[[aj]]

ai
I

[[b]]

I
[[aj+1]]

[[aj]]

I
[[aj+1]]

[[aj]]

I
[[b]]

I
[[aj+1]]

[[aj]]

I
[[b]]

I
[[b′]]

I
[[aj+1]]

Figure 7.2: Evidence incompatibility solved by introducing new symbols. More symbols
may need to be added calling EVCOMP multiple times until the incompatibility is elimi-
nated.

partition. These two cases are illustrated in Figures 7.1 and 7.2, respectively.
Formally, let s ∈ S be a state with positive incompatibility degree M(s) > 0,

and let µs = {a1, . . . , ak} ⊂ S be the set of evidences, ordered such that ai−1 < ai

for all i. To simplify notation, f i denotes the residual fµ̂(s)·ai when state s is
understood from the context.

Let aj and aj+1 denote symbols in Σs with adjacent semantics, and let ai−1, ai

∈ µs be two evidences from the same partition block that behave differently,
f i−1 6= f i. Moreover, let aj ∈ Σs be the symbol such that ai−1, ai ∈ µ(aj)

where [[aj]] = [c, c′). There exists at least one partitioning point p ∈ (ai−1, ai),
and it is given by a split method p = split(ai−1, ai). We let split return the middle
point, that is split(a, a′) = (a + a′)/2; other more sophisticated methods can be
applied instead, for instance, a split method which asks membership queries in a
binary search fashion.

The remedy to evidence incompatibility is to separate ai−1 and ai and map
them to different symbols. Procedure 17 describes how evidence incompatibility
is solved and how evidences and semantics are updated.

The way this separation is realized, with or without introducing a new symbol,

7.2. LEARNING LANGUAGES OVER N,R 73

Procedure 17 Make Evidence Compatible (without Helpful Teacher) - R
1: procedure EVCOMP

2: Let s ∈ S, for which M(s) > 0, where
3: µs = {a1, . . . , ak} such that ai−1 < ai,∀i = 2, . . . , k

4: Let aj ∈ Σs, [[aj]] = [c, c′), such that ∃i : f i−1 6= f i for ai−1, ai ∈ µ(aj)

5: p = split(ai−1, ai) . new partitioning point
6: if f i = f i+1 = · · · = f i+l+1, where ai, . . . , ai+l ∈ µ(aj), ai+l+1 ∈ µ(aj+1) then
7: [[aj]] = [c, p); [[aj+1]] = [p, c′) ∪ [[aj+1]] . change right frontier
8: µ(aj+1) = (µ(aj+1) ∪ µ(aj)) ∩ [[aj+1]]

9: µ(aj) = µ(aj) ∩ [[aj]]

10: else if f i−1 = · · · = f i−l, where ai−1, . . . , ai−l+1 ∈ µ(aj), ai−l ∈ µ(aj−1) then
11: [[aj−1]] = [[aj−1]] ∪ [c, p); [[aj]] = [p, c′) . change left frontier
12: µ(aj−1) = (µ(aj−1) ∪ µ(aj)) ∩ [[aj−1]]

13: µ(aj) = µ(aj) ∩ [[aj]]

14: else
15: Σs = Σs ∪ {b} . introduce a new symbol
16: R = R ∪ {s · b}
17: if µ̂(aj) ≤ p then
18: [[aj]] = [c, p); [[b]] = [p, c′)

19: else
20: [[b]] = [c, p); [[aj]] = [p, c′)

21: end if
22: µ(b) = µ(aj) ∩ [[b]]; µ(aj) = µ(aj) ∩ [[aj]]

23: µ̂(b) = select(µ(b))

24: fs·b = fµ̂(s·b)
25: end if
26: end procedure

depends on the positions of ai−1 and ai in the set of evidences and the residual
values of their neighboring partition blocks. In the following, aj−1, aj and aj+1

denote symbols in Σs with adjacent semantics.

1. Boundary modification. Suppose the incompatibility instance is at ai ∈
µ(aj), and that all other evidences µ(aj) to the right of ai behave like
minµ(aj+1). By changing the partition boundaries and moving ai from
[[aj]] to [[aj+1]], the incompatibility instance at ai is eliminated. The new
boundary between these two intervals is set to p, see Figure 7.1. The seman-
tics and evidence functions are updated accordingly. The symmetric case,
where the incompatibility occurs at ai−1 ∈ aj with all other evidences of
µ(aj) on its left behaving like maxµ(aj−1), is treated similarly.

74 CHAPTER 7. LEARNING WITHOUT A HELPFUL TEACHER

2. Symbol introduction. When the above condition does not hold and boundary
modification cannot be applied, which happens either when the evidences
are internal to [[aj]], or when their residuals do not match the residuals of any
neighboring symbol, the incompatibility is solved by refining the partition.
The semantics [[aj]] is split into two intervals [c, p) and [p, c′). A new symbol
b is introduced and the interval not containing µ̂(aj) is moved from [[aj]] to
[[b]] along with the evidences it contains, see Figure 7.2.

Counter-examples are treated by calling Procedure 13 (see Chapter 5) where each
counter-example expands the hypothesis automaton either vertically or horizon-
tally. Let us demonstrate the working of the algorithm in learning a target language
over a subset of R.

[1, 24)

[1, 51)

[51, 100)

[66, 100)

[1, 66)

[24, 100)

Figure 7.3: Minimal automaton accepting the target language used in Example 7.1.

Example 7.1 (Learning Interval Automata without Minimal Counter-Examples).
Let Σ = [0, 100) ⊆ R be the concrete alphabet and a target language L ⊆ Σ∗,
shown in Figure 7.3. We recall that equivalence is approximated by testing and that
the teacher answers only membership queries. The observation tables, semantics
functions and hypotheses used in this example are shown in Figures 7.4 and 7.5.

The table is initialized with S = {ε} and E = {ε}. To determine the al-
phabet partition at the initial state ε, the learner asks membership queries for the
randomly selected one-letter words {13, 42, 68, 78, 92}. All words in this set ex-
cept 13 are rejected. Consequently, there are at least two distinct intervals and
we take split(13, 42) = 27 as their boundary. Each interval is represented by
a symbolic letter resulting in Σε = {a1,a2}, µ(a1) = {13}, µ̂(a1) = 13,
µ(a2) = {42, 68, 78, 92}, and µ̂(a2) = 68. The representatives are randomly
chosen from the set of evidences. The semantics, ψ maps all letters smaller than
27 to a1, and maps the rest to a2, that is, [[a1]] = [0, 27) and [[a2]] = [27, 100). The
table boundary updates toR = {a1,a2} and the observation table is T0, shown in
Figure 7.4.

Table T0 is not closed and in order to fix this, the learner moves a1 to the set of
states S. To find the possible partitions of Σ at this new state a1, the learner ran-
domly chooses a sample {2, 18, 26, 46, 54} of letters and asks membership queries

7.2. LEARNING LANGUAGES OVER N,R 75

T0

ε

ε −
a1 +
a2 −

T1

ε

ε −
a1 +

a2 −
a1a3 −

T2

ε 11

ε − +
a1 + −
a2 − −

a1a3 − +

T3

ε 11

ε − +
a1 + −
a2 − −

a1a3 − +
a2a4 − −
a2a5 + −

T4−5

ε 11

ε − +
a1 + −
a2 − −

a1a3 − +
a1a6 + −
a2a4 − −
a2a5 + −

Figure 7.4: Observation tables used in Example 7.1.

concerning the words in {13 · 2, 13 · 18, 13 · 26, 13 · 46, 13 · 54}. Note that the
prefix used here is the representative of a1. The teacher classifies all words as
rejected. The new table is T1 with Σa1 = {a3}, µ(a3) = {2, 18, 26, 46, 54},
µ̂(a3) = 18, and [[a3]] = [0, 100). The new table is closed and the first hypothesis
A1 is conjectured.

The hypothesis is tested on a set of words, randomly chosen from some dis-
tribution, typically unknown to the learner. After some successful tests, a word
35 · 52 · 11 is found, which is accepted by A1 but is outside the target language.
The learner takes this word as a counter-example and analyzes it using the sym-
bolic breakpoint method. At iteration i = 2 of Procedure 13, condition (5.3) is
violated, in particular MQ(µ̂(ε · a2) · 11) = MQ(68 · 11) 6= flag = +. Thus, the
suffix 11 is added as a distinguishing word toE. The observation table T2 obtained
after adding the new suffix is, as expected, not closed. The table is made closed by
letting a2 be a new state, resulting in table T3, where Σa2 = {a4,a5}, µ(a4) =

{17, 27}, µ̂(a4) = 17, [[a4]] = [0, 45), µ(a5) = {64, 72, 94}, µ̂(a5) = 72 and
[[a5]] = [45, 100). The corresponding new conjecture is A3.

Automaton A3 is tested and a counter-example 12 · 73 · 4 is provided. The
breakpoint method discovers that condition (5.2) is violated because letter 73 is
not part of the semantics of a3. This letter is added as a new evidence to µ(a3).
The evidence incompatibility is solved by splitting the existing partition into two
subintervals. A new symbol a6 is added to Σa1 , such that µ(a6) = {73} and
[[a6]] = [63, 100). The new observation table and hypothesis automaton are T4 and
A4, respectively.

The next counter-example 52·47, also adds a new evidence, this time to symbol
a5. The classification of the new evidence matches the classification of a4, which
is a neighboring symbol. The boundary between [[a4]] and [[a5]] is moved from 45

to 55, thus resolving the evidence incompatibility. The new hypothesis A5 is suc-

76 CHAPTER 7. LEARNING WITHOUT A HELPFUL TEACHER

A1 A3

0 27 100

13 42 68 78 92

2 18 26 46 54
Σa1

Σε

ψ1

a1 a2

a3

0 27 45 100

13 42 68 78 92

2 18 26 46 54

17 27 64 72 94
Σa2

Σa1

Σε

ψ3

a1 a2

a3

a4 a5

ε a1

a2

a1

a3

ε a1

a2

a1

a4

a5
a3

a2

A4 A5

0 27 45 63 100

13 42 68 78 92

2 18 26 46 54 73

17 27 64 72 94
Σa2

Σa1

Σε

ψ4

a1 a2

a3

a4 a5

a6

0 27 55 63 100

13 42 68 78 92

2 18 26 46 54 73

17 27 47 64 72 94
Σa2

Σa1

Σε

ψ5

a1 a2

a3

a4 a5

a6

ε a1

a2

a1

a4

a5

a6

a3

a2

ε a1

a2

a1

a4

a5

a6

a3

a2

Figure 7.5: Symbolic automata and semantics function learned in Example 7.1.

cessfully tested without discovering any other counter-example and the algorithm
terminates while returning A5 as an answer. �

7.3 Learning Languages over Bn

We demonstrate the versatility of the algorithm, which was first developed for nu-
merical alphabets, by adapting it to languages over the alphabet Σ = Bn of Boolean
vectors accessed by variables {x1, . . . , xn}. All components of the algorithm re-
main the same except the construction of alphabet partitions and their modification
due to evidence incompatibility. These should be adapted to the particular nature
of the Boolean hyper-cube. The concrete semantics of the symbolic letters in a
state s, which can either form sub-cubes (terms) or finite unions of sub-cubes, will
be defined by a function ψs : Bn → Σs.

At any given moment, the raw data for inducing the alphabet partition at s is the

7.3. LEARNING LANGUAGES OVER Bn 77

Procedure 18 Make Evidence Compatible (without Helpful Teacher) - Bn

1: procedure EVCOMP

2: Let s ∈ S be a state for which M(s) > 0

3: UPDATE(Ts) . make tree consistent with sample
4: for all h ∈ Fs do . Update ξs
5: if ∃a ∈ Σs s.t. h = fµ̂(s)·µ̂(a) then
6: . h is already associated with an existing symbol a
7: ξs(h) = a

8: µ(a) = {ai ∈ µs : f i = h}
9: else . h does not match any pre-existing residual

10: Σs = Σs ∪ {b} . introduce new symbol b
11: R = R ∪ {s · b}
12: ξs(h) = b

13: µ(b) = {ai ∈ µs : f i = h}
14: µ̂(b) = select(µ(b))

15: end if
16: end for
17: ψs = ξs ◦ Ts
18: end procedure

sample {(ai, f i) : ai ∈ µs} where µs is the set of all evidences for state s, and for
every ai, f i = fµ̂(s)·ai is the residual associated with ai. Let Fs = {f i : ai ∈ µs}
be the set of all observed distinct residuals associated with the one-letter successors
of s. We view ψs, associated with a state s ∈ S, as a composition of two functions,
that is, ψs = ξs ◦ Tψs , where Tψs : Bn → Fs and ξs : Fs → Σs. To simplify the
notation, we use Ts instead of Tψs .

