
THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 7 août 2006

Présentée par

Jan Láník

Thèse dirigée par Oded Maler
et codirigée par Fahim Rahim

préparée au sein Verimag
et de EDMSTII

Power Reduction in Digital Circuits

Thèse soutenue publiquement le 16. Juin 2016,
devant le jury composé de :

Ahmed Bouajjani
Université Paris Diderot, Président
Sharad Malik
Princeton University, Rapporteur
Roderick Bloem
IAIK, TU Graz, Rapporteur
Julien Legriel
Synopsis, Inc., Grenoble, Examinateur
Dejan Nickovic
AIT Austrian Institute of Technology GmbH, Examinateur
Oded Maler
Verimag, Université Grenoble Alpes, Directeur de thèse
Fahim Rahim
Synopsys, Inc., Grenoble, Co-Directeur de thèse

Acknowledgement

The years I spent in Grenoble working on this thesis were enriching both professionally
and personally. I would like to thank my supervisor Oded Maler for his guidance and
support. He was always there to provide counsel and always found time for fruitful dis-
cussions with me even at times when he was occupied by other things from his wide
portfolio of interests.

I thank my co-supervisor Fahim Rahim, who coordinated my work in Atrenta/Synopsys
and introduced me to the world of industrial research.

I thank Ahmed Bouajjani, Dejan Nickovic and Julien Legriel for participating in my
jury and special gratitude belongs to the reviewers Sharad Malik and Roderick Bloem.

Julien also worked with me on the development and implementation of Activity Trig-
gers together with Emmanuel Viaud and I thank him both for the countless hours that we
spent in meetings and for all the advice and help without which the second half of my the-
sis could never exist. Additional thanks go to the Atrenta’s formal method experts Hans
Peter and Nikos Andrikos who taught me much about the practical aspects of formal ver-
ification in the context of digital circuits. I thank also the rest of my colleagues at Atrenta
who created a friendly cooperative atmosphere and who were always ready to answer my
questions and provide assistance. Special thanks go to Audrey Patruno for much needed
administrative support especially during my early days in Grenoble when I didn’t speak
almost a word in French.

I thank all the staff, researchers and students at Verimag for creating an unique envi-
ronment full of interesting people and inspiring ideas. I thank especially my academical
siblings Irini Eleftheria Mens, Abhinav Srivastav and Dogan Ulus for being not just col-
leagues but also very good friends.

I thank all my other friends who made my time in Grenoble better and also to my
friends in the Czech Republic that didn’t forget about me.

Finally, I want to express great gratitude to my parents and the rest of my family for
their love and support. And to Lucia for her patience.

i

Résumé

Le sujet de cette thèse est la réduction de consommation dans les circuits digitaux, et plus
particulièrement dans ce cadre les méthodes basées sur la réduction de la fréquence de
commutation moyenne, au niveau transistor. Ces méthodes sont structurelles, au sens où
elles ne sont pas liées à l’optimisation des caractéristiques physique du circuit mais sur
la structure de l’implémentation logique, et de ce fait parfaitement indépendantes de la
technologie considérée. Nous avons développé dans ce cadre deux méthodes nouvelles.
La première est basée sur l’optimisation de la structure de la partie combinatoire d’un
circuit pendant la synthèse logique. La seconde est centrée sur la partie séquentielle du
circuit. Elle consiste en la recherche de conditions permettant de détecter qu’un sous-
circuit devient inactif, de sorte à pouvoir désactiver ce sous-circuit en coupant la branche
correspondante de l’arbre d’horloge, et utilise des méthodes formelles pour prouver que
la fonctionnalité du circuit n’en serait pas affectée.

ii

Abstract

The topic of this thesis are methods for power reduction in digital circuits by reducing
average switching on the transistor level. These methods are structural in the sense that
they are not related to tuning physical properties of the circuitry but to the internal struc-
ture of the implemented logic and therefore independent on the particular technology. We
developed two novel methods. One is based on optimizing the structure of the combina-
torial part of a circuit during synthesis. The second method is focused on sequential part
of the circuit. It looks for clock gating conditions that can be used to disable idle parts
of a circuit and uses formal methods to prove that the function of the circuit will not be
altered.

iii

Keywords

power reduction, clock gating, harware design, synthesis, RTL, switching

iv

Contents

1 Introduction . 1
2 Circuits and Power . 3

2.1 Power Dissipation in CMOS Logic Gates 3
2.2 Dynamic power and switching activity 6
2.3 Design flow . 8

2.3.1 Position of our techniques in the design flow 10
2.3.2 Formal model for circuits and switching 10

3 Power Aware Synthesis for Combinatorial Power Reduction 12
3.1 Circuit Synthesis with AIGs . 15

3.1.1 AIG data structure . 15
3.2 Importance of Input Characterization for Switching 17
3.3 AND Cone Decomposition . 19
3.4 Problem Statement . 20

3.4.1 Solution Space . 21
3.5 A Level-Greedy Approach . 24

3.5.1 Examples of suboptimality . 26
3.6 An Enumerative Approach . 29

3.6.1 Implementation . 31
3.6.2 Balanced trees . 33
3.6.3 Complexity . 36

3.7 AIG level Evaluation . 38
3.7.1 Synthetic Input Generators . 38
3.7.2 Evaluation on small circuits . 42
3.7.3 Effect of the preprocessing . 45

3.8 Technology level Evaluation . 46
3.9 Discussion . 48

4 Sequential Power Reduction with Activity Triggers 50
4.1 Clock Gating Fundamentals . 53
4.2 Related work . 56
4.3 Activity triggers . 58
4.4 Formal modeling and verification . 62
4.5 Statistical trigger detection . 66

Design decomposition . 66
Idle periods detection . 67

v

Finding potential triggers . 67
Filtering, ranking and reporting 67

4.6 Application flow . 70
4.7 Experimental results . 72
4.8 Limitations and future work . 77

5 Conclusion . 78
Acronyms . 80

vi

We see portability in electronics being a continuing requirement, higher
functionality, better battery life, requiring lower power for the actual
electronics.

David Milne

1
Introduction

Every computing and information-processing device consumes energy and produces heat
[27]. During the last two decades, power consumption became one of the most important
design concerns for electronic devices. The need for low power electronics stems from
multiple factors. Besides the general demand for green computing in order to save non-
renewable resources and protect the environment, power optimization is crucial for almost
all types of devices, with each class of applications bringing its own particular motivation
for low power. For instance, in modern data centers the power bill is on the same scale
as the hardware cost [19] and significant resources must be put into an efficient cooling
infrastructure. In portable devices there is a need for maximizing the operation/standby
time per one battery recharge/replacement. The expected future expansion of the ‘inter-
net of things’ will include extremely small wireless sensors and similar devices that will
recharge by wireless techniques or by energy scavenging as direct battery charging or
replacement would be impractical [58]. This implies extremely limited power budget for
such devices so that energy-efficient design will directly determine their computational
capabilities[59]. Finally, even in high performance chips, where the cost of energy may
not be considered an issue, the operation temperature of the chips is limited and power
efficient design is important in order to maintain the heat generated by the chip at a level
that can be efficiently cooled down [55]. We can conclude that in the last decades power
consumption has become a no less important performance measure than traditional area
and speed [16, 6, 60, 8].

In this thesis we focus on reducing dynamic power consumption in integrated circuits,
that is, the power dissipated while charging/discharging the transistors, which happens
when logical gates in the circuit change their value. It is often the case that some of such
switches are redundant, i.e. they are not necessary for the proper functioning of the circuit,
but nonetheless they keep consuming power. Reducing such redundant switches is thus

1

1. Introduction

one of the main concerns for low power design. We propose two novel methodologies to
avoid some of such redundant switches and to transform circuits into more energy efficient
forms while preserving functionality.

The first method (power-aware synthesis, published in [45]) is focused on reducing the
average switching in combinatorial logic based on a statistical model of the input, lever-
aging the fact that the probability of switching is different for individual logic elements
and there is typically a high level of correlation between the logical values of various sig-
nals in the design. This method is intended to be used during hardware synthesis in order
to obtain a physical realization that will produce less internal switches when performing
a typical computation thus reducing the long term power consumption.

The second method (activity trigger detection, published in [46]) is focused on reduc-
ing power primarily in sequential logic and its clock distributing network of by using the
clock gating technique. Clock gating is an industry standard power reduction strategy that
disables parts of a design when their function is not required. The essence of this work
is to identify events that delimit the active periods of sub-circuits, thus allowing the ap-
plication of clock gating to larger sub-circuits, using simple conditions that do not add a
large overhead. We also provide a formal verification flow to prove the correctness of the
potential clock gating opportunities that were found by the method. This method has been
part of my work as an industrial PhD student in Atrenta (later acquired by Synopsys) and
implemented within their commercial EDA tool.

The two power reduction methods presented in this thesis are independent and target
different stages in the low power design flow. Hence, after discussing basic fundamen-
tals of switching and power in Chapter 2, a separate chapter for each method follows.
These main chapters will contain the fundamental theory, related work, description of the
method, experimental results and a conclusion for each method separately. The combina-
torial circuit synthesis method will be described in Chapter 3, the clock-gating method in
Chapter 4. We will finish with a common conclusion in Chapter 5.

2

The whole VLSI approach is a triumph of engineering and
industrial manufacture, and it’s pity that ordinary people in
the street don’t appreciate how marvelous and beautiful it
all is!

Richard Phillips Feynman

2
Circuits and Power

2.1 Power Dissipation in CMOS Logic Gates

In this section we describe the main power dissipation issues in complementary metal-
oxide-semiconductor (CMOS) static logic [68]. At this point it is useful to clarify the
difference between energy consumption and dissipation in electronic circuits. Energy con-
sumption is the total energy that leaves the power supply and moves into the circuit. En-
ergy dissipation is the amount of energy that leaves the circuit and is discharged into the
ground and transformed to heat. Due to the law of energy conservation, these two values
are equal and hence interchangeable.

An integrated circuit (IC) consists of logic gates that perform simple Boolean opera-
tions. Let us consider an inverter gate, a commonly used example to describe CMOS prin-
ciples that are relevant as well to more complex gates. Figure 2.1 shows the schematics
of an inverter in CMOS technology. The transistors, wires, and all the electronic circuitry
driven by the gate output have an inner capacitance. Setting the gate output value to logi-
cal 1 is realized by charging this capacitance up to the supply voltage (Vdd). Conversely,
discharging the capacity into the ground (Gnd) represents a switch of the gate to logical 0.
For an ideal transistor, the charge from the source is never dumped directly to the ground,
as one of the transistors is always closed. All energy consumption comes from charging
the capacitance while switching from 0 to 1 and all energy dissipation (heat generation)
comes from discharging into the ground while switching the gate back from 1 to 0. The
power consumed by this phenomenon is called switching power .

However, real transistors are not ideal, which results in two additional major compo-
nents of power consumption. One imperfection of transistors is that they do not switch
infinitely fast. During the switching, the transistor stays for a very short time in an in-
termediate state where the resistance is quickly changing and the transistor is half open,

3

2. Circuits and Power

Figure 2.1: CMOS inverter circuit, image source:http://www.ics.uci.edu

Figure 2.2: CMOS inverter short circuit, image source:[59]

4

2. Circuits and Power

which allows passage of some current. This can lead to a short circuit path being formed
temporarily between voltage supply and ground. In the inverter case, if the input changes,
one of the transistors is closed and the other is open at the same time and until the first is
fully closed, some current can flow directly to the ground, consuming the so called short
circuit power (Figure 2.2).

Finally, physical imperfections of various electronic components allow some direct
leakage of the current from the power supply and the ground. The reasons encompass
multiple physical phenomena like sub-threshold leakage, stacking effect and gate tunnel-
ing [59]. Leakage current is small compared to the currents responsible for switching,
however, it is consumed continuously as long as the circuit is powered, even when there
is no actual switching of the transistors. Until recently, leakage was accountable for a rel-
atively small portion of the overall power dissipation, however the effect of leakage tends
to be stronger as transistor sizes and supply voltages scale down and leakage power is now
becoming an increasingly important factor in the overall power consumption [42, 59].

The complete energy consumed by a CMOS gate during a given time can be summa-
rized by the following equation:

E ≈ (CL ·CS C) · Vdd2 · N + Ileak · Vdd · t. (2.1)

The symbols in Equation 2.1 should be interpreted as follows:

E . . . total energy consumed per a unit of time
N . . . number of switches in the gate value per a unit of time

CL . . . gate capacitance
CS C . . . capacitance used to model the short-circuit power
Vdd . . . power source voltage relative to the ground
Ileak . . . leaking current

t . . . (time) duration

Power reduction strategies typically focus on minimizing some element in equation
2.1. Scaling transistor sizes and adjusting other physical properties can focus on mini-
mizing CL,CS C and Ileak. Another approach is scaling down Vdd which has been reduced
from 5V to less than 1V in the last two decades [59, 12]. While using these physical
methods one should be careful not to break the balance between conflicting optimization
goals. For instance, scaling down voltage reduces power, but at the same time induces
a higher delay, therefore decreasing frequency. Furthermore, with small source voltage,
we need to reduce also the threshold voltage values in the transistors, which leads to an
exponential increase in leakage.

5

2. Circuits and Power

2.2 Dynamic power and switching activity

In this thesis we focus exclusively on reducing switching activity, a number of switches
actually performed by gates. We see that this has linear impact on switching and short-
circuit power, which are together called dynamic power . Abstracting away the physical
characteristics, the energy consumed as dynamic power can be expressed as

Edyn ≈ energy_per_switch · N (2.2)

Note that it doesn’t really matter that the energy cost of charging the gate to supply
voltage is typically higher than discharging it, as for every charge there will be a discharge
and therefore we can enumerate the average energy consumed by a switch as

energy_per_switch =
energy_per_charge + energy_per_discharge

2
(2.3)

In this thesis we consider principally clocked or synchronous circuits, where the op-
erations are performed periodically at a rate given by a clock signal of a fixed frequency
f . In such circuits the maximal dynamic power consumption over time t is attained by a
gate if it switches every clock cycle and hence N = f · t. Dividing the energy by time t,
we get the maximal dynamic power as

Pmax = energy_per_switch · f . (2.4)

However, gates do not typically switch at every clock cycle, so the average dynamic
power consumption Pavg of a gate performing some computation is smaller than the max-
imum Pmax. The ratio

α =
Pavg

Pmax
(2.5)

is called the switching activity and is always between 0 and 1. Switching activity can
be interpreted alternatively as the probability for a given gate to switch in a given clock
cycle. The average power consumption can be expressed as

Pavg = α · energy_per_switch · f . (2.6)

So far we assumed that the gate capacitance is charged only when the logical value on
the output of the gate changes. In reality, mostly due to the fact that the changes in signals
take some time to propagate through the circuit, it can happen that changes in different
inputs of a gate are desynchronized and the gate is partially charged/discharged for a very
short time followed by immediate discharge/recharge. Figure 2.3 shows an example of a
circuit where the inputs to the and gate are not synchronized due to an unequal length
of the paths along which the signals propagated, which creates a glitch. This behavior
is generally undesirable as power is spent without an actual useful computation being
performed. Glitches are in general responsible for a significant fraction of dynamic power
[26] and designers are putting a great effort to limit glitches using various techniques
[21, 10], for example, reducing the imbalance between the lengths of different paths. We
didn’t considered glitching in our power aware synthesis technique, however the method
is designed not to introduce large differences in path lengths. The savings achieved by
activity trigger analysis apply also to glitching.

6

2. Circuits and Power

a
a
b c

a

b

c

Figure 2.3: An example of a glitch. The transition in b happens slightly later after the
transition in a due to the physical delay of the inverter. This, combined with the physical
delay of the and gate leads to a short period (glitch) when the signal c is high, even though
logically it should always remain low (as c = a ∧ b = ¬a ∧ ¬a = 0).

7

2. Circuits and Power

2.3 Design flow

To put our power reducing techniques into context, we summarize in Figure 2.4 the gen-
eral flow of application specific integrated circuit (ASIC) design. More information about
this flow can be found in textbooks such as [62]. Here we focus only on the steps that are
relevant to our methods, that is logic design, circuit design, and physical design.

We can see each of the design phases as a process that transforms a more abstract
circuit representation into more concrete form. The part of the flow relevant to this thesis
works with four main forms of circuit description:

1. Behavioral level description A circuit description in a language that contains high-
level software-like constructs such as loops, conditionals or sub procedures. It de-
scribes the interface and function of the circuit rather than actual physical structure.
Behavioral level languages includes Verilog [38], VHDL [39], System Verilog [37]
and SystemC [36].

2. Register Transfer Level (RTL) Describes interface ports, registers, key nets and
buses of the design and defines how register values should be updated. This is spec-
ified using simple Boolean expressions that may contain also simple arithmetical
macros like addition or multiplication.

3. Netlist Set of gates, ports and registers and their interconnections. The gates and
registers can be abstract (associated only with the logical function), however at
some point they need to be mapped into standard cells.

4. Physical Layout Floor plan of a chip that contains actual physical positioning of
the standard cells and interconnecting wires as well as supporting structures like
clock distribution network.

During the ASIC design process, the designers move from one circuit representation
to another (more concrete) using various techniques that can be grouped in the following
stages:

1. Logic Design In this stage the behavioral description is translated into RTL. Logic
minimization can be performed at this point to simplify the combinatorial logic
expressions.

2. Circuit Design The abstract RTL registers and combinatorial logic is translated
into real gates and registers that can be manufactured. These gates are provided in
a technology library file by the manufacturer (foundry). Typically this process has
two stages where the RTL is first translated into a netlist consisting of a limited
number of abstract gates (e.g. only 2 input and gates and inverters) and then phys-
ical gates from the technology library are structurally mapped onto this abstract
netlist by a cost optimizing mapping algorithm.

8

2. Circuits and Power

Figure 2.4: ASIC design flow and related circuit representations.

9

2. Circuits and Power

3. Physical Design In this phase physical structures such as transistors are placed on
a chip and the wires connecting them are routed. Among other things, the clock
signal has to be routed to each register and the clock gating cells are placed in this
step.

2.3.1 Position of our techniques in the design flow

Power-aware synthesis technique is applied at the beginning of the circuit design stage
(that is, translation of RTL into technology independent abstract netlist). The method
minimizes switching in the resulting abstract netlist based on a stochastic model of input.

Many performance measures of a chip like delay or power consumption can be accu-
rately estimated only at the level of physical layout, however the decisions done higher
in the flow have serious impact on these costs. Furthermore, any change in the design is
much less expensive (in time and financially) to implement if it occurs earlier in the flow.
For instance fixing exceeded power budget leads to much shorter delay in production if it
is discovered at RTL as opposed to discovering the issue after placement and routing or
in extreme case after fabrication. For this reason, there is a demand for automatic tools
that can estimate power consumption and detect power reduction opportunities already
at the RTL even though they are less accurate than they would be at the physical level.
Activity trigger detection works at the RTL suggesting clock gating opportunities. The
integration into the Spyglass tool from Atrenta allows the user to estimate potential power
reduction that will be achieved at the physical level using the RTL power estimation tool
in Spyglass.