The function Ts is represented by a binary decision tree (see Section 2.2) whose
leaf nodes are labeled by elements of Fs and which is considered compatible with
the sample if it agrees with it on the elements of µs. The function ξs can be seen
as a relabeling that maps each distinct residual to a symbol from Σs. We let this
function be a bijection. Had we wanted to follow the “convex” partition approach
that we used for numerical alphabets, we should have associated a fresh symbol
with each leaf node of the tree, thus letting [[a]] be a cube/term for every a ∈ Σq.
However, unlike numerical alphabets, we prefer here to associate the same symbol
with multiple leaf nodes that share the same label (residual), allowing the semantics
of a symbol to be a finite union of cubes. This results in |Σs| = |Fs| and the
existence of at most one symbol that labels a transition between any pair of states.
For the function ξs to be well defined, we require that it sends each representative

78 CHAPTER 7. LEARNING WITHOUT A HELPFUL TEACHER

to the symbol it represents, i.e.,

ξs(fµ̂(s)·µ̂(a)) = a for all symbols a ∈ Σs. (7.1)

To learn the semantics ψs for state s, it suffices to learn the two functions ξs
and Ts. We first build Ts as a decision tree where all evidences mapped to the same
leaf node agree on their residual function. Hence, learning alphabet partitions is an
instance of learning decision trees using algorithms such as CART [BFSO84], ID3
[Qui86], or ID5 [Utg89] that construct a tree compatible with a labeled sample.
Then ξs may be updated and new symbols may be added to Σs if necessary.

Evidence incompatibility in a state s appears when the decision tree Ts is not
compatible with the sample. This may happen in three occasions during the execu-
tion of the algorithm, the first being symbol initialization. Recall that when a new
state s is introduced, we create a new symbol a and collect evidences for it, which
may have different residuals while being associated with the same single root node.
The second occasion occurs when new evidence is added to a symbol, making a
leaf node in the tree impure. Finally, when some new suffix is added to E, the set
Fs of distinct residuals (rows in the table) may increase and the labels of existing
evidences may change.

The simplest way to fix incompatibility of a decision tree is to split impure
leaf nodes until purification. However, this may lead to very deep trees and it is
preferable to reconstruct the tree each time the sample is updated in a way that
leads to incompatibility. In the simple (second) case where a new evidence is
added, we can use an incremental algorithm such as ID5, see Section 2.3, which
restructures only parts of the tree that need to be modified, leaving the rest of the
tree intact. This algorithm produces the same tree as a non-incremental algorithm
would, while performing less computation. In the third case, we build the tree from
scratch and this is also what we do after initialization where the incremental and
non-incremental algorithms coincide.

Once a tree Ts is made compatible with the sample, the semantics of the sym-
bolic alphabet, expressed via ψs, is updated. This is nothing but updating ξs to map
the possibly new residuals from Fs to Σs. First, with each symbol a that already
exists, we re-associate the leaves of Ts that agree with the labels of its representa-
tive such that (7.1) holds. Note that, µs may have changed but the representative
of an existing symbol remains the same. Then, in the case where the set Fs of
distinct residuals has increased in number, we introduce a new symbolic letter for
each new residual and select its representative.

The whole process is described in Procedure 18. We use UPDATE(Ts) for any
tree learning algorithm that can be used to make the tree compatible with the sam-
ple. This can be an incremental or non-incremental algorithm as the ones presented

7.3. LEARNING LANGUAGES OVER Bn 79

x2 = 1

x2
= 1

x2 = 0 ∧ x3 = 1
x2 = 0 ∧ x3 = 0

x
2 = 0

x1 = 0 ∧ x3 = 0

x1
= 1 ∨

(x1
= 0 ∧

x3
= 1)

x
1 = 1

x1
= 0

Figure 7.6: Minimal automaton accepting the target language used in Example 7.2.

in Section 2.3 and need not be specified here.

Example 7.2 (Learning Languages over Boolean Alphabets). In this example, the
algorithm is applied to learn the target language L over Σ = B4, which is shown in
Figure 7.6. We denote by X = {x1, x2, x3, x4} the set of Boolean variables used
to access the attributes of the alphabet. All tables encountered during the execution
of the algorithm are shown in Figure 7.7, and the semantics functions ψs, realized
by decision trees, appear in Figure 7.9 in the form of Karnaugh maps. All letters
that are used as evidences in the example are noted in Figure 7.9, where different
colors and shapes indicate different residuals.

The learner starts by initializing the observation table to T0. Like every new
state, the initial state ε admits one outgoing transition. Let us label this transi-
tion by the symbol a0 and let the symbolic alphabet be Σε = {a0}. Since a0

represents, initially, all concrete letters in Σ, the semantics function ψ0
ε is a de-

cision tree consisting of a single node, and [[a0]] = Σ. To find the behavior
of a0, a set of concrete letters is sampled and used as the evidence for it, e.g.,
µ(a0) = {(0000), (0010), (1011), (1000), (1101)}. The letter µ̂(a0) = (0000) is
chosen as a representative. The table is filled in after all evidences are queried.

As not all evidences behave the same, e.g., evidence (1101) ∈ µ(a0) behaves
differently than the representative (0000), the observation table T0 is not evidence
compatible and thus the partition at state ε needs refinement. The learner applies
the tree induction algorithm CART, which is used throughout this example, to re-
fine the BDT ψε, and finds that Σ is best split into two blocks based on the values
of variable x2. A new symbol a1, which is added to Σε, is used to denote the
new block (the new behavior). With this in mind, all letters for which x2 = 0 are
mapped to a0 and all letters for which x2 = 1 are mapped to a1. The semantics
function for ε updates to ψ1

ε.

80 CHAPTER 7. LEARNING WITHOUT A HELPFUL TEACHER

T0

ε

ε −
a0 −

T1

ε

ε −
a0 −
a1 +

T2

ε

ε −
a1 +

a0 −
a1a2 −
a1a3 +

T3

ε 0000

ε − −
a1 + −
a0 − −

a1a2 − +
a1a3 + −

T4

ε 0000

ε − −
a1 + −

a1a2 − +

a0 − −
a1a3 + −

a1a2a4 − −
a1a2a6 + −

T5−6

ε 0000

ε − −
a1 + −

a1a2 − +

a0 − −
a5 − +

a1a3 + −
a1a2a4 − −
a1a2a6 + −

T7

ε 0000 1110

ε − − +
a1 + − +

a1a2 − + −
a0 − − −
a5 − + −

a0a7 − − +
a0a8 − + −
a1a3 + − +

a1a2a4 − − −
a1a2a6 + − +

Figure 7.7: Observation tables generated during the execution of the algorithm on Exam-
ple 7.2.

The resulting observation table T1 is not closed. To close it, a1 becomes a
state. The symbolic alphabet for a1 is set initially to Σa1 = {a2}. The evidence
for the new state/symbol is sampled to µ(a1) = {(0000), (0010), (1011), (1000),

(1101)} and µ̂(a1) = (0000) is chosen as a representative. For simplicity, we
use the same sample for each new state, but this is not a requirement in applying
the algorithm. After solving evidence incompatibility that is caused by the sym-
bol initialization, we obtain the symbolic alphabet Σa1 = {a2,a3}, the semantics
function ψ = {ψ1

ε, ψa1}, and the observation table T2. The first conjectured au-
tomaton is A2, shown in Figure 7.8.

After testing the hypothesis A2, a counter-example w = (1010) · (0000) has
been found. The learner, applying the breakpoint method, detects the distinguish-
ing word (0000) and adds it to E. After posing the necessary MQ’s, the new ob-
servation table is T3. The table is neither closed nor evidence compatible. We first
close T3 and then solve the incompatibility at ε which was caused by changing the
residual functions of the evidence, see ψ2

ε.

The table is made closed by making a1a2 a state. After sampling evidence,

7.3. LEARNING LANGUAGES OVER Bn 81

A2 A5−6 A7

Transition functions

δ q0 q1

q0 a0 a1

q1 a2 a3

δ q0 q1 q2

q0 a0 a1 a5

q1 − a3 a2

q2 a4 a6 −

δ q0 q1 q2 q3

q0 − a1 a5 a0

q1 − a3 a2 −
q2 − a6 − a4

q3 a7 − a8 −

Hypotheses

q0 q1

a0

a1 a3

a2

q0 q1

q2

a0

a3a1

a5
a2

a6

a4

q0 q1

q2q3

a3a1

a5

a0
a2

a6

a4

a7

a8

Figure 7.8: Intermediate and final Automata conjectures made in Example 7.2.

ψ0
ε ψ1

ε ψ2
ε ψ3

ε ψ4
ε

00

01

11

10

00 01 11 10

a0

00

01

11

10

00 01 11 10

a0

a1

00

01

11

10

00 01 11 10

a0

a1

00

01

11

10

00 01 11 10

a0

a1 a5

00

01

11

10

00 01 11 10

a0

a1

a5

ψa1 ψa1a2 ψa0

00

01

11

10

00 01 11 10

a2

a3

00

01

11

10

00 01 11 10

a4

a4a6
00

01

11

10

00 01 11 10

a7

a8

Figure 7.9: Semantics functions used in Example 7.2. We show the evolution of ψε over
time, while for the other states we show only the final partition. We use symbols such as
{ , , } to indicate different residuals.

82 CHAPTER 7. LEARNING WITHOUT A HELPFUL TEACHER

selecting the representative, and building an evidence compatible partition at a1a2,
defined by ψa1a2 , the table updates to T4. Now, we return to state ε and solve
the evidence incompatibility that appeared in ψ2

ε when (0000) was added to E.
The decision tree ψε is reconstructed from scratch to become compatible with the
updated sample. The symbols are rearranged such that they match the residuals of
their representatives. A new symbol a5 is added to the symbolic alphabet. The
new evidence compatible partition is ψ3

ε.
The new table is T5. The new hypothesis A5 is tested for equivalence, pro-

viding the counter-example w = (1111). Applying the breakpoint method on the
new counter-example shows that the letter (1111) does not behave like a5 as it was
assumed in the hypothesis. The letter (1111) is, thus, added to µ(a5) as a new
evidence, causing once more an incompatibility at the initial state. The BDT ψε
is fixed and updated to ψ4

ε. Since this incompatibility is due to a new evidence
and not to an update of the whole sample, the tree is updated using an incremental
algorithm. Observe that this last counter-example fixes the partition by rearranging
the sub-cubes that form the partition of B4 without adding any new transition. The
observation table remains unchanged.

Testing the next hypothesis A6, provides the counter-example w = (1000) ·
(1000)·(0000)·(0000)·(1110). The treatment of the counter-example adds the new
suffix (1110) to E. This distinguishes the initial state from the prefix a0, which
is now identified as a state. The partition at state a0, after refining and making
evidence compatible, is given by ψa0 , and the observation table T7 is obtained.
The new final hypothesis A7 is tested without discovering any counter-example
and the algorithm terminates.

8

C
H

A
P

T
E

R

Theoretical Analysis:
Complexity and Termination

In this chapter, we study the termination and complexity of the algorithm, first
under the assumption of a helpful teacher and then in the random testing setting.
Most of the analysis resembles that of L∗ except for the special feature of sym-
bolic learning, the modification of partition boundaries without adding new states
and transitions, which requires a special treatment. We also propose one way to
define probabilities on Σ∗ and show how to compute the probability of a misclas-
sification error based on the symmetric difference between the target language and
a hypothesis.

8.1 Updating the Hypothesis: Counter-Examples

Let L ⊆ Σ∗ be the target language and let A be the minimal symbolic automaton
recognizing L such that L = L(A). We assume that A has n states and at most
m outgoing transitions per state, that is, a symbolic alphabet Σ =

⊎
q Σq such that

|Σq| ≤ m for every state q.
A typical run of the algorithm produces a sequence {Ai} of hypotheses with

each Ai different from Ai−1, see Figure 8.1. We say that Ai is expansive if it
is different from Ai−1 in the transition graph, that is, Ai has more states and/or
transitions than Ai−1. When the structure of the transition graph does not change
and only the partition boundaries differ, we call Ai a non-expansive hypothesis.
Our goal is to study the behavior of this sequence under different assumptions and
in particular to show under what conditions it is finite. Moreover, we show under
which conditions exact learnability can be replaced by PAC learnability.