2.3.2 Formal model for circuits and switching

A digital circuit consists of various combinatorial logic gates and sequential memory
elements. For the purpose of formal modeling we will consider the state of the circuit to be
the current Boolean valuation of all the signals (inputs, gate outputs, memory elements).
The dynamics of the circuit will be modeled by a transition relation that conveniently
hides all the structural details. This definition differs from traditional circuit model in the
sense that the states are not restricted to the states of the sequential elements. This assumes
some discrete time domain and instantaneous signal propagation, a reasonable assumption
for well-timed synchronous circuits. For simplicity, we assume that every design has one
initial state. In reality, although the initial state of a circuit is typically undefined, a unique
state is often reached via a reset sequence.

Definition 1. A digital circuit (design) is a tuple
(X,Q,T, q0), where

• X is a finite set of variables that correspond to signals in the circuit.

• Q is the state space of the circuit. Each state is of the form x : X → B and has to
satisfy combinatorial constrains imposed by the structure of the circuit.

10

2. Circuits and Power

• T ⊆ (Q × Q) is a transition relation describing the circuit dynamics.

• q0 ∈ Q the initial state of the design.

The semantics of the circuit, the execution traces it generates, is defined using paths
in its automaton model.

Definition 2. An execution trace σ of a circuit
D = (X,Q,T, q0) is a sequence q[0], . . . , q[τ] of states, where

• q[0] = q0,

• For all 1 ≤ i ≤ τ it holds that (q[i − 1], q[i])∈T .

We use notation x[t] to refer to the value of a signal variable x∈X at the time t when the
execution trace is clear from the context.

To model the stimuli applied to the circuit’s vector, we introduce a notion of input
vector .

Definition 3. An input vector sequence is an execution trace projected only to circuit
inputs. The execution trace is determined by it’s input vector and the initial values of
signals. An input vector is one time frame of an input vector sequence.

Definition 4. Assuming a discrete time domain {0 . . . τ}, we say a signal a

• rose in time t + 1 if a[t] = 0 and a[t + 1] = 1,

• fell in time t + 1 if a[t] = 1 and a[t + 1] = 0,

• switched in time t + 1 if a[t] , a[t + 1],

• was stable in time t + 1 if a[t] = a[t + 1].

Definition 5. Let σ be an execution trace of a circuit D under a discrete time domain
{0 . . . τ}. The activity of a signal a, α(a) is the number of t ∈ {1 . . . τ} such that a switched
in time t.

One execution trace corresponds to a deterministic behavior of the circuit under some
fixed stimulus of it’s inputs. As circuits are supposed to work under multiple input vec-
tors that are not known a priori, we are interested in average activity. To define it, we
introduce a stochastic model for circuit behavior based on a probabilistic distribution P
over possible input vector sequencesV to a design D. The probability of an input vector
v being applied as a stimulus to D is then expressed as P(v).

Definition 6. Let D be a design and P the probability distribution over the set of possible
input vector sequencesV. For a signal a, the activity of a is

α(a) =
∑
v∈V

P(v) ·
| {t ∈ {1 . . . τ} | a[t] , a[t + 1](in the context of v)} |

τ − 1
(2.7)

11

I keep hearing about battery innovation, but it never makes it to my
phone.

Evan Spiegel

3
Power Aware Synthesis for Combinatorial

Power Reduction

Synthesis of combinatorial (and sequential) logic [43, 15, 61, 30] from higher level de-
scriptions to technology dependent standard cells is part of the circuit design stage of the
ASIC design flow (Figure 2.4) and one of the core activities in Electronic Design Automa-
tion (EDA), well-studied in academic research and implemented in powerful commercial
tools. This is the hardware analog of optimizing compilation, indispensable tool in pro-
ducing efficient chips. Traditionally, the major optimization objectives in synthesis have
been area and speed, the latter associated with the longest path from primary inputs of the
combinatorial logic to its outputs, which is related to the minimal time span of a clock
cycle in a sequential circuit. In this work we develop a new synthesis algorithm geared
toward decreasing power consumption by reducing the expected number of switches in
the circuit, an important factor in its dynamic power consumption.

Fig. 3.1 sketches a typical logic synthesis flow. Starting from a high level RTL spec-
ification of logic blocks, we extract the Boolean relationships between single bit signals.
This is called multi-level logic specification. Then the circuit is brought into a form of an
And-Inverter Graph (AIG), which is an abstract netlist consisting solely of and and not
gates. This representation is then mapped into a concrete technology of standard cells ad-
mitting physical properties such as size and electrical characteristics. Syntactically, AIGs
are composed from two input and gates (2ands) but by collapsing together all not-free
‘cones’, we obtain a semantically-equivalent function constructed from and gates of un-
bounded fan-in (arity). Part of the technology-dependent mapping can be viewed as de-
composing those ands into networks of 2ands and this is the problem we address in this
chapter.

Dynamic power consumption of Boolean gates is associated essentially with their

12

3. Power Aware Synthesis for Combinatorial Power Reduction

x1

x2

x3

X = x1 · x2

Y = x̄2 + x3 y

Z = X + Y z

x1

x2

x3

y

z

x1

x2

x3 y

z

2NANDXU37

2NANDXU37

INVBC5
INVBC5

2NORXU6

Figure 3.1: A circuit synthesis flow: from RTL to multilevel logic specification to tech-
nology independent netlist to standard cells.

13

3. Power Aware Synthesis for Combinatorial Power Reduction

switching between 0 and 1. In this work we consider synchronous combinatorial circuits
that process sequences of input vectors. For each input vector, a circuit propagates values
from input to output ports until it stabilizes and then reads the next input. The overall
number of switches associated with a pair of inputs is the number of gates whose stable
value for one input is different from their value for the next input. For one such pair it is
possible to steer the synthesis process and obtain a circuit with significantly less switching
compared to other arbitrary circuits that realize the same function. But of course, any
circuit will process during its lifetime a long sequence consisting of diverse consecutive
pairs of input vectors and optimizing synthesis with respect to all those is a challenging
problem.

One natural approach is to define some probability function over sequences of input
vectors, induced, for example, by a Markov chain which generates them. However, even
the evaluation of the expected number of switches in a given circuit is an intractable prob-
lem for non-trivial probabilistic generators with many input variables. As an alternative
we develop in this thesis a switching-aware synthesis procedure which optimizes the cir-
cuit relative to a reference sequence supposed to represent a typical input. In essence,
the algorithm estimates the expected amount of switching associated with a conjunction
of any pair of input variables and then solves an optimization problem to decide which
variables to pair together as inputs to a 2and gate. The procedure obtains quite a good
switching reduction compared to arbitrary realizations of the same function by circuits of
similar topology.

We then study the question of optimization with respect to inputs generated by Markov
chains of small description size, that is, networks of sparsely-interacting 2-state proba-
bilistic automata. We use such networks to generate the reference (training) sequences
and then measure the performance gains on other sequences generated from the same
model. We perform experiments on models of varying degree of variable dependencies
and other assumptions on the inputs and obtain significant reduction in switching activity.

We introduce two small circuits - a reduced model of an instruction decoder and an
open source serial peripheral interface circuit. We evaluate our procedure on these models
under probabilistic assumptions concerning the input stream. Finally, we explore the effect
of other optimization techniques and of technology mapping to the savings achievable by
our method.

14

3. Power Aware Synthesis for Combinatorial Power Reduction

3.1 Circuit Synthesis with AIGs

The circuit synthesis from RTL to a technology dependent netlist is a multiple step pro-
cess. An example of such a process, focused on combinatorial logic, is illustrated on
Figure 3.1. First, multilevel logic specification is derived from RTL description. This is
then, after optimization, translated to a technology independent netlist composed of ab-
stract gates. These abstract gates come from a limited number of types, each type corre-
sponding to a simple Boolean function. Different approaches, e.g., Boolean Expression
Diagrams [1], And-Inverter Graphs (AIGs) [29] or Reduced Boolean Circuits [34], use
different elementary functions. For our method we focus on the flow that uses AIGs as
implemented, for example, in ABC [53, 63], a tool for circuit synthesis and verification
developed at Berkeley Verification and Synthesis Research Center and used in academia
as well as in commercial EDA solutions [52].

We apply our optimization technique at this stage – on the abstract netlist in the form
of an AIG. We transform the AIG into a functionally equivalent form with a lower aver-
age switching during typical use of the circuit. Afterwards, the netlist is translated into a
technology dependent form consisting of standard cells. The information about the log-
ical and physical properties of the available standard cells is typically provided in a file
known as standard cell library. Such a library may contain hundreds of cells. The logic
functions provided by cells are translated into AIG form. These small AIG fragments are
then structurally mapped onto the AIG representation of the circuit in a manner that op-
timizes traditional performance measures such as delay and area based on the physical
properties of the associated standard cells that are provided in the library [41, 49]. This
process is called technology mapping.

3.1.1 AIG data structure

An And-Inverter Graph (AIG) is a Directed Acyclic Graph (DAG). Nodes and edges in
AIG have associated attributes that define the type of the node or edge. There are four
types of nodes:

1. Inputs: Represent inputs to the circuit. Nodes labeled as inputs have no incoming
edges.

2. AND nodes: Represent 2-input and gates.

3. Outputs: Represent circuit outputs, no outgoing edges.

4. Flip-flops Represent sequential elements. They must have exactly one input edge
and an initial value. A global clock is assumed to define the semantics - every clock
cycle the input to the flip-flop is sampled and saved as its new value.

Furthermore, there are two types of edges: direct and complemented. The first supplies
the value of the source as an argument to the destination node directly, the second first
inverts the value.

15

3. Power Aware Synthesis for Combinatorial Power Reduction

AIGs do not provide a canonical representation of sequential circuits and may contain
some redundant structures. However, modern tools apply efficient techniques that sig-
nificantly reduce the redundancy by unifying many isomorphic nodes of the graph [54].
For instance, it is ensured that a node can never have two incoming edges from the same
source and that no two and nodes have the same input.