Finite number of expansions. Our learning algorithm produces, by construction,

83

84 CHAPTER 8. THEORETICAL ANALYSIS

q0 q1
'a1'

'a0'

q0

q1

'a5'

q2

'a1''a0'

'a3', 'a4'

'a2'

q0

q1

'a5'

q2

'a1'
'a0'

'a4'

'a3'
q3

'a2'

'a6'

q0 q1

q2
'a1'

q3'a2'

'a3'

'a0'

'a6'

q4
'a4'

'a5'

'a7'

q0

q1

q3'a2'

q2

'a1'

'a6'

'a0'

'a4'

'a3'
q4

'a5'

'a10'

'a7'

'a8'

'a9'

A1 A2 A3
. . .

Figure 8.1: A sequence of hypothesis automata {Ai} produced during a run of the algo-
rithm. We use the symbols { , } to denote expansive and non-expansive hypotheses,
respectively.

minimal automata and the size of the hypothesis cannot exceed the size of the
symbolic automaton A. Consequently, the number of expansive hypotheses is
bounded by O(mn), because at most n − 1 involve the discovery of a new state
and at most n(m−1) involve a new transition. What remains to be shown is that the
number of non-expansive hypotheses is bounded. This type of hypothesis is highly
influenced by the type of teacher and his ability to answer equivalence queries
correctly, as well as the nature of the alphabet. Before moving on to study the
special cases of teachers and alphabets, we explain in more detail how a boundary
modification affects the hypothesis. Then, it is important to define the error of a
hypothesis and how to compute this.

Boundary modifications. To infer the partitions, the learner uses partial infor-
mation and hence, boundaries are often only approximated. As a result, a word
may be misclassified just by the fact that it involves a letter falling on the wrong
side of the boundary. Such a word is then provided as a counter-example. The
misclassified letter is added and yields evidence incompatibility, which is solved
by modifying the existing boundary. This procedure may not affect the structure of
the hypothesis automaton.

Let us consider a partition at some state of the hypothesis. Figure 8.2 shows
such an example with a one dimensional numerical alphabet. Let the real boundary
p between two neighboring intervals be approximated by p′ = split(a, b), where a
and b are evidences with different residuals. At this point the split(a, b) method,
which always results a point in [a, b], is not specified. The letters in [p, p′] are
wrongly classified as equivalent to a. We call this interval the boundary error. This
boundary is modified when a new evidence b′ is added to [p, p′]. The partitioning
point p′ updates to p′′ = split(a, b′) in the next hypothesis.

8.2 Hypothesis Error

Let L ⊆ Σ∗ be the target language and let A be a conjectured automaton accepting
the language LA. The language LA is not equivalent to L when some states or
transitions are still missing, or there exists a partition that contains some boundary
error.

8.2. HYPOTHESIS ERROR 85

pa b
|
p′

error
2× expected error

pa b
|
p′

b′

pa bb′

|
p′

update boundary

Figure 8.2: A partition boundary where p, the real partition boundary, is approximated by
p′ = split(a, b), where a and b are evidences with different residuals. This is the case
where p < p′ and for the case p′ < p we get some a′ in the counter-example.

The quality of A is determined by its distance from L, denoted by d(L,LA).
One way1 to define this distance is to measure the probability of error, that is, the
probability of choosing a misclassified word w ∈ Σ∗ that belongs to one language
but not to the other. This definition includes all possible sources of error, i.e.,
incomplete structure, boundary errors.

The set of all misclassified words is exactly the symmetric difference of the
languages L and LA, i.e., L ⊕ LA = L \ LA] LA \ L. Hence, we define the
distance as

d(L,LA) = P(L⊕ LA),

where P is a probability distribution over Σ∗.
When an automaton representation of the target language is available, one can

find the probability of the error by first computing the symmetric difference of the
target and conjectured languages, and then computing the probability of this lan-
guage. To compute the probability we use the relative volumes that are described
below.

8.2.1 A Probability Distribution on Σ∗

In this section we define a natural probability distribution P over the set of all
words Σ∗, where Σ is an input alphabet. First we choose some distribution P` :

N → [0, 1], which provides the probability of a word w to be of certain length.
Then, each letter in the word obeys a uniform distribution over the alphabet, that is
PΣ(a) = 1/|Σ| for all a ∈ Σ. The probability of a given word w = a1 · · · ak ∈ Σ∗

1Other ways to measure the error (or distance of two languages) have been proposed in the liter-
ature, see for instance [SVVV14].

86 CHAPTER 8. THEORETICAL ANALYSIS

can then be defined as

P(a1 · · · ak) = P`(k)
k∏
i=1

PΣ(ai) =
P`(k)

|Σ|k
.

As usual, probability distributions PΣ and P extend to sets of letters and words,
respectively. Thus,

PΣ(I) =
∑
a∈I
PΣ(a) = |I|/|Σ|, and

P(L) =
∑
w∈L
P(w),

where I ⊆ Σ and L ⊆ Σ∗.
By partitioning the set of words according to their length, the probability of a

language can be written as

P(L) =

∞∑
k=0

P
(
L ∩ Σk

)
=
∞∑
k=0

P`(k) · P
(
L
∣∣ Σk

)
,

(8.1)

where P
(
L
∣∣Σk
)

is the probability that a word belongs to L given its length is k.
We call the last probability the relative k-volume of L and denote it as Dk(L). In
the following we show how to compute these relative k-volumes using stochastic
matrices.

8.2.2 Computing the Relative Volumes

The relative k-volume of a language L ⊆ Σ∗, where k ≥ 0 is an integer, is defined
as Dk(L) = P(L| Σk) = vol(Lk)/vol(Σ

k) where vol(Σk) = |Σ|k and vol(Lk) is
the volume of Lk = L ∩ Σk, which is the subset of L that contains only the words
of length k. The volume vol(Lk) is defined and computed recursively by value
iteration on the structure of the automaton that recognizes L [ABD15].

Let A = (Σ,Σ, ψ,Q, δ, q0, F) be a symbolic automaton such that L = L(A).
We can define on this automaton, a volume transition matrix V = (νij) ∈M|Q|(R),
where νij denotes the volume of direct transitions from state i to state j in A de-
fined as νij = |{a ∈ Σ : δ(i, ψ(a)) = j}|. In the symbolic automata setting, this is
equivalent to νij = | ∪a∈Σi,δ(i,a)=j [[a]]|. Intuitively, this indicates the number of
possible ways there are for going from state i to state j in one step. Note that, for

8.2. HYPOTHESIS ERROR 87

q0

q1

q2

q3

a0

a1

a2

a3

a4

a5

a6

a7

0 25 40 60 90 100

Σq3

Σq2

Σq1

Σq0

ψ
a0 a1

a2 a3

a4 a5

a6 a7

Figure 8.3: A symbolic automaton A and its semantics.

a complete and deterministic automaton A,
∑|Q|

j=0 νij = vol(Σ) = |Σ| for every
i ∈ Q, and hence V/|Σ| forms a right stochastic matrix. We can find all powers of
the matrix V , such that V 0 is the identity matrix, V 1 = V , and V n = V n−1V for
all n > 1.

The element ν(n)
ij , which denotes the (i, j) entry of the matrix V n, gives the

number of possible paths of length n that lead from a state i to j. The volume of
Lk is given by

vol(Lk) =
∑
j∈F

ν
(k)
q0j
,

where q0 is the initial state and F is the set of accepting states in A.
We illustrate this computation with an example. Let Σ = [0, 100) ⊆ R be an

alphabet and let L ⊆ Σ∗ be a language, accepted by the symbolic automaton A
shown in Figure 8.3. Each state qi in the automaton has two outgoing transitions
labeled by a2i and a2i+1, respectively. Given that the volume of an interval [a, b)

is vol([a, b)) = b− a, the volume transition matrix defined by A is

V =

0 vol(a0) vol(a1) 0

vol(a2) 0 0 vol(a3)

0 vol(a4) 0 vol(a5)

0 0 vol(a6) vol(a7)

 =

0 25 75 0

40 0 0 60

0 60 0 40

0 0 90 10

 .

To find the volume of Lk we compute the matrix V k and sum up all numbers of
the first row of matrix V k that correspond to final states. In the example this is
the last element of the first row. In Figure 8.4, we present some powers of the
volume transition matrix, where the values are already normalized. According to
this figure, we see that vol(L1) = 0 and vol(L2) = 45, etc., and that D2(L) =

0.45, D45(L) = 0.315.

88 CHAPTER 8. THEORETICAL ANALYSIS

V 0 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 V 3/|Σ3| =

0.18 0.025 0.48 0.315
0.04 0.5040 0.054 0.4020

0 0.276 0.54 0.184
0.216 0.054 0.333 0.3970

V 2/|Σ2| =

0.1 0.45 0 0.45
0 0.1 0.84 0.06

0.24 0 0.36 0.4
0 0.54 0.09 0.37

 V n/|Σn| =

0.0945 0.2362 0.3543 0.3150
0.0945 0.2362 0.3543 0.3150
0.0945 0.2362 0.3543 0.3150
0.0945 0.2362 0.3543 0.3150

for all n > 30.

Figure 8.4: Some powers of the volume transition matrix V defined by A of Figure 8.3.

8.3 Complexity and Termination

The termination and complexity of the algorithm are highly affected by the nature
of the teacher, that is, the way equivalence queries are realized. We considered two
types of equivalence checking. The first is a helpful teacher (Chapter 6), which
will always provide a counter-example when there exists one, and moreover, this
counter-example is minimal. The second (Chapter 7) implements equivalence by
random sampling from the same distribution used to compute the error. This im-
plementation may, of course, miss some counter-examples, but some of its runs
may also have the opposite effect and produce a series of counter-examples that
reduce the error as little as possible. In the case where Σ is finite this may lead to a
behavior as bad as that of a concrete algorithm and in the case of alphabet R, even
to non termination. However, as we will argue, under probabilistic assumptions,
the probability of such a scenario is zero.

8.3.1 Using a Helpful Teacher (Minimal Counter-Examples)

First, we examine the case where a helpful teacher is present. Such a teacher, as
presented in Chapter 6, returns a minimal counter-example whenever a conjecture
is wrong. The complexity of the symbolic algorithm is influenced not by the size
of the alphabet but by the resolution (partition size) with which we observe it.

Concerning the size of the observation table T , the set of prefixes S mono-
tonically increases until it reaches the size of exactly n elements. Since the table,
by construction, is always kept reduced, the elements in S represent exactly the
states of the automaton. The size of the boundary cannot exceed the total number
of transitions in the automaton, and thus it is bounded by the size mn−n+ 1. The
number of suffixes in E, playing a distinguishing role for the states of the automa-
ton, range between log2 n and n. Taking all these into account, we can conclude
that the size of the table ranges between (n+m) log2 n and n(mn+ 1).

Regarding the size of the samples, and in consequence the number of member-
ship queries, we discuss separately totally and partially ordered alphabets.

8.3. COMPLEXITY AND TERMINATION 89

In the case of numerical totally-ordered alphabets, the learner uses Proce-
dure 14 to treat counter-examples. Partitions are defined as closed-open intervals,
the number of sufficient evidence, which is needed to define a partition block, is
exactly one, the minimal letter belonging to the interval. The evidence incompat-
ibility, caused by a new evidence, is immediately solved by splitting the current
partition block and introducing a transition. As only one evidence is used per
transition, the size of the concrete sample coincides with the size of the symbolic
sample associated with the table, and the number of membership queries needed is
O(mn2).

Moreover, due to minimality of the counter-examples in the length-lexicographic
order, choosing as evidence the minimal element of a partition block the bound-
aries are correctly defined and allow no error. This way, the run of the algorithm
does not contain any non-expansive hypotheses. The algorithm terminates after all
states and transitions have been discovered and defined. Hence, for termination at
most O(mn) equivalence queries are used in total, from which at most n − 1 of
them add a new state to the hypothesis, and at most n(m− 1) add a transition.

When the alphabet is partially-ordered, we have seen in Section 6.2 that each
partition block Fi may need multiple evidences in order to be fully defined. For
this, some additional queries are asked. We know that when we use monotone
partitions, as in Section 6.2, a finite (at most l) number of incomparable minimal
points is sufficient to fully define Fi. Hence, for every row in T , at most (l−1) sup-
plementary words are added to the concrete sample. The number of membership
queries is thus O(n2ml).

Furthermore, in the case of partially-ordered alphabets, additional counter-
examples may be given in order to refine existing partitions. That is, at most l − 1

additional evidences are returned per partition block. This implies that the number
of non-expansive hypotheses is limited to nm(l−1). We conclude that the number
of equivalence queries is bounded by O(mn2) if l < n and O(lmn) otherwise.

Proposition 8.1. Let L ⊆ Σ∗ be a target language. The symbolic learning al-
gorithm, which uses a helpful teacher, terminates with a correct conjecture after
asking at most O(n2ml) membership queries and at most O(lmn) equivalence
queries.

8.3.2 Equivalence using Random Tests

The algorithm implements equivalence checks by comparing membership in L and
in LA for words randomly selected according to a probability distribution P over
Σ∗. The procedure that performs equivalence testing is shown in Procedure 16.
It takes as input a hypothesis Ai and the accuracy and confidence parameters and

90 CHAPTER 8. THEORETICAL ANALYSIS

returns either a True statement or a counter-example. Note that testing does not
guarantee the discovery of a counter-example when the conjecture is wrong.

Within this setting, the learner can only guarantee to return an approximation of
the target language as there is no way to ensure exact learnability. We use the PAC
(probably approximately correct) learnability criterion instead, where the learner
terminates with an automaton, which is almost always a good approximation of the
target language L. The approximation measure that is used is the distance between
the conjecture language and the target, see Section 8.2.

Definition 8.2 (PAC Learning [Val84]). A learning algorithm learns a language L
in a probably-approximately correct (PAC) manner with probability parameters ε
(accuracy) and δ (confidence) if its output A satisfies

Pr(P(L⊕ LA) ≤ ε) ≥ 1− δ, (8.2)

The minimum number of tests sufficient to conclude that a hypothesis A sat-
isfies (8.2) depends on the accuracy and confidence parameters as well as the
number of previous hypotheses that are made. This number was introduced in
[Ang87, Ang88] for the class of automata and applies in a straightforward way to
the symbolic case.

Proposition 8.3. The symbolic learning algorithm PAC-learns a language L if the
i-th equivalence query tests ri = 1

ε (ln
1
δ + (i + 1) ln 2) random words without

finding a counter-example.

Proof. Let A be the i-th hypothesis tested. We show that after testing ri =
1
ε (ln

1
δ + (i+ 1) ln 2) random words, then (8.2) holds, or equivalently,

Pr(P(L⊕ LA) ≥ ε) ≤ δ.

Taking into account that a) the probability of choosing a word which does not
belong to the symmetric difference is (1 − p) when the probability of finding a
counter-example is p, and b) all words are independently drawn from the same
probability distribution, then not drawing a counter-example after ri draws implies
that

Pr(P(L⊕ LA) ≥ ε) ≤ (1− ε)ri ≤
∞∑
i=1

(1− ε)ri ≤
∞∑
i=1

e−εri ≤
∞∑
i=1

δ

2i+1
≤ δ

�

As for termination, it is always guaranteed when the alphabet is finite, but when
Σ is a subset of R there is a theoretical possibility of an infinite sequence of non-

8.3. COMPLEXITY AND TERMINATION 91

expansive hypotheses. We give below an informal argument for the improbability
of such a behavior of the algorithm.

In concrete automata, a sample whose prefixes contains all words of size up
to 2n will exercise all the paths in the automaton and is sufficient to discover all
states and transitions. In the symbolic setting, the same holds for valid symbolic
words and since all the transition guards are intervals of a positive measure, we
will obtain such a sample after a finite number of equivalence queries. Hence we
can restrict our discussion to a sequence of non-expansive hypotheses applied to
the final automaton.

Secondly, we have the following about what happens when we modify an error
interval [p, p′] associated with a boundary between two neighboring intervals.

Proposition 8.4. Each time an error interval [p, p′] is modified, the upper bound
on its size is divided by at least 2

Proof. Let a, b ∈ Σ be two consecutive evidences with different residuals in the
neighboring intervals. Let p ∈ [a, b] be the real boundary which is approximated
by p′ = split(a, b), as shown in Figure 8.2. Without loss of generality, let p < p′.
The boundary error satisfies |p − p′| ≤ |a−b|

2 . Now, let c ∈ [p, p′] be an evidence
indicating that p′ is wrong. It updates the approximation to p′′ = split(a, c). The
upper bound on the error is reduced at least to half, |p− p′′| ≤ |a−c|2 ≤ |a−b|4 . �

Naturally, this will decrease by two the bound on the probability to get a
counter-example involving this interval in a subsequent step. To have an infinite
run of the algorithm requires that each equivalence query (which involves ri tests)
yields a counter-example. Each such counter-example modifies at least one error
interval and halves the bounds on its size. It can be shown, based on probability
estimates, that the sizes of all boundary intervals decrease with some rate which is
at least quadratic in the number of tests, and so does the probability of finding a
counter-example. This rate of decrease is faster then the linear growth in the num-
ber of queries due to the ri formula and, hence, the scenario of an infinite sequence
of equivalence queries has a probability zero.

92 CHAPTER 8. THEORETICAL ANALYSIS

9

C
H

A
P

T
E

R

Empirical Results

The symbolic learning algorithm has been implemented and applied to several
case studies. In this chapter, we first give some insights on the implementation of
the algorithms and procedures in Section 9.1. Then in Section 9.2, we present a
simple example of learning a language over a subset of the reals, which illustrates
the behavior of the algorithm, especially in the setting of PAC learnability. In Sec-
tion 9.3, we compare the algorithm’s performance to the three concrete learning
algorithms presented in Chapter 3. For the comparison to be feasible, it is neces-
sary to restrict ourselves to languages whose alphabet is finite. Another case study
appears in Section 9.4, where the target languages represent valid types of pass-
words that are defined over the ASCII characters. Finally, we study the symbolic
algorithm for Boolean vectors and compare its performance with the numerical
case in Sections 9.5 and 9.6, respectively.

9.1 General Comments on the Implementation

All algorithms presented in this thesis have been implemented using Python, in a
prototype implementation. Preserving the notation used in the previous chapters,
the method sample(Σ, k) in Procedure 10 returns a sample of size k = 5 chosen
uniformly from Σ, and the method select(A) chooses one representative from a
uniform distribution over a set of evidences A. The split(a, b) method, used in
Procedure 17, returns the middle point of the interval (a, b), where a, b ∈ N or R.

The teacher is implemented separately and it can be used by all types of learn-
ers. A teacher is characterized as helpful of not, depending on the way equivalence
is checked. In both cases, we let H denote the hypothesis automaton given to the
teacher. For a helpful teacher, the target language L ⊆ Σ∗ is given as a DFA or
a symbolic automaton A. Then, the teacher computes the symmetric difference

93

94 CHAPTER 9. EMPIRICAL RESULTS

L(A)⊕ L(H) and checks emptiness. It returns a true statement if this language is
empty. Otherwise, it finds the shortest accepting paths in the automaton and returns
the lexicographically minimal word in these as a counter-example.

On the other hand, a non-helpful teacher checks equivalence through testing. In
this case, the target language need not necessarily be represented as an automaton.
To check equivalence, the membership of random words is compared for H and L.
The sufficient number of tested words is set to 1

ε (ln
1
δ + (i + 1) ln 2) where ε and

δ are parameters given by the user, and i is a counter for the number of hypotheses
made so far.

0 10 20 30 40

Length

0.00

0.02

0.04

0.06

0.08

0.10

P
ro

b
a
b
ili

ty

Histogram of Words′ Length : µ= 13. 53, σ= 7. 75

log-normal

Figure 9.1: The log-normal distribution Λ(13.53, 7.752) along with its normalization over
the natural numbers. This distribution is used for the experiments presented in Section 9.4.

To perform testing we implemented an oracle that produces random words
from Σ∗. Since determining a probability distribution on Σ∗ is not a trivial task,
we implemented this by combining two distributions (see Section 8.2.1). The first
distribution P`, defined over N, determines the length of the random word; while
the second distribution PΣ, defined over the concrete alphabet Σ, selects the letters
that fill each position in the word. In order to prevent very long counter-examples,
it is preferable to use a right skewed distribution to determine the length of the ran-
dom words. We use the log-normal distribution1 in our experiments, normalized
over the natural numbers; Figure 9.1 shows the log-normal distribution, which is
used for the experiments in Section 9.4. In all our experiments, we use a uniform
distribution over the alphabet Σ.

It is important to state here that all comparisons that appear in the sequel pose

1 The log-normal distribution is given by Λ(x;µ, σ2) = 1

xσ
√
2π
e−

1
2 (ln x−µ

σ)
2

, where the variable
x > 0 and the parameters µ and σ > 0 are real numbers. Intuitively, one can think that if u
is distributed according to the normal distribution N(µ, σ2) and u = lnx, then x is distributed
according to the log-normal distribution Λ(µ, σ2).

9.2. ON THE BEHAVIOR OF THE SYMBOLIC LEARNING ALGORITHM 95

q0 q3

q2
[0, 100)

q4
[1, 7)

[0,1) [7, 100)

[0, 100)

[0, 24)
[24, 61)

q1

[61, 100)

[12, 65)

[65, 100)

[8, 12)

[0, 8)

Figure 9.2: The minimal automaton accepting the target language L ⊆ Σ∗, where Σ =
[0, 100) ⊆ R, used for the empirical evaluation in Section 9.2.

queries to the same teacher and they are compared on learning the same target
languages. Any distribution over Σ∗ that is used during the testing phase does
not change until a learner terminates, and the error is measured using this same
distribution. The performance is measured in terms of time, number of queries and
size of the final observation table and the samples.

9.2 On the Behavior of the Symbolic Learning Algorithm

When the equivalence query is realized by random testing, different runs of the
same algorithm may produce slightly different hypotheses. In this section, our aim
is to show how different counter-examples impact the evolution of the learning pro-
cess. We observe the final hypothesis as well as the intermediate conjectures made
by the learner and discuss the performance of the symbolic algorithm according to
the automaton size, the number of queries and the approximation error. We apply
the symbolic algorithm to the target language L ⊆ Σ∗, accepted by the automaton
in Figure 9.2, where the concrete input alphabet is Σ = [0, 100) ⊂ R. We set the
accuracy and confidence parameters to ε = δ = 0.05. For our discussion, we have
selected four representative runs that appear in Figure 9.3.

The symbolic algorithm manages to recover the whole structure of the target
automaton in the majority of the runs, allowing a small error in the partition bound-
aries, see for instance, the runsR2 andR3. However, we also observe runs, such as
R4, where the final error is small, less than 0.2% as required, even though there are
missing transitions or states in the final hypothesis. Finally, since PAC learnability
is used as the termination criterion, the algorithm terminates with probability 95%

(δ = 5%) with a hypothesis with a total error greater than ε = 5%. This happens
in run R1, where the learner failed to discover all states of the target, resulting in
an error 0.0528. Figure 9.4 shows how the error evolves for all hypotheses made
along the learning path for each run.

96 CHAPTER 9. EMPIRICAL RESULTS

R1 R2 R3 R4

q0 q1
'a1'

'a0'

q0 q1

'a1'

'a2'

'a0'
q0 q1

'a1'

'a0'

q0 q1

'a2'

'a1'

'a0'

q0

q1

q2

'a1''a0'

'a3', 'a4'

'a2'

q0 q1

q2
'a1'

q3'a2'

'a3'

'a0'

'a4'

q0

q1

q2

'a1''a0'

'a2'

'a3'

q0

q1

'a2'

q2

'a1''a0'

'a4', 'a5'

'a3'

q0

q1

'a5'

q2

'a1''a0'

'a3', 'a4'

'a2'

q0 q1

q2
'a1'

q3'a2'

'a3'

'a0'

'a6'

q4
'a4'

'a5'

'a7'

q0

q1

'a5'

q2

'a1''a0'

'a2', 'a4'

'a3'

q0

q1

q3
'a2'

q2

'a1'

'a6'

'a0'

'a4'

'a3'

q4
'a5'

'a7'

'a8'

q0

q1

'a5'

q2

'a1''a0'

'a3'

'a2'

q3
'a4'

'a6'

'a7'
q0

q1

q2'a1'

q3

'a2'

'a3'

'a0'

'a8'

'a6'

q4

'a4'

'a5'

'a7'

q0

q1

'a5'

q2

'a1'
'a0'

'a4'

'a3'
q3

'a2'

'a6'

q0

q1

q3
'a2'

q2

'a1'

'a6'

'a0'

'a4'

'a3'

q4
'a5'

'a7'

'a8'

'a9'

q0

q1

q2'a1'

q3

'a2'

'a3'

'a0'

'a8'

'a6'
q4

'a4'

'a5'

'a7'

'a9'

q0

q1

'a5'

q2

'a1''a0'

'a4'

'a3'

q3
'a2'

'a6'

'a7'

q0

q1

q3'a2'

q2

'a1'

'a6'

'a0'

'a4'

'a3'
q4

'a5'

'a10'

'a7'

'a8'

'a9'

q0

q1

'a10'

q2'a1'

q3

'a2'

'a3'

'a0'

'a8'

'a6'
q4

'a4'

'a5'

'a7'

'a9'

q0

q1

q4'a5'

q2

'a1'

'a8'

'a0'

'a4'

'a3'
q3

'a2'

'a9'

'a6'

'a7'

q0

q1

'a10'

q2'a1'

q3

'a2'

'a3'

'a0'

'a8'

'a6'
q4

'a4'

'a5'

'a7'

'a9'

'a11'

q0

q1

'a11'

q4'a5'

q2

'a1'

'a8'

'a0'

'a4'

'a3'
q3

'a2'

'a9'

'a6'

'a7'

'a10'

|S| |Σ| |MT | |MT | MQ’s EQ’s tests error (D)

Run R1 4 8 36 83 153 10 750 5.28%
Run R2 5 12 39 116 1052 13 2040 0.17%
Run R3 5 12 52 149 820 13 1346 0.26%
Run R4 5 11 36 105 1653 10 4235 0.17%

Figure 9.3: The evolution of the conjectured automata in four different runs of the symbolic
algorithm. The target language is accepted by the minimal automaton shown in Figure 9.2.
Columns |S| and |Σ| denote the number of states and transitions learned. The size of the
symbolic and concrete samples appear in columns |MT | and |MT |, respectively; MQ’s
denotes the total number of membership queries used to fill the table, to fix evidence in-
compatibility and to treat counter-examples. The number of equivalence queries, as well
as the total number of words tested, are shown in columns EQ’s and tests, respectively. The
last column shows the approximation error of the final hypothesis.