In this chapter we are interested in switching reduction in combinatorial logic. The
combinatorial part of the circuit logic can be expressed in form of flip-flop free AIG. The
transformation is straightforward - the inputs to the flip-flops become new combinatorial
outputs and the outputs become new combinatorial inputs. In total two new nodes are
added for each removed flip-flop node. This combinatorial AIG serves as the main circuit
representation in our power-aware synthesis method.

16

3. Power Aware Synthesis for Combinatorial Power Reduction

3.2 Importance of Input Characterization for Switching

Whether a gate switches in a given cycle is determined by the behavior of its inputs.
For instance, when a 32-bit adder adds very small numbers, the higher bits typically do
not switch. If large number never occur we could use a smaller adder but if we need
occasionally to use large numbers we will need all bits. Nevertheless, the information on
the low probability of the higher bits operations can be useful for guiding the synthesis
toward a solution which is power efficient on the average.

Because our interest is in AIGs, we will be mainly interested in the and and inverter
gate switching. For a signal a we denote the probability of a = 1 in a given clock cycle
(time) t as pt(a). We say that signal a switched in time t + 1 if a[t + 1] , a[t]. The
probability of such a switch is

P(a[t + 1] , a[t]) = pt(a) · (1 − pt+1(a)) + (1 − pt(a)) · (pt+1(a)). (3.1)

If we assume that the probability doesn’t depend on time (pt(a) = pt+1(a) = p(a)), the
switching probability can be simplified to

2 · p(a) · (1 − p(a)). (3.2)

and is equivalent to the activity of a.
Now, consider an and gate with input signals a and b. The conjunction signal is high

if and only if both a and b are high. Hence

p(a ∧ b) = p(a) · p(b). (3.3)

For the inverter, we have
p(¬a) = 1 − p(a). (3.4)

These equations are at the core of many switching estimation tools, however they
contain an inherent deficiency. Consider the circuit in Figure 3.2 for which the inputs of
the gate are always different and hence the and gate value is equivalent to constant 0.
There is no switching happening in such a gate, even though Equations 3.3 and 3.1 will
give us positive numbers for 0 < p(a) < 1. This is because Equation 3.3 assumes that
there is no correlation between different circuit signals, which is not true for this circuit
from as well as for the majority of real circuits. We call this type of correlation between
different combinatorial signals spatial dependency.

Another commonly-used assumption is that of temporal independence, i.e., the value
of the signal in time t doesn’t depend on t or on previous values of the signal. This is also
often not the case as circuits contain sequential elements that introduce temporal correla-
tion as illustrated in Figure 3.3. The inputs to the and gate are a signal and its previous
value saved in a sequential element. The values change every cycle, hence the probabil-
ities of being high are equal to 0.5 for both inputs and the probability that the and gate
is high should be equal to 0.25 according to Equation 3.3. However, the inverter in the
sequential loop ensures that the signal value is always different than its previous value,

17

3. Power Aware Synthesis for Combinatorial Power Reduction

resulting in zero switching at the and gate. This could be also seen just as spatial corre-
lation between two inputs of the and gate as in the Figure 3.3, however the correlation
source in this case is clearly temporal and spatial dependency would not be sufficient in
case of more sophisticated logic being used to update the register.

This shows that for accurate modeling of switching it is desirable to have a stochastic
model of the input that includes both spatial and temporal dependencies.

a

Figure 3.2: Effect of spatial correlation on switching.

D Q 10101010

01010101 00000000

Figure 3.3: Effect of temporal correlation on switching.

18

3. Power Aware Synthesis for Combinatorial Power Reduction

3.3 AND Cone Decomposition

As combinatorial AIGs are composed from and gates and inverters only, we can merge
some of the neighboring and gates to multiple-input-and gates. The resulting multiple-
input-and gate graph will be semantically equivalent to the original AIG. This is illus-
trated in Figure 3.4 where the 2-input-and (2and) nodes of the original AIG are shown as
white circles and complementing edges are marked with a black dot (that represents an
inverter). The overlying triangles are the multiple output gates in the transformed graph
that we call cones.

To transform an AIG into cone form, we need to identify the sub-structures of the AIG
that can be safely merged. We do this by finding so called cut points that delimit the cones.
A sub-structure in AIG can not be merged if it contains an inverted edge. Furthermore,
if a node is referred from two different places, we can’t hide it inside a multiple-input-
and gate, as its value would not be available in the circuit. Therefore, we denote all AIG
nodes that have an outgoing complementing edge or have more than one outgoing edge
as cut points. These cut points are at the top of the cones. The cone associated with a
cut point contains all the nodes that are backward reachable from the cut point using
a search algorithm that stops at non-complemented edges and another cut points. This
procedure is shown in Figure 3.4. The correctness follows from the fact that each cone
is by construction a binary tree composed exclusively of 2and gates. Such a structure
is equivalent to a multiple-input-and gate by commutativity and associativity of logical
conjunction.

Referred through complementing edge

Referred twice

Figure 3.4: Partitioning AIG into and cones.

Now consider an inverse procedure. We start with a directed graph of cones and we
want to produce an equivalent AIG. This AIG is not unique, as every n input cone can
be represented in AIG as an arbitrary binary tree of n−1 2and gates. All these trees are
functionally equivalent but their average switching may be different. Our goal is to trans-
form the original AIG first to the cone form and then decompose each cone into the tree
with minimal or reasonably small average switching under some stochastic model of the
incoming input vectors.

19

3. Power Aware Synthesis for Combinatorial Power Reduction

3.4 Problem Statement

Our starting point is a DAG having and cones as vertices and (complementing or di-
recting) edges. This is functionally equivalent to a Boolean circuit constructed from un-
bounded fan-in and gates and not gates. Our goal is to replace the and gates by 2and gates
(decomposing the cones), yielding an equivalent circuit C in the form of AIG. Once we
have a good solution for the problem of decomposing a single and cone, we can apply it
to every cone separately and solve the problem for the whole circuit.

From now on we consider a Boolean function

f : (x1, . . . , xn) 7→ x1 ∧ · · · ∧ xn

and a target circuit C which is a properly structured binary tree with edges directed to-
wards the root. Non leaf nodes of this tree are 2ands of the form

g : (yi, y j) 7→ yi ∧ y j.

Note that the number of 2ands in C is always n − 1. The n leaf nodes represent the inputs
of the circuit, hence each leaf is uniquely labeled by a variable from x1, . . . xn. We denote
the input space Bn by X and the state-space of C, that is, the set of possible values in the
output ports of all its gates, as Y = Bn−1. The synthesized circuit C can be viewed as a
memoryless transducer from an input vector sequence X∗ to an internal state sequence Y∗

such that for every t, y[t] is the stable state of the circuit after processing x[t]. The amount
of switching in C relative to input x and at time t is

S (C, x, t) = ∆(y[t − 1], y[t]) (3.5)

where ∆ is the Hamming distance between Boolean vectors. The total amount of switching
while reading a sequence x ∈ X∗ is

S (C, x) =

|x|∑
t=1

S (C, x, t). (3.6)

A circuit C is better than C′ relative to x if S (C, x) < S (C′, x). We want to build
circuits which are optimal or reasonable in this sense. A major issue is what to assume
about the set of inputs used to evaluate S (C, .). One can think of two approaches.

1. Assume some probability function P on X∗, or more precisely a family of probabil-
ities Pk : Xk → [0, 1], defined for example via a Markov chain, and then attempt to
optimize the expected number of switches per time step

S (C, P) = lim
k→∞

∑
x∈Xk

Pk(x) · S (C, x)/k.

2. Use a long reference sequence x and evaluate C according to S (C, x).

We will use a mixture of these two approaches. We optimize S (C, x) for some training se-
quence x generated by a Markov chain and then evaluate the synthesized circuit according
to the number of switches that occur while processing other sequences generated from the
same chain.

20

3. Power Aware Synthesis for Combinatorial Power Reduction

3.4.1 Solution Space

The number of unlabeled binary trees with n leaves equals to the Catalan number Cn−1[44].

Cn−1 =
1
n

(
2(n − 1)

n − 1

)
(3.7)

For instance, there are 5 different trees for n = 4 as illustrated on Figure 3.5. Four of them
are chains (extremely unbalanced tree) and the other a balanced tree (a tree with the min-
imal possible depth dlog2(n)e). Using chain topology can be in principle very beneficial
for switching reduction. On Figure 3.6 we show an example of an input pattern for which
the chain structure leads to lower switching activity compared to a balanced tree. How-
ever, using such structures in practice can lead to higher delay and to increased glitching,
therefore we are primarily interested in balanced trees. The number of balanced trees with
n leaves is (

2dlog2(n)e−1

n − 2dlog2(n)e−1

)
(3.8)

The leaf labeling is also important to determine switching in a circuit as illustrated
in Figure 3.7, where reordering the inputs leads to 0 switching for a given input pattern.
There are n! possible labelings, so the actual number of circuits that implement f is

(n − 1)! ·
(
2(n − 1)

n − 1

)
(3.9)

and the number of balanced circuits is

n! ·
(

2dlog2(n)e−1

n − 2dlog2(n)e−1

)
. (3.10)

The number of possible realizations grows extremely fast, limiting the scope of an
enumerative approach very small cones. We develop two optimization algorithms. One
is polynomial, heuristic based, but only approximative. The other is i an enumerative
algorithm that uses symmetry reduction to avoid checking circuits which are equivalent
with respect to switching. This allows us to deal efficiently with larger trees, however this
approach is still exponential and therefore can be used only on cones of limited size.

Figure 3.5: All possible binary trees with 4 leafs.