9.3. COMPARISON WITH OTHER ALGORITHMS 97

0 2 4 6 8 10 12 14 16
hypothesis

0.0

0.1

0.2

0.3

0.4

0.5

0.6
er

ro
r

Run 1
Run 2
Run 3
Run 4

Figure 9.4: The error of each hypothesis made during the runs of the symbolic algorithm
described in Section 9.2.

9.3 Comparison with Other Algorithms

In this section, we compare the performance of the symbolic learning algorithm
(SL) with the three non-symbolic learning algorithms presented and discussed in
Chapter 3. Namely, the L∗ (L) algorithm [Ang87], the reduced L∗ (LR) [RS93],
and the suffixes variation of L∗ (LM) taken from [MP95].

The four algorithms are tested on learning the same target languages. The input
alphabet Σ, which is adapted to fit the needs of the concrete algorithms, is a finite
subset of N. All algorithms have access to the same non-helpful teacher and use
the same membership and equivalence queries. The target languages, provided as
minimal symbolic automata, are randomly generated. The accuracy and confidence
parameters are kept fixed to ε = δ = 0.05.

We compare the performance of the different algorithms based on two main
criteria, the size of the input alphabet and the size of target automaton. To this end,
we perform two groups of experiments. In the first group, the four learning algo-
rithms are asked to learn target languages that share a fixed structure of a minimal
automaton that consists of 15 states and a maximum of 5 outgoing transitions per
state. Then the alphabet size ranges from 2 to 200. The partitions of the alphabet
at each state are randomly generated. An example of such an automaton appears
in Figure 9.5. In the second group, we are interested in testing the effect of the
automaton size. For this, we fix the alphabet to Σ = {0, . . . , 150} and generate
automata of a random structure. We let the number of states, in their minimal
representation, to range from 3 to 45 and allow a maximal number of 5 partition
blocks per state.

The different algorithms are tested and compared in terms of several size and

98 CHAPTER 9. EMPIRICAL RESULTS

start q0

[0, 75]

q7

[133, 146]

q9

[147, 149]

q5

[126, 132]

q1

[76, 125]

q3

[7, 149]

[0, 6]
q6

[0, 149]

q11

[18, 62]

q12

[63, 149]

q4[0, 6]

[7, 17]

[0, 41]

[42, 149]

[0, 8]

q14

[137, 149]

q2

[9, 47]

[48, 136]

q13
q8

[120, 149]

[0, 119]

[0, 108]

[109, 140]

[141, 149] [90, 149]

[0, 25] q10
[26, 89]

[47, 87]

[141, 149]

[88, 140]

[0, 46]

[113, 149]

[0, 73]

[74, 112]

[0, 149]

[0, 64]

[65, 72]

[144, 149]

[73, 143]

[0, 46]

[61, 149]

[47, 60]

[123, 149]

[6, 122]

[0, 5]

Figure 9.5: An example of an automaton used in the comparison of Section 9.3, where
the automaton structure is kept fixed while the alphabet is increasing and the partitions are
randomly generated.

time aspects. All results are measured and averaged over multiple runs for each
target automaton. Specifically, for each different size of alphabet (in the first group)
and each size of automaton (in the second group), we generate 10 different target
languages and apply each algorithm 10 times.

We measured the total number of equivalence queries needed until reaching a
final hypothesis, the number of intermediate conjectures made by the learner, the
number of counter-examples found, as well as the total number of tests performed
to guarantee the validity of a hypothesis. Moreover, the number of membership
queries is measured, counting separately the queries that are used to characterize
the sample, to treat the counter-examples, and used during the testing phase. In
addition to the final size of the table (prefixes, boundary, suffixes) and the size
of the samples, we also compare the number of states and transitions discovered
upon termination. The quality of each final hypothesis is measured by mean of the
error as defined in Chapter 8. Finally, we compare the relative timings, such as the
total execution time, the total time spent for testing, and the time spent in treating
counter-examples.

In the following, we show the most interesting experimental results and discuss
the differences in the behavior of the algorithms. We display the results of the two
groups of experiments in Figures 9.6 and 9.8, respectively.

To start with, the main results of the first group of experiments, where the algo-
rithms are compared on different alphabet sizes, appear in Figure 9.6. The figure
shows, the performance of all four algorithms with respect to the total number of
membership and equivalence queries, the number of states conjectured in the final

9.3. COMPARISON WITH OTHER ALGORITHMS 99

0

20

40

60

80

100

120

#
M

Q
s

(×
1
0

3
)

SL L LM LR

10
20
30
40
50
60
70
80

#
E
Q

s

13.6
13.8
14.0
14.2
14.4
14.6
14.8
15.0
15.2

#
st

a
te

s
le

a
rn

e
d

0 50 100 150 200

alphabet size |Σ|

0

20

40

60

80

ti
m

e
 (

se
c)

Figure 9.6: A comparison on the average number of membership queries posed, the number
of equivalence checks, the states learned and the execution time for each of the algorithms:
SL (the symbolic algorithm), L ([Ang87]), LM ([MP95]), and LR ([RS93]). The four al-
gorithms are compared over several concrete alphabet sizes that ranges from 10 to 200
letters.

hypothesis, and the average execution times.

As expected, the symbolic algorithm admits the most modest growth in the
number of membership queries, shown in the first row of Figure 9.6. It outper-
forms, in this sense, the best of the concrete algorithms, that is, the reduced al-
gorithm (LR). This becomes more evident when the alphabet size grows beyond
a certain point. We present the same results in Figure 9.7, where now the num-

100 CHAPTER 9. EMPIRICAL RESULTS

10 25 50 75 100 150 200

alphabet size

0

10

20

30

40

50

60

70

80

#
M

Q
s

(×
10

3
)

SL LR L LM

Figure 9.7: A box plot of the number of MQ’s posed by each algorithm. This plot repre-
sentation provides the average, variance, range and error points for each algorithm. Each
column represents the experimental results where the size of the alphabet is kept fixed
to sizes 10, 25, 80, 75, 100, 150 and 200. One can see that, especially when the size of
the alphabet is growing, even the (SL) worst case outperforms the best values of all other
algorithms.

ber of membership queries is shown in the form box-plots. This representation
provides a more clear visualization that contains the standard deviations and min
max values in the data, rather than just the average. We observe that the behavior
of the symbolic algorithm is better than that of the other algorithms, but what is
more interesting is the fact that even the worst case run of the symbolic algorithm
outperforms the best run of all other algorithms.

Referring to the number of states conjectured in the final hypothesis, shown in
the third plot of Figure 9.6, we observe that the symbolic algorithm (SL) almost
always discovers more states than the other algorithms. Taking into account that
all algorithms produce automata that are minimal in the number of states, we can
say that SL comes closer to the target automaton representation than the other
algorithms. This seems to be a consequence of the increased number of equivalence
queries that the algorithm asks in contrast to the other algorithms (see the second
row in Figure 9.6).

Surprisingly, in terms of execution times, see last plot of Figure 9.6, the con-
crete reduced L∗ algorithm (LR) has a similar performance to the symbolic algo-
rithm (SL) when the alphabet size is smaller than 150, a result that is probably due

9.3. COMPARISON WITH OTHER ALGORITHMS 101

0

20

40

60

80

100

#
M

Q
s

(×
1
0

3
)

SL L LM LR

0

50

100

150

#
E
Q

s

0 5 10 15 20 25 30 35 40 45

alphabet size |Σ|

0
10
20
30
40
50
60

ti
m

e
 (

se
c
×

10
2
)

Figure 9.8: A comparison of the average number of membership queries posed, the number
of equivalence checks, and the execution time for each of the algorithms: SL (the symbolic
algorithm), L ([Ang87]), LM ([MP95]), and LR ([RS93]). The four algorithms are com-
pared on variable sizes of target automata where the number of states ranges from 3 to
45.

to the increased number of equivalence queries that the symbolic algorithm needs.
Figure 9.8 shows the results of the second group of experiments. Here the

algorithms are compared on different sizes of target automata, where the number
of states ranges from 0 to 45. Similarly to the first group of experiments, one can
see that beyond 20 states the symbolic algorithm is better than all the non-symbolic
algorithms in terms of membership queries, see the first row. The number of equiv-
alence queries, naturally larger for the symbolic algorithm, increases linearly in the
number of states in the automaton.

Finally, referring to execution timings, the concrete reduced L∗ algorithm (LR)
has a similar performance to the symbolic algorithm (SL) only when the size of the
target automata is kept smaller than 25 states.

To conclude this comparison, the symbolic algorithm asks much fewer mem-
bership queries in order to fill the table than any of the concrete algorithms, which
need to ask queries for every a ∈ Σ. On the other hand, the symbolic algorithm
gets more counter-examples, generates more hypotheses and needs more equiva-

102 CHAPTER 9. EMPIRICAL RESULTS

Figure 9.9: The table of all ascci characters, split into groups of control characters, alpha-
betic, numerals, and punctuation symbols.

lence queries. Remarkably, this does not affect the performance of the symbolic
algorithm, which is still better in the total number of membership queries that are
posed, including the queries used for testing.

9.4 Learning Passwords

In this section, we compare the same four algorithms in a more realistic setting.
We let the target language be a set of valid passwords, where the input alphabet
is the set of ASCII characters, represented by the integers Σ = {0, . . . , 127}. A
password is a string over Σ, and it is characterized as valid when certain rules are
satisfied. Rules of this kind typically concern the length of a password and groups
of characters that it may or may not contain.

The ASCII characters are split into groups, see Figure 9.9. Namely, control
characters, i.e., {0, . . . , 31} ∪ {127} ⊆ Σ, which are non printable characters
that provide meta-information; alphabetic of two types, upper case and lower
case letters, that is, {65, . . . , 90} and {97, . . . , 122} respectively; numerals, i.e.,
{48, . . . , 57}; and, finally, the punctuation symbols, that is the set which contains
all remaining characters.

Passwords are used in several types of accounts and often providers set up
rules on how passwords should be formulated in order to guaranty security and/or
simplicity to the users. Due to this, we are familiar with PIN codes, typically used
for phones, credit cards, etc., but also longer passwords that should contain letters
and/or punctuation characters, most commonly used for online accounts such as
email accounts, bank accounts, etc. Passwords with characters from more than one

9.4. LEARNING PASSWORDS 103

A B C D E

password type

0

20

40

60

80

100

#
S
ta

te
s

le
a
rn

e
d

SL LR LM L

(a)

A B C D E

password type

0

50

100

150

200

#
M

Q
s

(×
10

3
)

SL LR LM L

(b)

Figure 9.10: A performance comparison of the symbolic algorithm (SL) to the three con-
crete algorithms (LR), (LM) and (L). The four algorithms are evaluated on learning a set
of different types of valid passwords: (A) PIN code, (B) easy password, (C) medium pass-
word, (D) medium-strong password, and (E) strong password. The average number of
states learned by each algorithm for each password type is shown in (a), while (b) illus-
trates the average number of membership queries used in total.

104 CHAPTER 9. EMPIRICAL RESULTS

or two groups of ASCII characters are considered stronger and more secure.
In the sequel, we define five different target languages, each one accepting a

different type of valid passwords. Each language is defined by a set of rules, which
are of increasing complexity resulting in languages of varying difficulty degree.
For all languages selected here, no password is valid when it contains any non-
printable character.

The PIN code passwords (A) contains 4 to 8 numbers. The easy passwords (B),
with a maximum length of 8, contain any printable ASCII character, i.e., numer-
ical, letter, or punctuation character. The medium passwords (C) contain from 6

up to 14 characters and use at least one character from two different sub-alphabets
of printable characters; punctuation symbols are not allowed. The medium-strong
passwords (D), with the same length as the medium passwords, require the pres-
ence of both lower-case letters and numerals and punctuation characters are al-
lowed. Finally, the strong passwords (E), contain at least one character from all
different sub-alphabets.

After applying all four algorithms to the different target languages, we obtain
the results of 10 runs for each algorithm. A visual comparison of the results is
summarized in Figure 9.10, where one can observe that the symbolic algorithm
requires fewer MQ’s than any other method in all five password types, see Fig-
ure 9.10b. The difference increases as the target becomes more complicated and
requires more states and transitions. Remarkable is the fact that the symbolic algo-
rithm manages to discover more states, in almost all different password types, and
especially when the target language becomes more complicated and is represented
by a larger automaton, see Figure 9.10a. In Figure 9.11, we provide two instances
of symbolic automata for the passwords of type (D) and (E), which are inferred
using the symbolic algorithm.

9.5 Learning over the Booleans

In Chapter 7, the symbolic algorithm has been adapted to the case where the in-
put alphabet is a set of Boolean vectors, i.e., Σ = Bn. We have implemented
the learning algorithm following the algorithms and procedures presented in Sec-
tion 7.3. To represent the semantics of the symbols, we use binary decision trees
(see Section 2.2), where, in order to learn the partitions at each state, we use an
optimized version of the CART algorithm (see Section 2.3), which is available in
the scikit-learn module of machine learning in Python [PVG+11]. As a splitting
quality measure we use entropy, and best split is chosen. As a termination crite-
rion we use purity, that is, trees are expanded until all leaves are pure and thus the
observation table is evidence compatible.

9.5. LEARNING OVER THE BOOLEANS 105

Figure 9.11: Two instances of symbolic automata for the passwords of type (D) and (E),
which are learned using the symbolic algorithm.

We test the learning algorithm on two groups of experiments, as in the case
of numerical alphabets in Section 9.3. The two groups of experiments are used to
evaluate the algorithm’s performance when the size of the automaton or the size
of the alphabet increases, while other parameters are kept constant. All results are
averaged over the total number of experiments for each case, that is, 10 different
target automata for each automaton or alphabet size, where the learning algorithm
is applied 10 times to the same target.

For the first group of experiments, we use the same fixed minimal automaton
structure that appears in Figure 9.5. Partitions are randomly chosen at each state
and the alphabet’s size ranges from 8 to 32768 letters, that is, 3 to 15 Boolean
variables. In the second group of experiments, we fix the alphabet to Σ = B8 and
generate random automata of increasing size, with the number of states ranging
from 2 to 50. Transitions are determined by randomly generated pseudo-boolean
functions. They are limited to contain at most k = 4 literals per term, which,
intuitively, restricts to BDTs of maximal depth k and corresponds to at most 2k

outgoing transitions per state.

As in Section 9.3, we have measured several size and time parameters. Size re-
lated, we consider the size of the final observation table, the concrete and symbolic
sample size, as well as the number of membership and equivalence queries posed
to the teacher.

The major observation of our experimental results for the Boolean alphabets
show that, if the complexity of the alphabet partition remains fixed, the number of
membership, equivalence queries and sample size remain constant as the alphabet
increases. This can be seen in Figure 9.12. Note that, the number of variables
increases, but the depth of the trees that are used to define the partitions are bounded

106 CHAPTER 9. EMPIRICAL RESULTS

0

10

20

30

40

#
M

Q
s

(×
1
0

2
)

20

30

40

50

#
E
Q

s

24
26
28
30
32
34
36
38

|M
T
|

 (
×

10
)

23 24 25 26 27 28 29 210 211 212 213 214 215

alphabet size |Σ|

0
5

10
15
20
25
30
35
40
45

ti
m

e
 (

se
c)

Figure 9.12: The performance of the symbolic algorithm when applied on the Boolean
vector alphabet Σ = Bn where the number of variables n ranges from 3 to 15. Here we
illustrate the average number of membership queries, equivalence queries, the size of the
final sample, and the execution time as the alphabet size increases.

to have at most depth 4. That is, the variables that play a crucial role in defining a
partition at each state is limited to 4.

A growth in the total execution time seems exponential in the number of vari-
ables, which corresponds to linear growth in the alphabet size, see the last row of
Figure 9.12. Profiling shows that most of the time is spent in testing, indicating
that, in the implementation, this depends on the size of the concrete alphabet.

On the other hand, as we see in Figure 9.13, the number of queries, the size of
the symbolic sample, the number of hypotheses conjectured, and the total execution
time all appear to increase linearly in the number of states in the target automaton.
This result does not come as a surprise since the number of BDTs that need to be

9.6. COMPARING BOOLEAN VECTORS TO NUMERICAL ALPHABETS107

0

5

10

15

20

#
M

Q
s

(×
1
0

3
)

0
2
4
6
8

10
12
14
16
18

#
E
Q

s
(×

10
)

0
5

10
15
20
25
30
35
40

|M
T
|

 (
×

10
2
)

0 10 20 30 40 50

#states in target

0

10

20

30

40

50

ti
m

e
 (

se
c)

Figure 9.13: The performance of the symbolic algorithm when applied on target automata
of variable size, where the number of states in the minimal automaton that represents the
target ranges from 3 to 50. Here we illustrate the average number of membership queries,
equivalence queries, the size of the final sample, and the execution time as the size of the
automaton increases.

learned depends on the number of states.

9.6 Comparing Boolean Vectors to Numerical Alphabets

Comparison over Alphabet and Target Size

In this section, we compare the results that appear in Sections 9.3 and 9.5, which
are related to the two symbolic algorithms, i.e., the symbolic learning algorithm
on numbers (SL) and on the Booleans (SL Booleans), respectively. All results are
illustrated in Figure 9.14.

108 CHAPTER 9. EMPIRICAL RESULTS

0
5

10
15
20
25
30

#
M

Q
s

(×
1
0

3
)

Symbolic Algorithm (n) Symbolic Algorithm ()

0

2

4

6

8

10

|M
T
|

 (
×

10
2
)

0 50 100 150 200 250

alphabet size

2
4
6
8

10
12

#
E
Q

s
(×

1
0

)

0 5 10 15 20 25 30

states in target

Figure 9.14: A comparison on the performance of the symbolic algorithm when applied on
interval alphabets (SL) and Boolean vector alphabets (SL Booleans). The rows show 1) the
average number of membership queries, 2) the average size of the symbolic sample, and 3)
the average number of equivalence queries posed in total by each algorithm, respectively.

In the first group of experiments (first column), the same fixed underlying struc-
ture is used to generate the target languages while the alphabet size grows. We
observe that the Boolean algorithm clearly outperforms the numerical algorithm in
terms of membership and equivalence queries. In the second group of experiments
(second column), where we compare over different automaton sizes, the numerical
algorithms use a fixed alphabet of 150 letters, while the Boolean algorithm uses a
256-letter alphabet. Although the absolute numbers differ for the three algorithms,
it is worth noting that the growth of the number of queries, as well as the size of the
symbolic sample is linear with respect to the size of the automaton in both sym-
bolic algorithms. We observe again that in the case of Boolean vectors, the number
of membership queries is much smaller than for numerical alphabets.

Finally, in the last plot of the first group of experiments (first column, third row
of Figure 9.14), we can see that fewer EQ’s are needed in general for the case of
Boolean vector alphabets. A possible explanation for this superiority can rely on
the different restrictions that were applied in defining the partitions in the target
languages. To explain this better, we give some insights on the random generator
that is used to define the target languages. For interval partitions, a restriction to

9.6. COMPARING BOOLEAN VECTORS TO NUMERICAL ALPHABETS109

A B C D E

password type

0

10

20

30

40

50

60

70

80

90

#
M

Q
s

(×
10

3
)

SL SLbool

A B C D E

password type

0

5

10

15

20

25

#
E
Q

s
(×

10
2
)

SL SLbool

A B C D E

password type

0

20

40

60

80

100

120

#
S
ta

te
s

SL SLbool

A B C D E

password type

0

100

200

300

400

500

600

#
S
y
m

b
o
ls

SL SLbool

Figure 9.15: The performance of the symbolic algorithm on learning languages that rep-
resent valid passwords. Two adaptations of the algorithm are compared on two different
representations of the input alphabet, the set of ASCII characters. In the first, the alphabet
is a set of integers (SL), and in the second, it is a set of Boolean vectors (SLBool).

k intervals implies that their size itself grows linearly with the alphabet size and
thus one may expect more errors and counter-examples when the boundaries are
approximated. This is often the case, especially when some intervals are small
compared to others. On the other hand, for partitions on the Boolean cube, the
decision trees are restricted to have at most depth k. This, in turn, restricts the
number of variables that interact in a product alphabet, and it gives a lower-bound
on the size of the Boolean sub-cubes appearing in the partition. This lower bound
grows linearly with the size of the alphabet and such partitions are easier to learn.

Comparing on Learning Passwords

In Section 9.4, the symbolic algorithm is used to learn languages that represent
valid passwords. The set of ASCII characters, in their decimal representation, is
used as the input alphabet. The alphabet Σ = {0, . . . , 127} is partitioned into
intervals, where intervals represent groups of characters, e.g., digits, lowercase

110 CHAPTER 9. EMPIRICAL RESULTS

Figure 9.16: The BDT representing the partition of the ASCII characters into groups of
characters, i.e., digits, lowercase letters, punctuation symbols, etc.

letters, special symbols, etc.
In this section, we apply the symbolic algorithm on the same set of target lan-

guages, but this time, we use as an input alphabet the set Σ = B7 of Boolean
vectors, which corresponds to the set of ASCII characters’ binary representation.
For instance, the letter ’a’ corresponds to the integer 97 and to the Boolean vector
(1100001). In contrast to the interval partitions, which appears to be convenient
when classifying ASCII into groups of characters, the Boolean vector adaptation
requires a complicated and deep BDT to determine all partition blocks in the al-
phabet, see Figure 9.16.

Figure 9.15 shows the performance of the two algorithms. We compare them
on the number of queries they use as well as the size of their final conjectures in
terms of number of states and transitions. As we can observe, due to the higher
complexity on the partitions for the Boolean case, the algorithm requires more
evidences to define the partitions well. Hence, more equivalence and membership
queries are used.

The two algorithms terminate with conjectures that contain similar numbers
of states. A small advantage is observed in the case of Boolean Vectors as valid
passwords become more complicated. Although, this is not surprising when we
consider the increased number of equivalence queries the algorithm uses.

Finally, concerning the size of the symbolic alphabets, in the case of intervals
more symbols are used. This is due to the fact, that partitions and semantics are
determined in a slightly different way in the two adaptations of the algorithm. That
is, BDTs use the same symbol to represent multiple leaf nodes allowing at most
one transition that leads from a state q to a state q′. In contrast, in the case of
the intervals, the semantics are restricted to preserve convexity, and thus, multiple
transitions from q to q′ are allowed.

9.7. CONCLUSIONS 111

We conclude that both algorithms can be used when the alphabet admits both
representations resulting equivalent automata. However, the complexity on the
partitions should be taken into account, as it affects the number of resources the
algorithm uses.

9.7 Conclusions

In this chapter, we have experimented with the symbolic algorithm and applied it
to several case studies. Moreover, we compared the symbolic algorithm to other
known concrete algorithms, restricting the alphabet to be finite. The symbolic
algorithm always terminates faster and with better results in the PAC setting. Our
algorithm, almost always, discovers more states and since we consider that the
resulting automaton is minimal, it means that the conjecture is close to the target’s
representation. The size of the sample and the number of membership queries
are notably lower than any other algorithm, since the words are partially queried
and evidences are used to represent larger set of letters. Naturally, this approach
increases the number of equivalence queries our algorithm requires, however, this
does not seem to influence the time that the algorithm needs until termination.