21

3. Power Aware Synthesis for Combinatorial Power Reduction

x1

x2 x3 x4 x5 x6 x7 x8

0→ 0

0→ 1

0→ 0

0→ 1

0→ 0

0→ 1

0→ 0

0→ 1

0→ 0

0→ 1

0→ 0

0→ 1

0→ 0

0→ 1

0→ 0

x1

x2

x3

x4

x5

x6

x7

x8

0→ 0

0→ 1
0→ 1

0→ 1

0→ 1

0→ 1
0→ 1

0→ 1

0→ 0

0→ 1

0→ 1

0→ 1

0→ 0

0→ 1

0→ 0

Figure 3.6: For an input transition (0, 0, 0, 0, 0, 0, 0, 0)→ (0, 1, 1, 1, 1, 1, 1, 1) a chain real-
izations can abort all switchings but a tree cannot.

22

3. Power Aware Synthesis for Combinatorial Power Reduction

x1

x2

x3

x4

x5

x6

x7

x8

0→ 1

0→ 1
0→ 1

0→ 1
1→ 0

1→ 0
1→ 0

1→ 0

0→ 1

0→ 1

1→ 0

1→ 0

0→ 1

1→ 0

0→ 0

x1

x5

x2

x6

x3

x7

x4

x8

0→ 1

1→ 0
0→ 1

1→ 0
0→ 1

1→ 0
0→ 1

1→ 0

0→ 0

0→ 0

0→ 0

0→ 0

0→ 0

0→ 0

0→ 0

(a) (b)

Figure 3.7: Two pairings for input transition (0, 1, 0, 1, 0, 1, 0, 1) → (1, 0, 1, 0, 1, 0, 1, 0):
(a) a bad pairing with 6 switchings; (b) a good pairing with no switchings.

23

3. Power Aware Synthesis for Combinatorial Power Reduction

3.5 A Level-Greedy Approach

To explore the effect of input ordering on balanced trees it is beneficial to restrict ourselves
first to functions f : (x1, . . . , xn) 7→ x1 ∧ · · · ∧ xn where n is a power of two. In this
case there is always only one shape of the balanced tree implementing the function and
the solutions differ only in input mapping. This allows us to use a divide and conquer
approach by partitioning the tree into layers and find the best input ordering for each
layer separately. The first layer is composed of the gates directly driven by the inputs. The
second layer contains gates driven by the outputs of the gates in the first layer and so on.
The partitioning is illustrated on Figure 3.5.

layer-optimal

Figure 3.8: Solving the problem layer by layer

The problem is reduced to finding the best input mapping for one layer of 2and gates.
However, swapping two gates (along with its inputs) within the layer will not have any
effect on the functions in the gates and hence switching. The only operation that can in
principle lead to a change in overall switching activity in a layer is swapping the inputs
of different gates, changing the functions realized by the affected gates. In fact this is
essentially the problem of assigning two inputs to each gate or, viewed differently, the
problem of pairing the inputs. Two paired inputs are then combined by a 2and gate.
We want to find such pairing that induces the minimal switching among all the possible
pairings.

Now we will describe the level greedy algorithm in detail. We need to solve the prob-
lem of mapping input variables to the circuit input ports. The problem can be phrased
recursively as follows. At level i of the tree, 2d−i inputs should be partitioned into pairs
to be mapped into 2d−i−1 2and gates. To understand which input signals should be paired
together, let us look at Table 3.1-(A) which shows which transitions are taken by the out-
put as a function of the transitions taken by the inputs. Table 3.1-(B) shows the number
of output switches in each case while Table 3.1-(C) shows the net switching reduction
effect, namely, the number of input switches minus the number of output switches. It is
intuitively clear that for one consecutive pair of inputs, we should pair together variables
taking respective transitions 1 → 0 and 0 → 1. Such transitions cancel each other and

24

3. Power Aware Synthesis for Combinatorial Power Reduction

0→ 0 0→ 1 1→ 0 1→ 1
0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
0→ 1 0→ 0 0→ 1 0→ 0 0→ 1
1→ 0 0→ 0 0→ 0 1→ 0 1→ 0
1→ 1 0→ 0 0→ 1 1→ 0 1→ 1

(A)

0→ 0 0→ 1 1→ 0 1→ 1
0→ 0 0 0 0 0
0→ 1 0 1 0 1
1→ 0 0 0 1 1
1→ 1 0 1 1 0

(B)

0→ 0 0→ 1 1→ 0 1→ 1
0→ 0 0 1 1 0
0→ 1 1 1 2 0
1→ 0 1 2 1 0
1→ 1 0 0 0 0

(C)

Table 3.1: (A) The output transitions of an and-gate as a function of the input transitions;
(B) The number of switches associated with every pair (u → u′, v → v′) of input transi-
tions; (C) The net switching reduction: number of input switches minus output switching.

send as inputs to the next level a variable doing 0 → 0 which will not trigger further
switching with any other input it will be paired with. Fig. 3.7 shows two circuits and their
performance differences with respect to a single consecutive pair of input vectors.

Let R jk(u, u′, v, v′) be the probability that a pair (x j, xk) of input variables takes the
joint transition (u→ u′, v→ v′). Given a reference input sequence x, we can approximate
R jk(u, u′, v, v′) by computing the number of occurrences of the given transition in the
sequence. Denoting the number of switches of a hypothetical and gate x j ∧ xk implied by
a pair of transition x j : u → u′ and xk : v → v′ (Table 3.1-(B)) by s(u, u′, v, v′), which is
always either 0 or 1, the expected number of switches in x j ∧ xk is

µ jk =
∑

u,u′,v,v′
R jk(u, u′, v, v′) · s(u, u′, v, v′). (3.11)

Let G = (V, E, µ) be a complete graph with n nodes where each edge (j, k) is labeled by µ jk.

25

3. Power Aware Synthesis for Combinatorial Power Reduction

For the first level of the tree, the problem of finding input pairing which is optimal in terms
of expected total number of switching is equivalent to the optimization problem known
as minimal-weight perfect matching [57] for G. Once such an optimal pairing is found
for level i, the outputs of the gates at this level serve as inputs for the pairing problem
of the next level as summarized in Algorithm 1. The first polynomial algorithm for the
optimal matching problem dates back to [22] using linear programming. The complexity
of the algorithm has been improved in [48] from O(n4) to O(n3). Thus, together with the
computation of µ from the training sequence the complexity of our procedure is O(n2 ·

|x| + n3).

3.5.1 Examples of suboptimality

The result obtained by the level-greedy algorithm may deviate from the optimal expected
number of switches in the AIG for two reasons. First, it is not based on real probability of
switching but on its approximation from the training sequence. Secondly, the level-greedy
algorithm, in principle, it is not guaranteed to produce the optimal among all circuits.

x1

x2

x3

x4

x5

x6

x7

x8

0→0→0

0→1→0
0→1→0

0→1→1
0→1→1

0→1→1
1→1→0

1→1→1

0→0→0

0→1→0

0→1→1

1→1→0

0→0→0

0→1→0

0→0→0

x1

x2

x3

x7

x4

x5

x6

x8

0→0→0

0→1→0
0→1→0

1→1→0
0→1→1

0→1→1
0→1→1

1→1→1

0→0→0

0→1→0

0→1→1

0→1→1

0→0→0

0→1→1

0→0→0

(a) (b)

Figure 3.9: A counter-example for the optimality of level-greedy algorithm: (a) A level-
greedy pairing with 6 switches ; (b) An optimal pairing with 5 switches. Note that both
pairings have the same (minimal) switching on the first level.

This is true even for circuits where the number of inputs n is a power of two as il-
lustrated on the Figure 3.9. Additional issues are present when n is not a power of two.
Applying the level-greedy approach when n = 6, we get three pairings at the first level,
then we choose the best pair out of three outputs from the first level and the remaining
two signals are paired to complete the circuit. The resulting topology of the circuit is
shown in Figure 3.10, however, there is a different possible topology, illustrated in Figure

26

3. Power Aware Synthesis for Combinatorial Power Reduction

Algorithm 1: Level-greedy synthesis balanced-tree circuit for a conjunction of n vari-
ables.

procedure Synthesize(x)
Input: A sequence x of Boolean vectors of dimension n = 2d

Output: A balanced-tree circuit C realizing x1 ∧ · · · ∧ xn

i := 0
F = {({i}, ∅)} while i < d − 1 do

(F, x) :=Reduce(x, F,−i)
i := i + 1

end

function Reduce(x, i)
Input: A Boolean sequence x of dimension m = 2i

Input: A forest of binary trees F = T1, . . . ,Ti

Output: An optimal pairing of trees from T and a Boolean sequence y
of dimension 2i−1

forall j , k ∈ [1..i] compute µ jk

let G = (N, E, µ) be the corresponding weighted graph
M :=optimal_match (G) = {(xr1 , xr2), . . . , (xrm−1 , xrm)}
y := (xr1 ∧ xr2 , . . . , xrm−1 ∧ xrm)
F′ := join(Tr1 ,Tr2) · · · join(Trm−1,Trm

)
return(F′, y)

function join(T1,T2)
Input: A binary tree T1 = (E1,V1) with root node r1

Input: A binary tree T2 = (E2,V2) with root node r2

Assume: E1 ∩ E2 = ∅, E1 ∩ E2 = ∅

Output: A new binary tree that has T1 and T2 as children of the root node.
r := max(max(V1),max(V2)) + 1\\ r is a new root node
V := V1 ∪ V2 ∪ {r}
E := E1 ∪ E2 ∪ {(r1, r), (r2, r)}
return (V,E)

27

3. Power Aware Synthesis for Combinatorial Power Reduction

3.11. In this case we pair only four signals at the first level and two inputs are kept to be
considered independently at the second level. Such an arrangement is not explored by the
level-greedy algorithm. For a concrete example of an input sequence for which the circuit
topology omitted by the greedy algorithm can lead to better switching, see Figure 3.5.1.