Comparing the symbolic algorithms on different alphabets, we observe that
when applied to Boolean vectors, it performs better, partially due to the different
nature of partition complexity restrictions on decision trees and intervals, and also
the fact that we use a better method to learn partition boundaries. Learning BDTs
allows a smaller boundary error than the simple splitting we use in the interval
case. The latter can be ameliorated by using a more precise method, such as binary
search, for detecting the boundaries.

112 CHAPTER 9. EMPIRICAL RESULTS

10

C
H

A
P

T
E

R

Conclusions and Future Work

In this thesis we presented an algorithmic scheme for learning languages over
large alphabets. We aimed at languages accepted by symbolic automata with a
modest number of states and transitions. The transitions are guarded by simple
constraints on the alphabet, which by itself can be arbitrarily large. The constraints
form a partition of the alphabet in each state and hence the automaton is determin-
istic. Our framework can be characterized by the following features:

1. It is based on a clean and general definition of the relation between the con-
crete and symbolic alphabets, via concepts such as alphabet partitions, evi-
dences and representatives;

2. It separates the sequential aspects of learning (modifying the automaton
structure) and the learning of partition boundaries, which is specific to the
alphabet;

3. It treats the modification of alphabet partitions in a rigorous way based on
the concept of evidence compatibility. This guarantees that no superfluous
symbols are introduced;

4. It can work with or without a helpful teacher, where in the latter case, equiva-
lence checking is done by random sampling and exact learnability is replaced
by PAC;

5. It is modular, separating the generic aspects from those that are alphabet
specific, thus providing for a relatively easy adaptation to new alphabets.

We have implemented the testing-based algorithm for two classes of alphabets,
numerical (sub-intervals of R or N) and Boolean (Bn). For the former, symbolic
letters were associated with sub-intervals while in the latter we used decision trees
to define the alphabet partitions in every state. For both cases we ran some initial
experiments on mostly synthetic examples, to see how the empirical performance

113

114 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

of the algorithm varies with the size of the automaton and the alphabets. The pre-
liminary results were encouraging and the symbolic algorithm outperforms con-
crete learning algorithms over the same finite alphabets. There is still much to do
in tuning and optimizing our algorithm.

What is still missing is a convincing class of real-world applications that ben-
efits from such algorithms. In the numerical domain, these should be mechanisms
where discrete transitions are taken based on threshold crossings of numerical vari-
ables without remembering their precise values. In the Boolean domain, one needs
to find applications in the formal specification of large complex systems with many
components (digital circuit, distributed multi-agent systems). Hopefully such spec-
ifications could be expressible by symbolic automata where the complexity can be
confined to the alphabet partitions while the number of states does not explode.

A natural future extension of the algorithm is to consider alphabets which are
subsets of Nn and Rn. Preliminary work in this direction has been reported in Sec-
tion 6.2, but it used a very restricted type of monotone partitions in order to keep the
notion of a minimal counter-example meaningful. In such a future algorithm one
can use more general partitions, represented by regression trees, a generalization
of decision trees to numerical domains.

We feel that the application of our framework for learning over Boolean al-
phabets is very promising and is worth being explored much further. It combines
well-known concepts and algorithms from traditional machine learning (decision
trees) with automaton learning. As such, it can suggest an alternative to other ma-
chine learning approaches (recurrent neural learning, decision tree learning over
variables that correspond to different time indices, auto-correlation) used to learn
from data-rich and time-dependent examples. Automata bring some sophistication
and economy in representing sets of time series and might bring a genuine practical
contribution to machine learning. This will require, however, some changes in the
automaton learning approach, most notably to allow noise in the examples and to
relax the active learning framework where the learner can fully dictate the set of
observed examples.

Bibliography

[ABD15] Eugene Asarin, Nicolas Basset, and Aldric Degorre. Entropy of reg-
ular timed languages. Information and Computation, 241:142–176,
2015. (Cited on page 86.)

[AJU10] Fides Aarts, Bengt Jonsson, and Johan Uijen. Generating models of
infinite-state communication protocols using regular inference with
abstraction. In IFIP International Conference on Testing Software
and Systems, pages 188–204. Springer, 2010. (Cited on page 4.)

[Ang87] Dana Angluin. Learning regular sets from queries and counterexam-
ples. Information and Computation, 75(2):87–106, 1987. (Cited on
pages 1, 21, 23, 28, 47, 90, 97, 99, and 101.)

[Ang88] Dana Angluin. Queries and concept learning. Machine learning,
2(4):319–342, 1988. (Cited on page 90.)

[BB13] Matko Botinčan and Domagoj Babić. Sigma*: Symbolic learning of
input-output specifications. In POPL, pages 443–456. ACM, 2013.
(Cited on page 48.)

[BFSO84] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A
Olshen. Classification and regression trees. CRC press, 1984. (Cited
on pages 16, 17, 20, and 78.)

[BJR06] Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular inference
for state machines with parameters. In FASE, volume 3922 of LNCS,
pages 107–121. Springer, 2006. (Cited on page 48.)

[BKR96] Morten Biehl, Nils Klarlund, and Theis Rauhe. Algorithms for
guided tree automata. In International Workshop on Implementing
Automata, pages 6–25. Springer, 1996. (Cited on page 33.)

115

116 BIBLIOGRAPHY

[BLP10] Michael Benedikt, Clemens Ley, and Gabriele Puppis. What you
must remember when processing data words. In AMW, volume 619
of CEUR Workshop Proceedings, 2010. (Cited on page 47.)

[BMS+06] Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc
Segoufin, and Claire David. Two-variable logic on words with data.
In 21st Annual IEEE Symposium on Logic in Computer Science
(LICS’06), pages 7–16. IEEE, 2006. (Cited on page 33.)

[BR05] Therese Berg and Harald Raffelt. 19 Model checking. In Model-
Based Testing of Reactive Systems: Advanced Lectures, volume 3472
of LNCS, pages 557–603. Springer, 2005. (Cited on pages 2, 21,
and 29.)

[Brz62] Janusz A Brzozowski. Canonical regular expressions and minimal
state graphs for definite events. Mathematical theory of Automata,
12(6):529–561, 1962. (Cited on page 10.)

[CHJS16] Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. Ac-
tive learning for extended finite state machines. Formal Aspects of
Computing, 28(2):233–263, 2016. (Cited on page 47.)

[CSS+10] Chia Yuan Cho, Eui Chul Richard Shin, Dawn Song, et al. Infer-
ence and analysis of formal models of botnet command and control
protocols. In Proceedings of the 17th ACM conference on Computer
and communications security, pages 426–439. ACM, 2010. (Cited
on page 4.)

[DD17] Samuel Drews and Loris D’Antoni. Learning symbolic automata. In
International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 173–189. Springer, 2017. (Cited
on page 48.)

[DlH10] Colin De la Higuera. Grammatical inference: learning automata
and grammars. Cambridge University Press, 2010. (Cited on pages
21 and 22.)

[DV14] Loris D’Antoni and Margus Veanes. Minimization of symbolic au-
tomata. In POPL, pages 541–554. ACM, 2014. (Cited on pages 34,
36, 38, and 39.)

[E88] Utgoff Paul E. ID5: an incremental ID3. In John E. Laird, editor,
Machine Learning, Proceedings of the Fifth International Confer-
ence on Machine Learning, Ann Arbor, Michigan, USA, June 12-14,

BIBLIOGRAPHY 117

1988, pages 107–120. Morgan Kaufmann, 1988. (Cited on pages 16
and 19.)

[GKS10] Orna Grumberg, Orna Kupferman, and Sarai Sheinvald. Variable
automata over infinite alphabets. In International Conference on
Language and Automata Theory and Applications, pages 561–572.
Springer, 2010. (Cited on page 33.)

[Gol67] E Mark Gold. Language identification in the limit. Information and
Control, 10(5):447–474, 1967. (Cited on page 23.)

[Gol72] E Mark Gold. System identification via state characterization. Auto-
matica, 8(5):621–636, 1972. (Cited on pages 10 and 23.)

[Gol78] E Mark Gold. Complexity of automaton identification from given
data. Information and control, 37(3):302–320, 1978. (Cited on
page 23.)

[HJJ+95] Jesper G Henriksen, Ole JL Jensen, Michael E Jrgensen, Nils Klar-
lund, Robert Paige, Theis Rauhe, and Anders B Sandholm. Mona:
Monadic second-order logic in practice. In TACAS, volume 1019 of
LNCS, pages 80–110. Springer, 1995. (Cited on page 33.)

[HMU06] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Intro-
duction to Automata Theory, Languages, and Computation (3rd Edi-
tion). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2006. (Cited on pages 7 and 37.)

[Hop71] John E Hopcroft. An n logn algorithm for minimizing states in a
finite automaton. Technical report, DTIC Document, 1971. (Cited
on page 10.)

[HSJC12] Falk Howar, Bernhard Steffen, Bengt Jonsson, and Sofia Cassel.
Inferring canonical register automata. In VMCAI, volume 7148 of
LNCS, pages 251–266. Springer, 2012. (Cited on page 47.)

[HSM11] Falk Howar, Bernhard Steffen, and Maik Merten. Automata learning
with automated alphabet abstraction refinement. In VMCAI, volume
6538 of LNCS, pages 263–277. Springer, 2011. (Cited on page 48.)

[HV11] Pieter Hooimeijer and Margus Veanes. An evaluation of automata
algorithms for string analysis. In VMCAI, volume 6538 of LNCS,
pages 248–262. Springer, 2011. (Cited on pages 34, 36, and 37.)

118 BIBLIOGRAPHY

[IHS13] Malte Isberner, Falk Howar, and Bernhard Steffen. Inferring au-
tomata with state-local alphabet abstractions. In NASA Formal Meth-
ods, volume 7871 of LNCS, pages 124–138. Springer, 2013. (Cited
on page 48.)

[IS14] Malte Isberner and Bernhard Steffen. An abstract framework for
counterexample analysis in active automata learning. In ICGI, pages
79–93, 2014. (Cited on page 29.)

[KF70] Andreı̆ Nikolaevich Kolmogorov and Sergeı̆ Vasilevich Fomin. In-
troductory real analysis. New York: Dover Publications Inc., 1970.
(Cited on page 10.)

[KF94] Michael Kaminski and Nissim Francez. Finite-memory automata.
Theoretical Computer Science, 134(2):329–363, 1994. (Cited on
pages 33 and 47.)

[LGJ07] Tristan Le Gall and Bertrand Jeannet. Lattice automata: A repre-
sentation for languages on infinite alphabets, and some applications
to verification. In International Static Analysis Symposium, pages
52–68. Springer, 2007. (Cited on page 33.)

[LP97] Harry R Lewis and Christos H Papadimitriou. Elements of the The-
ory of Computation. Prentice Hall PTR, 1997. (Cited on page 7.)

[MM14] Oded Maler and Irini-Eleftheria Mens. Learning regular languages
over large alphabets. In TACAS, volume 8413 of LNCS, pages 485–
499. Springer, 2014. (Cited on page 5.)

[MM15] Oded Maler and Irini-Eleftheria Mens. Learning regular languages
over large ordered alphabets. Logical Methods in Computer Science
(LMCS), 11(3), 2015. (Cited on page 5.)

[MM17] Oded Maler and Irini-Eleftheria Mens. A generic algorithm for
learning symbolic automata from membership queries. In Mod-
els, Algorithms, Logics and Tools, pages 146–169. Springer, 2017.
(Cited on page 5.)

[MN04] Oded Maler and Dejan Nickovic. Monitoring temporal properties of
continuous signals. In Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems, pages 152–166. Springer, 2004.
(Cited on page 3.)

BIBLIOGRAPHY 119

[MN10] Karl Meinke and Fei Niu. A learning-based approach to unit testing
of numerical software. In IFIP International Conference on Testing
Software and Systems, pages 221–235. Springer, 2010. (Cited on
page 4.)

[MNP08] Oded Maler, Dejan Nickovic, and Amir Pnueli. Checking temporal
properties of discrete, timed and continuous behaviors. In Pillars of
computer science, pages 475–505. Springer, 2008. (Cited on page 3.)

[Moo56] Edward F Moore. Gedanken-experiments on sequential machines.
In Automata studies, volume 34 of Annals of Mathematical Studies,
pages 129–153. Princeton, 1956. (Cited on pages 10 and 23.)

[MP95] Oded Maler and Amir Pnueli. On the learnability of infinitary regular
sets. Information and Computation, 118(2):316–326, 1995. (Cited
on pages 27, 28, 97, 99, and 101.)

[Mur12] Kevin P Murphy. Machine Learning: A Probabilistic Perspective.
The MIT Press, 1 edition, 2012. (Cited on page 17.)

[Ner58] Anil Nerode. Linear automaton transformations. Proceedings of
the American Mathematical Society, 9(4):541–544, 1958. (Cited on
pages 1, 9, and 23.)

[Nie03] Oliver Niese. An integrated approach to testing complex systems.
PhD thesis, Universität Dortmund, 2003. (Cited on page 4.)

[NSV04] Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state
machines for strings over infinite alphabets. ACM Transactions
on Computational Logic (TOCL), 5(3):403–435, 2004. (Cited on
page 33.)

[OG92] Jose Oncina and Pedro Garcia. Identifying regular languages in poly-
nomial time. In Advances in Structural and Syntactic Pattern Recog-
nition, volume volume 5 of Series in Machine Perception and Arti-
ficial Intelligence, pages 99–108. World Scientific, 1992. (Cited on
page 23.)

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research, 12:2825–2830, 2011. (Cited on
page 104.)

120 BIBLIOGRAPHY

[PW93] Leonard Pitt and Manfred K Warmuth. The minimum consistent
DFA problem cannot be approximated within any polynomial. Jour-
nal of the ACM (JACM), 40(1):95–142, 1993. (Cited on page 23.)

[Qui86] J Ross Quinlan. Induction of decision trees. Machine learning,
1(1):81–106, 1986. (Cited on pages 16 and 78.)

[Qui93] J Ross Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1993. (Cited
on pages 16 and 20.)

[RMSM09] Harald Raffelt, Maik Merten, Bernhard Steffen, and Tiziana Mar-
garia. Dynamic testing via automata learning. International jour-
nal on software tools for technology transfer, 11(4):307–324, 2009.
(Cited on page 4.)

[RS93] Ronald L Rivest and Robert E Schapire. Inference of finite au-
tomata using homing sequences. Information and Computation,
103(2):299–347, 1993. (Cited on pages 27, 29, 97, 99, and 101.)

[Seg06] Luc Segoufin. Automata and logics for words and trees over an
infinite alphabet. In International Workshop on Computer Science
Logic, pages 41–57. Springer, 2006. (Cited on page 33.)

[SF86] Jeffrey C Schlimmer and Douglas Fisher. A case study of incremen-
tal concept induction. In AAAI, pages 496–501, 1986. (Cited on
pages 16 and 19.)

[Sha08] Muzammil Shahbaz. Reverse Engineering Enhanced State Models
of Black Box Components to support Integration Testing. PhD thesis,
Grenoble Institute of Technology, 2008. (Cited on page 4.)

[Sip06] Michael Sipser. Introduction to the Theory of Computation, vol-
ume 2. Thomson Course Technology Boston, 2006. (Cited on
page 7.)

[SL07] Guoqiang Shu and David Lee. Testing security properties of
protocol implementations-a machine learning based approach. In
27th International Conference on Distributed Computing Systems
(ICDCS’07), pages 25–25. IEEE, 2007. (Cited on page 4.)

[SVVV14] Rick Smetsers, Michele Volpato, Frits Vaandrager, and Sicco Ver-
wer. Bigger is not always better: on the quality of hypotheses in
active automata learning. In International Conference on Grammat-
ical Inference, pages 167–181, 2014. (Cited on page 85.)

BIBLIOGRAPHY 121

[UBC97] Paul E Utgoff, Neil C Berkman, and Jeffery A Clouse. Decision tree
induction based on efficient tree restructuring. Machine Learning,
29(1):5–44, 1997. (Cited on page 19.)

[Utg89] Paul E Utgoff. Incremental induction of decision trees. Machine
learning, 4(2):161–186, 1989. (Cited on pages 16, 19, 20, and 78.)

[Val84] Leslie G Valiant. A theory of the learnable. Communications of the
ACM, 27(11):1134–1142, 1984. (Cited on page 90.)

[VBDM10] Margus Veanes, Nikolaj Bjørner, and Leonardo De Moura. Sym-
bolic automata constraint solving. In International Conference on
Logic for Programming Artificial Intelligence and Reasoning, vol-
ume 6397, pages 640–654. Springer, 2010. (Cited on pages 4
and 34.)

[VDHT10] Margus Veanes, Peli De Halleux, and Nikolai Tillmann. Rex: Sym-
bolic regular expression explorer. pages 498–507, 2010. (Cited on
pages 4, 33, 34, and 37.)

[Vea13] Margus Veanes. Applications of symbolic finite automata. In In-
ternational Conference on Implementation and Application of Au-
tomata, volume 7982, pages 16–23. Springer, 2013. (Cited on pages
4, 33, and 34.)

[VGDHT09] Margus Veanes, Pavel Grigorenko, Peli De Halleux, and Nikolai Till-
mann. Symbolic query exploration. In International Conference on
Formal Engineering Methods, pages 49–68. Springer, 2009. (Cited
on page 34.)

[VHL+12] Margus Veanes, Pieter Hooimeijer, Benjamin Livshits, David Mol-
nar, and Nikolaj Björner. Symbolic finite state transducers: algo-
rithms and applications. In POPL, pages 137–150. ACM, 2012.
(Cited on page 34.)

[VNG01] Gertjan Van Noord and Dale Gerdemann. Finite state transduc-
ers with predicates and identities. Grammars, 4(3):263–286, 2001.
(Cited on pages 4, 33, 34, 36, and 37.)

[VTDH10] Margus Veanes, Nikolai Tillmann, and Jonathan De Halleux. Qex:
Symbolic SQL query explorer. In International Conference on Logic
for Programming Artificial Intelligence and Reasoning, pages 425–
446. Springer, 2010. (Cited on page 34.)

122 BIBLIOGRAPHY

[Wat96] Bruce W Watson. Implementing and using finite automata toolk-
its. Natural Language Engineering, 2(04):295–302, 1996. (Cited on
page 33.)

[WBAH08] Neil Walkinshaw, Kirill Bogdanov, Shaukat Ali, and Mike Hol-
combe. Automated discovery of state transitions and their func-
tions in source code. Software Testing, Verification and Reliability,
18(2):99–121, 2008. (Cited on page 4.)

[YBCI08] Fang Yu, Tevfik Bultan, Marco Cova, and Oscar H Ibarra. Symbolic
string verification: An automata-based approach. In International
SPIN Workshop on Model Checking of Software, pages 306–324.
Springer, 2008. (Cited on pages 33 and 34.)

Learning Regular Languages
over Large Alphabets

Irini-Eleftheria Mens
Thèse dirigée par Oded Maler

Learning regular languages is a branch of machine learning, a domain which has proved useful in many
areas, including artificial intelligence, neural networks, data mining, verification, etc. In addition, in-
terest in languages defined over large and infinite alphabets has increased in recent years. Although
many theories and properties generalize well from the finite case, learning such languages is not an
easy task. As the existing methods for learning regular languages depend on the size of the alphabet, a
straightforward generalization in this context is not possible.
In this thesis, we present a generic algorithmic scheme that can be used for learning languages defined
over large or infinite alphabets, such as bounded subsets of N or R or Boolean vectors of high dimen-
sions. We restrict ourselves to the class of languages accepted by deterministic symbolic automata that
use predicates to label transitions, forming a finite partition of the alphabet for every state.
Our learning algorithm, an adaptation of Angluin’s L∗, combines standard automaton learning by state
characterization, with the learning of the static predicates that define the alphabet partitions. We use the
online learning scheme, where two types of queries provide the necessary information about the target
language. The first type, membership queries, answer whether a given word belongs or not to the target.
The second, equivalence queries, check whether a conjectured automaton accepts the target language
and provide a counter-example otherwise.
We study language learning over large or infinite alphabets within a general framework but our aim is
to provide solutions for particular concrete instances. For this, we focus on the two main aspects of
the problem. Initially, we assume that equivalence queries always provide a counter-example which
is minimal in the length-lexicographic order when the conjecture automaton is incorrect. Then, we
drop this “strong” equivalence oracle and replace it by a more realistic assumption, where equivalence
is approximated by testing queries, which use sampling on the set of words. Such queries are not
guaranteed to find counter-examples and certainly not minimal ones. In this case, we obtain the weaker
notion of PAC (probably approximately correct) learnability and learn an approximation of the target
language. All proposed algorithms have been implemented and their performance, as a function of
automaton and alphabet size, has been empirically evaluated.

L’apprentissage de langages réguliers est une branche de l’apprentissage automatique qui s’est
révélée utile dans de nombreux domaines tels que l’intelli-gence artificielle, les réseaux de neurones,
l’exploration de données, la vérification, etc. De plus, l’intérêt dans les langages définis sur des alpha-
bets infinis ou de grande taille s’est accru au fil des années. Même si plusieurs propriétés et théories se
généralisent à partir du cas fini, l’apprentissage de tels langages est une tâche difficile. En effet, dans ce
contexte, l’application naı̈ve des algorithmes d’apprentissage traditionnel n’est pas possible.
Dans cette thèse, nous présentons un schéma algorithmique général pour l’ap-prentissage de langages
définis sur des alphabets infinis ou de grande taille, comme par exemple des sous-ensembles bornés de N
or R ou des vecteurs booléens de grandes dimensions. Nous nous restreignons aux classes de langages
qui sont acceptés par des automates déterministes symboliques utilisant des prédicats pour définir les
transitions, construisant ainsi une partition finie de l’alphabet pour chaque état.
Notre algorithme d’apprentissage, qui est une adaptation du L∗ d’Angluin, combine l’apprentissage
classique d’un automate par la caractérisation de ses états, avec l’apprentissage de prédicats statiques
définissant les partitions de l’alphabet. Nous utilisons l’apprentissage incrémental avec la propriété que
deux types de requêtes fournissent une information suffisante sur le langage cible. Les requêtes du
premier type sont les requêtes d’appartenance, qui permettent de savoir si un mot proposé appartient ou
non au langage cible. Les requêtes du second type sont les requêtes d’équivalence, qui vérifient si un
automate proposé accepte le langage cible; dans le cas contraire, un contre-exemple est renvoyé.
Nous étudions l’apprentissage de langages définis sur des alphabets infinis ou de grande tailles dans un
cadre théorique et général, mais notre objectif est de proposer des solutions concrètes pour un certain
nombre de cas particuliers. Ensuite, nous nous intéressons aux deux principaux aspects du problème.
Dans un premier temps, nous supposerons que les requêtes d’équivalence renvoient toujours un contre-
exemple minimal pour un ordre de longueur-lexicographique quand l’automate proposé est incorrect.
Puis dans un second temps, nous relâchons cette hypothèse forte d’un oracle d’équivalence, et nous la
remplaçons avec une hypothèse plus réaliste où l’équivalence est approchée par un test sur les requêtes
qui utilisent un échantillonnage sur l’ensemble des mots. Dans ce dernier cas, ce type de requêtes ne
garantit pas l’obtention de contre-exemples, et par conséquent de contre-exemples minimaux. Nous
obtenons alors une notion plus faible d’apprent-issage PAC (Probably Approximately Correct), perme-
ttant l’apprentissage d’une approximation du langage cible. Tout les algorithmes ont été implémentés,
et leurs performances, en terme de construction d’automate et de taille d’alphabet, ont été évaluées
empiriquement.

	Abstract
	Résumé
	Contents
	Notation
	Introduction
	Synopsis
	Motivation
	Outline

	Preliminaries
	Regular Languages and Automata
	Sets and Partitions
	Learning Partitions
	Learning Binary Decision Trees

	Language Identification
	Connection with Machine Learning
	Learning Languages
	The L* Learning Algorithm
	Observation table
	The Learning Algorithm

	Symbolic Automata
	State of the Art
	Definition
	Operations on Symbolic Automata
	Alphabets and Partitions
	Interval Automata
	Automata over Partially-ordered Alphabets
	Boolean Vectors

	Learning Symbolic Automata
	Definitions
	Comparison to Related Work
	The Symbolic Learning Algorithm

	Learning with a Helpful Teacher
	Learning Languages over Ordered Alphabets
	Learning over Partially-ordered Alphabets

	Learning without a Helpful Teacher
	Approximating the Equivalence Query
	Learning Languages over N, R
	Learning Languages over the Booleans

	Theoretical Analysis
	Updating the Hypothesis: Counter-Examples
	Hypothesis Error
	A Probability Distribution on *
	Computing the Relative Volumes

	Complexity and Termination
	Using a Helpful Teacher (Minimal Counter-Examples)
	Equivalence using Random Tests

	Empirical Results
	General Comments on the Implementation
	On the Behavior of the Symbolic Learning Algorithm
	Comparison with Other Algorithms
	Learning Passwords
	Learning over the Booleans
	Comparing Boolean Vectors to Numerical Alphabets
	Conclusions

	Conclusions and Future Work
	Bibliography