Figure 3.10: The topology resulting from a
level-greedy algorithm.

Figure 3.11: A topology not considered by
a level-greedy algorithm.

x1

x2

x3

x4

x5

x6

0→1

1→0
0→1

1→0
0→1

0→1

0→0

0→0

0→0

0→1

0→0

x1

x2

x3

x5

x4

x6

0→1

1→0

1→0

0→1

0→0

0→1

0→1

0→0

0→0

0→0

0→0

(a) (b)

Figure 3.12: (a) A level-greedy pairing with 1 switching; (b) An optimal pairing with 0
switches using a topology not explored by a level-greedy algorithm.

28

3. Power Aware Synthesis for Combinatorial Power Reduction

3.6 An Enumerative Approach

The sub-optimality of the level-greedy approach brings us to the problem of constructing
an algorithm that always finds the optimum. The straightforward brute-force approach of
exploring every possible tree is very redundant as many trees are symmetrical and have
exactly the same switching characteristics. In this section we explore how this symmetry
can be used to reduce the overwhelming complexity of the enumerative algorithm and
allow us to find optimal solutions for somewhat larger and cones. We also show that the
resulting algorithm is optimal. Finally we show how to adjust the algorithm to consider
only balanced realizations.

Each AIG and cone circuit implementing a function

f : (x1, . . . , xn) 7→ x1 ∧ · · · ∧ xn

is essentially a binary tree where internal nodes represent 2and gates and the leaves rep-
resent inputs. The output function of every node of the tree is of the form

g : (xr1 , . . . , xrm) 7→ xr1 ∧ · · · ∧ xrm ,

where xr1 , . . . xrm are the inputs labeling the leaves from which the given node can be
reached. We can label every node with the set of variables that are in its fanin cone in the
following way:

Consider a directed graph G = (V, E) that represents a circuit implementing the func-
tion f . We assume that the variables x1, . . . , xn are the leaf nodes (without incoming
edges). As this is a binary tree, we know that there is exactly n − 1 internal nodes that
represent the and gates:

V = {y1, . . . , yn−1, x1, . . . , xn}

Now, we can label each node with the set of indices of variables that influence its function:

vars(xi) = {i} (3.12)
vars(yi) = vars(l(yi)) ∪ vars(r(yi)) (3.13)

where functions l, r return the children of internal node yi, i.e., (l(yi), yi), (r(yi), yi). We
know that there are exactly two such nodes.

This allows us to precisely express the switching in the and nodes of the circuit mod-
eled as a graph G = (V, E) under a given input vector sequence x1, . . . , xn ∈ B

τ as follows:

S (G) =

n−1∑
i=1

α

 ∧
i∈vars(yi)

xi

 (3.14)

We call vars(z) a signature of a node z and the collection

{vars(yi)|i ∈ {1 . . . n − 1}}

29

3. Power Aware Synthesis for Combinatorial Power Reduction

a signature of the circuit represented by (V, E).
The signature of a circuit provides full characterization of switching in the circuit and

two circuits that have the same internal node functions must have the same switching.
This means that in the enumerative algorithm it is enough to consider all possible signa-
tures instead of all possible trees, which removes a lot of redundancy as one signature
can be shared by multiple trees. For instance, if you rotate some subtree of a tree you
get a different tree with the same signature. This means that the signature enumerating
algorithm is optimal, a signature is a sufficient representation of the circuit structure with
respect to combinatorial logic properties.

Besides optimality, we want also to show that our algorithm is not redundant, i.e., that
it is not possible to omit any signatures and they have to be all checked. A signature would
be redundant if there was another signature that would imply the same switching for all
possible input sequences. The following theorem 3.1 shows that for every two signatures
we are able to find some input vector sequence for which the switching in these two
signatures will be different, hence no signature is redundant.

Theorem 3.1. Let A = {A1, . . . An−1}, B = {B1, . . . Bn−1} are two distinct signatures of 2and
tree circuits implementing f : (x1, . . . , xn) 7→ x1 ∧ · · · ∧ xn. Then we can binary sequences
in Bτ as values for x1, . . . , xn such that the switching induced by this sequences in A differs
from the switching induced in B:

n−1∑
i=1

α

∧
i∈Ai

xi

 , n−1∑
i=1

α

∧
i∈Bi

xi

 .
Proof. Let A′ is the maximal (w.r.t) inclusion set in A such that A′ < B. If such a set does
not exist then A = B hence it has to exist. There must be a set Ac ∈ A such that U = A′∪Ac

such that U ∈ A ∩ B and there must exist B′, Bc ∈ B such that U = B′ ∪ Bc. Seeing the
signature as a tree, the U is the set of variables i the parent of A′. There must be always
a parent as A′ can not be root because root is the same in both A and B. Ac is a sibling of
A′. The U is also present in B as otherwise A′ would not be maximal. B′ and Bc are the
children of U in the context of B. Furthermore Ac < B and B′, Bc < A. This follows from
the fact that both A′, Ac and B′, Bc are partitions of U. We can set

xi =

00 if i < U
01 if i ∈ A′

10 if i ∈ Ac

Now
n−1∑
i=1

α

∧
i∈A

xi

 =
∑

Ā∈A|Ā(U

α

∧
i∈Ā

xi

 +
∑

Ā∈A|Ā⊂A′

α

∧
i∈Ā

xi

 +
∑

Ā∈A|Ā⊂Ac

α

∧
i∈Ā

xi

 + α

∧
i∈U

xi

and

n−1∑
i=1

α

∧
i∈B

xi

 =
∑

B̄∈B|B̄(U

α

∧
i∈B̄

xi

 +
∑

B̄∈B|B̄⊂B′

α

∧
i∈B̄

xi

 +
∑

B̄∈B|B̄⊂Bc

α

∧
i∈B̄

xi

 + α

∧
i∈U

xi

30

3. Power Aware Synthesis for Combinatorial Power Reduction

The input sequence was set in such a way that

∑
Ā∈A|Ā(U

α

∧
i∈Ā

xi

 + α

∧
i∈U

xi

 = 0 =
∑

B̄∈B|B̄(U

α

∧
i∈B̄

xi

 + α

∧
i∈U

xi

and ∑

Ā∈A|Ā⊂A′

α

∧
i∈Ā

xi

 = |{Ā ∈ A|Ā ⊂ U}| = |U | − 2.

Therefore also ∑
B̄∈B|B̄⊂B′

α

∧
i∈B̄

xi

 = |{B̄ ∈ B|B̄ ⊂ U}| = |U | − 2.

The input is defined in such a way that A′ contains always sequences of the form 01
and 10, therefore the value of their conjunctions is also 01 and 10, so there is a switch
occurring in both A′ and Ac. On the other hand the sequences of the form 01 are mixed
with 10 in B′ and Bc, therefore the value of the conjunction at these nodes is 00. Therefore
Hence

S (A) =

n−1∑
i=1

α

∧
i∈A

xi

 = |U | − 2 + α

∧
i∈A′

xi

 + α

∧
i∈Ac

xi

 = |U |

S (B) =

n−1∑
i=1

α

∧
i∈B

xi

 = |U | − 2 + α

∧
i∈B′

xi

 + α

∧
i∈Bc

xi

 = |U | − 2

This means that switching in A is larger than in B.

3.6.1 Implementation

For a function
f : (x1, . . . , xn) 7→ x1 ∧ · · · ∧ xn

we want to generate all canonical 2and trees in the sense that one tree is generated per
every possible signature. Furthermore, we want to represent canonical trees efficiently. A
data structure representing a 2and tree is a tuple with 4 data members:

• size – the number of inputs (leaves)

• id – a number serving as a unique identifier for the tree among the trees of the same
size

• lchild – id of the left subtree, empty for leaves

• rchild – id of the right subtree, empty for leaves

31

3. Power Aware Synthesis for Combinatorial Power Reduction

• lvars – a set of indexes of variables that are driving the inputs in the left subtree
assuming that the variables are indexed 1 . . . size. If the actual variables have dif-
ferent indexes, we use their relative order as index. For instance if x2, x5, x7 are the
variables driving this tree and x2, x7 are in the left sub-tree, we set lvars = {1, 3}. As
the first variable goes always to the left sub-tree (explained later), we can further
optimize this data structure by omitting 1 from lvars.

Now, we can create a list of all canonical trees of given size n. The canonicity is
enforced by putting the smallest variable index always in the left subtree thus having only
one tree for any given signature.

There is only one canonical tree for the trivial case of f : (x1) 7→ x1. For n > 1,
we build the list recursively (Algorithm 2). The actual enumerative power-aware synthe-
sis algorithm (Algorithm 4) goes through all the canonical trees of size n, evaluates the
switching in each tree with respect to some provided input vector sequence (Algorithm 3)
and returns the tree with minimal overall switching.

Algorithm 2: Computes the list of canonical trees of size n and saves the result into a
global variable can_trees.
procedure InitCanTrees(n)
Input Integer n > 0.
global can_trees\\ a list of lists.
if n == 1 do

can_trees[n] := [(1, 0,Null,Null)]
done
else do

for i ∈ 1 . . . n − 1 do
InitCanTrees(i)

done
can_trees := []
for put_to_le f t ∈ {S ⊂ {1 . . . n}|1 ∈ S } do

lsize := put_to_le f t.size
rsize := n − lsize
for L ∈ can_trees[lsize] do

for R ∈ can_trees[lsize] do
tree := (n, can_trees.size(), L.id,R.id, put_to_le f t)
can_trees.append(tree)

done
done

done
end

32

3. Power Aware Synthesis for Combinatorial Power Reduction

Algorithm 3: Evaluating switching in a given tree under a given permutation and input
pattern.

procedure EvaluateSwitching(tid, X)
Input: An input pattern x1 . . . xn such that xi ∈ B

τ for each 1 ≤ i ≤ n.
Represented as a list X = [x1 . . . xn]
Input: An id of a canonical tree t
Output: The amount of switching in the tree T driven by the input pattern x1 . . . xn

global can_trees\\ initialized by Algorithm 2.
if n = 1 do

return 0
end
else do

T := can_trees[n][tid]
for i ∈ 0 . . . τ do

top_trace[t] := x1[t] ∧ . . . ∧ xn[t]
done
top_switching := |{t | top_trace[t] , top_trace[t + 1] for 0 ≤ i < τ}|
return top_switching +

EvaluateS witching(T.lchild, [X[i] | i ∈ T.lvars])+
EvaluateS witching(T.rchild, [X[i] | i < T.lvars, i ∈ {1 . . . n}])

end

3.6.2 Balanced trees

As we are primarily interested in balanced circuit topologies, we need to be able to adjust
Algorithm 4 in such a way that it considers only balanced trees. It is sufficient to modify
the following line from Algorithm 2:

for put_to_le f t ∈ {S ⊂ {1 . . . n}|1 ∈ S }do (3.15)

This statement defines which variables will be placed in the left sub tree and which
in the right. In the original algorithm we consider all possible partitions that puts the first
relevant variable in the left trees. To keep the generated trees balanced, we need to add
additional constraints that will ensure that there will not be too large disbalance between
the number of variables put into the left and right tree. For this purpose we define an
auxiliary function powcap, which takes a number n and returns the number of leaves in
the largest possible balanced tree with the same depth as a balanced tree with n leaves.
Note that balanced trees with the same number of leaves have the same depth.

powcap(n) = min({ i |2i ≥ n})

For a balanced binary tree with n leaves and of depth d it follows powcap(n) = d and

2powcap(n)−1 = 2powcap(n/2) < n ≤ 2powcap(n).

33

3. Power Aware Synthesis for Combinatorial Power Reduction

Algorithm 4: Synthesizing a balanced-tree circuit for a conjunction of n variables by
brute force.

procedure Synthesize((x1 . . . xn))
Input: An input pattern x1 . . . xn such that xi ∈ B

τ for each 1 ≤ i ≤ n
Output: A graph representing a 2and tree realizing xp1 ∧ · · · ∧ xpn (AIG cone)

opt_tree := NULL
opt_sw := ∞
InitCanTrees
for T ∈ can_trees[n] do

sw := EvaluateS witching(T, [x1 . . . xn])
if sw < opt_sw do

opt_tree := T
opt_sw := sw

done
done

\\ Now we recreate a graph from T (Algorithm 5)
return ToGraph(opt_tree)
end

Now consider a balanced binary tree T with n leaves (n > 0) of depth d. Let L be the
number of leaves in the left subtree and R the number of leaves in the right subtree. We
have n = L + R and powcap(n) = 2d. For a balanced tree, the left and right subtrees have
to be also balanced, therefore

• L ≤ powcap(L) ≤ powercap(n/2) as the depth of a subtree tree must be smaller
than the depth of T .

• L ≥ powcap(n/4) as the depth of a subtree tree can not be smaller than d − 2.

Symmetrical relations hold also for R. Therefore as L = n − R, we have

• L ≤ n − powcap(n/4)

• L ≥ n − powcap(n/2)

Together, this gives the needed constraints on variable partitions and we can update
line 3.15 as follows:

for put_to_le f t ∈ {S ⊂ {1 . . . n} | 1 ∈ S ,
| max(powcap(n/4), n − powcap(n/2)) ≤ |S |,
| |S | ≤ min(powcap(n/2), n − powcap(n/4))}

do . . .
(3.16)

34

3. Power Aware Synthesis for Combinatorial Power Reduction

Algorithm 5: Reinterprets canonical tree representation into AIG cone.
procedure ToGraph (T)
Input: Canonical tree representation T
Output: An equivalent AIG cone represent as a graph (r,V, E),
where r is the root node, V the set of nodes and E the set of edges
procedure ToGraph V := {}\\ set of vertices
E := {}\\ set of edges
if T.size == 1 do:

V := {1}
root := 1

done
else do

(rootL,VL, EL) := ToGraph(can_trees[T.lvars.size()][T.lchild])
(rootR,VR, ER) := ToGraph(can_trees[T.size − T.lvars.size()][T.rchild])
lsz := |VL|

\\ This is necessary, because VL and VR would otherwise not be disjoint
V := VL ∪ {v + lsz|v ∈ VR}

root := max(V) + 1
V.insert(root)
E := EL ∪ {(s + lsz, d + lsz)|(s, d) ∈ E} ∪ {(rootL, root), (rootr + lsz, root)}

done
return (root,V, E)
end

After this change Algorithm 2 generates all balanced canonical trees. We explained
that the constraint will not eliminate balanced trees from consideration. We have to show
that no tree that is not balanced will be placed into can_trees[n] by Algorithm 2. This can
be proved by induction as follows.

Proof. For n = 1, can_trees[1] contains only one tree with only one node – it is hence
balanced. For n > 1 we can assume by induction that for i < n, can_trees[i] contains only
balanced trees. Therefore, if we put a tree T into can_trees[n], it follows that the left and
right subtrees of T must be balanced. As T is not balanced, it means that there are two
leaves in T such that the difference between the lengths of the paths form these leaves to
root is at least two. As the immediate subtrees are balanced, this means that one of this
two leaves must be located in the left subtree and the other in the right sub tree. Assume
without loss of generality that the one located in the left subtree has shorter distance from
the root, denoted dL. Denote dR the length of the path to the more distant leaf in the right
subtree dR we have dR ≥ dL + 2. We can also assume without loss of generality that in
the left subtree there is no other leaf closer to the root and in the right subtree there is no
other leaf farther from the root, therefore the depth of the left subtree is not bigger than d
as it is balanced and the depth of the right subtree is not smaller than d + 1. Therefore the

35

3. Power Aware Synthesis for Combinatorial Power Reduction

depth of the whole tree T must be at least d + 2, which gives us

powcap(n) ≥ 2d+2

Denoting L,R the number of leaves in the left subtree, we have

L ≤ 2d. (3.17)

The constraint L ≥ powcap(n/4) implies

L ≥ powcap(n/4) ≥ 2d

which together with Equation 3.17 gives us L = 2d. This means that all the leaves in the
left subtree have distance d + 1 from the root of T , which is a contradiction. Therefore T
must be balanced.

3.6.3 Complexity

The complexity of Algorithm 2 is given by the number of trees that have to be considered.
The recursive initialization of can_trees for smaller arguments doesn’t add any asymp-
totic complexity as every tree generated during this phase is accessed at least once during
the main loop. Therefore the call InitCanTrees(n) have asymptotic complexity O(Tn),
where Tn is the number of distinct signatures for n−input and function. Tn can be com-
puted through the following recursive relation:

Tn =

{
1 for n=1∑n−1

L=1

(
n−1
L−1

)
TLTn−L otherwise.

(3.18)

This definition follows directly from the structure of Algorithm 2. We need choose always
L−1 variables out of n−1 to go to the left subtree (first variable goes there automatically).
We consider all possible values of L from 1 to n − 1 as the right subtree cannot be empty.
For each such set of variables we include in the result all combinations of trees from
can_trees[L] and can_trees[n − L].

If we restrict ourselves to balanced trees, we need to include the additional constraints
as follows

T B
n =

{
1 for n=1∑ΩL

L=AL

(
n−1
L−1

)
TLTn−L otherwise.

(3.19)

where

AL = max(powcap(n/4), n − powcap(n/2)),
ΩL = min(powcap(n/2), n − powcap(n/4)).

To show how fast these functions grow, we compare in Table 3.2 the number of all
trees, which would have to be considered when implementing the enumerative algorithm

36

3. Power Aware Synthesis for Combinatorial Power Reduction

in all trees canonical balanced canonical & balanced
1 1 1 1 1
2 2 1 2 1
3 12 3 12 3
4 120 15 24 3
5 1680 105 480 30
6 3.0240e+04 945 4320 135
7 6.6528e+05 1.0395e+04 2.0160e+04 315
8 1.7297e+07 1.3514e+05 4.0320e+04 315
9 5.1892e+08 2.0270e+06 2.9030e+06 1.1340e+04
10 1.7643e+10 3.4459e+07 1.0161e+08 1.9845e+05
11 6.7044e+11 6.5473e+08 2.2353e+09 2.1830e+06
12 2.8159e+13 1.3749e+10 3.3530e+10 1.6372e+07
13 1.2953e+15 3.1623e+11 3.4871e+11 8.5135e+07
14 6.4765e+16 7.9059e+12 2.4410e+12 2.9797e+08
15 3.4973e+18 2.1346e+14 1.0461e+13 6.3851e+08
16 2.0284e+20 6.1903e+15 2.0923e+13 6.3851e+08

Table 3.2: How many combinations brute-force algorithm has to check

naively without any symmetry reduction, the number of canonical trees (signatures) that
are checked by our approach and the number of the balanced trees. We can see that the
numbers grow very fast, however the symmetry reduction clearly allows to process larger
and cones. If we assume, for instance, that the maximal number of trees that we can
afford to check is 500, the symmetry reduction allows us to find optimal 2and balanced
decompositions for and cones with up to 8 inputs, compared to only 5-input cones that
could be handled without the symmetry reduction. In fact, in realistic designs the majority
of and cones are relatively small, so the enumerative algorithm can be efficiently used for
most of them, while the few bigger cones can be processed by the (sub-optimal) greedy
algorithm.

So far we analyzed complexity of InitCanTrees. The synthesis (Algorithm 4) goes
through every tree generated by InitCanTrees and calls EvaluateS witching (Algorithm 3)
for each of them. EvaluateS witching is linear with respect to the size of the tree and linear
with respect to the length of the input vector sequence. Therefore the overall complexity
of the enumerative algorithm for power-aware synthesis is O(Tn ·n ·τ) for the unrestricted
and O(T B

n · n · τ) for the balanced case when τ stands for the length of the input vector
sequence. In practice, τ can be very long, so sometimes it may be useful to use just a
random segment rather then the full input vector sequence to trade execution speed for
lower accuracy.

37

3. Power Aware Synthesis for Combinatorial Power Reduction

3.7 AIG level Evaluation

To evaluate our algorithms on the AIG level, we follow two distinct approaches. In the
first we use a model of 16-input and cone and various synthetic input generators. We
show that the savings in such a large and cone can be significant and that the savings are
higher when the probabilistic input model has a higher level of ‘orderliness’. In the second
approach we use two small designs to evaluate our algorithms in a more realistic setting.
One design is our own implementation of a decoder within a very simple calculator and
the second design is an open source circuit implementing the SPI protocol. For the decoder
we used assumptions about the typical operation of the calculator to create a Markov chain
model that generated the input sequence. In case of the SPI design we used a test bench
that was contained in the design to generate a representative use case.

3.7.1 Synthetic Input Generators

We evaluate our method against different classes of probabilistic 16-dimensional input
generators. In this evaluation we use the level-greedy algorithm. Note that the brute-force
approach cannot cope with cones of size 16. To define probabilities over X∗ using arbitrary
Markov chains we need to handle transition matrices of size at least 2n × 2n. For large n
even writing down such a matrix is infeasible, not to mention computing its steady state
probability. As is common in domains such as probabilistic verification and performance
analysis, we use a compositional model consisting of a network of sparsely-interacting
probabilistic automata. A probabilistic automaton A = (Q,Σ, δ) is an input-dependent
Markov chain where every input letter σ ∈ Σ induces a different transition matrix over
state-space Q. The probabilistic transition function is thus of the form δ : Q × Σ × Q →
[0, 1] satisfying ∑

q′∈Q

δ(q, σ, q′) = 1

for every q and σ. A Markov chain can be viewed as a degenerate probabilistic automaton
without an alphabet and a transition function of the form δ : Q × Q→ [0, 1].

Let N = {1, . . . , n}. A network of n interacting probabilistic automata is given as
A = (A1, . . . ,An, h) where Ai = (Qi,Σi, δi) and h : N → 2N is an influence function
such that h(i) is the set of the other automata (besides itself) whose states are observed by
Ai and influence its transitions. In our network each automaton has a state-space encoded
by one bit, Qi = B, and an input alphabet Σi = B|h(i)| which is the state-space of the
influencing automata. The composition of the automata yields a global Markov chain
(Q, δ) with Q = Q1 × . . .Qn = Bn. The local input letter read by automatonAi in a global
state q is the projection of q on the variables in h(i) that we denote by πi(q). The transition
function of the global Markov chain is defined as

δ((q1, . . . , qn), (q′1, . . . , q
′
n))

=

δ1(q1, π1(q), q′1) · δ2(q2, π2(q), q′2) · · · δn(qn, πn(q), q′n).

38

3. Power Aware Synthesis for Combinatorial Power Reduction

The structure of h(i) can be used to classify models according to variable interaction.
When the maximum of |h(i)| is small, the system admits a small description from which
random sequences for training and evaluation can be generated.

For each class of models we draw model instances randomly and measure the reduc-
tion obtained by our algorithm with respect to inputs generated by the model. All model
classes share a tuning parameter α ∈ [0, 1] intended to quantify the degree of regularity in
the input sequences which can be exploited to come up with good input pairing. Whenever
we need to fix a probability while defining a model instance, we draw it from Iα defined
as

Iα =

[0, α] ∪ [1 − α, 1] when α ≤ 1

2

[α − 1
2 , 1 − (α − 1

2)] when α ≥ 1
2

The regularity in the inputs (and the potential effectiveness of our procedure) is monotone
decreasing with α. When α = 0 the probabilities are taken from {0, 1} and the resulting
model is deterministic. When α = 1/2 the probabilities are drawn from the whole interval
[0, 1] and when α = 1 all probabilities in the model instances are equal to 1/2. In this case
there is no regularity in the input, all sequences of states and transitions are uniformly
distributed and no switching reduction is expected because any input pairing would be as
good as another.

The whole experimental protocol is summarized in Algorithm 6. For each model class
and value of α, we draw randomly a set {M1, . . . ,M50} of model instances. For each in-
stance Mi we generate a training sequence xi of length 10000, apply our algorithm and
synthesize an optimized circuit Ci. We generate an evaluation sequence xi of length 10000
and let S i be the number of switches it induces in Ci. Then we draw a set {Ci1, . . .Ci20}

of arbitrary circuits, let S i be the average number of switches induced by xi in these cir-
cuits and let Ri be the relative improvement in S i relative to S i. Finally R is the average
reduction over all model instances of the same class.

Independent Inputs

We start by evaluating the switching reduction for two simple cases where the input vari-
ables are independent of each other. The first is the case where the value of each xi is
drawn according to a stateless Bernoulli process with parameter ai while in the second
model each bit is generated by an independent Markov chain with parameters ai and bi.
The respective transition matrices are:(

ai 1 − ai

ai 1 − ai

)
and

(
ai 1 − ai

1 − bi bi

)
For these models µ jk is computed analytically (see Table 3.3) without a training sequence.
Fig. 3.13-(a) shows for these two model classes the average reduction obtained by our
algorithm as a function of α. In both cases the reduction is around 70% when the system
is close to deterministic and 30% when probabilities are taken from [0, 1].

39

3. Power Aware Synthesis for Combinatorial Power Reduction

0→ 0 0→ 1 1→ 0 1→ 1
0→ 0 (1−a j)2(1−ak)2 (1−a j)2ak(1−ak) (1−a j)2 (1−a j)2a2

k
0→ 1 a j(1−a j)(1−ak)2 a j(1−a j)ak(1−ak) a j(1−a j)ak(1−ak) a j(1−a j)a2

k
1→ 0 a j(1−a j)(1−ak)2 a j(1−a j)ak(1−ak) a j(1−a j)ak(1−ak) a j(1−a j)a2

k
1→ 1 a2

j(1−ak)2 a2
jak(1−ak) a2

jak(1−ak) a2
ja

2
k

(a)

0→ 0 0→ 1

0→ 0
a jak(1 − b j)(1 − bk)

(a j + b j − 2)(ak + bk − 2)
a j(1 − ak)(1 − b j)(1 − bk)
(a j + b j − 2)(ak + bk − 2)

0→ 1
(1 − a j)ak(1 − b j)(1 − bk)
(a j + b j − 2)(ak + bk − 2)

(1 − a j)(1 − ak)(1 − b j)(1 − bk)
(a j + b j − 2)(ak + bk − 2)

1→ 0 −
(a j − 1)ak(1 − b j)(1 − bk)
(a j + b j − 2)(ak + bk − 2)

−
(a j − 1)(1 − ak)(1 − b j)(1 − bk)

(a j + b j − 2)(ak + bk − 2)

1→ 1 −
(a j − 1)akb j(1 − bk)

(a j + b j − 2)(ak + bk − 2)
−

(a j − 1)(1 − ak)b j(1 − bk)
(a j + b j − 2)(ak + bk − 2)

1→ 0 1→ 1

0→ 0 −
a j(ak − 1)(1 − b j)(1 − bk)
(a j + b j − 2)(ak + bk − 2)

−
a j(ak − 1)(1 − b j)bk

(a j + b j − 2)(ak + bk − 2)

0→ 1
(a j − 1)(ak − 1)(1 − b j)(1 − bk)

(a j + b j − 2)(ak + bk − 2)
(a j − 1)(ak − 1)(1 − b j)bk

(a j + b j − 2)(ak + bk − 2)

1→ 0
(a j − 1)(ak − 1)b j(1 − bk)
(a j + b j − 2)(ak + bk − 2)

(a j − 1)(ak − 1)b jbk

(a j + b j − 2)(ak + bk − 2)

1→ 1 −
(1 − a j)(ak − 1)(1 − b j)(1 − bk)

(a j + b j − 2)(ak + bk − 2)
−

(1 − a j)(ak − 1)(1 − b j)bk

(a j + b j − 2)(ak + bk − 2)

(b)

Table 3.3: (a) The probabilities of transition pairs for two sequences generated by: (a)
Bernoulli processes with parameters a j and ak; (b) independent Markov chains with pa-
rameters a j, b j and ak, bk.

40

3. Power Aware Synthesis for Combinatorial Power Reduction

Algorithm 6: Average switching reduction evaluation for a class of probabilistic input
generators.

Input: A class of probabilistic input generators
Output: An estimation R of the average switching

reduction obtained by our algorithm
for i := 1 to 50

draw a model Mi

generate a training sequence xi of length 10000
Ci :=Synthesize(xi)
generate an evaluation sequence xi of length 10000
S i := S (Ci, x)
for j = 1 to 20

draw a circuit Ci j

S i j := S (Ci j, x)
end
S i :=average j S i j

Ri := (S i − S i)/S i

end
R :=average i Ri

Cascades

Next we explore the class of cascade structures where the automata are ordered and each
automaton observes the state of some of its predecessors. A network is a cascade of depth
k if h(i) = {i − k, . . . , i − 1} and the number transition matrices for each automaton is 2k.
The results for cascades of depth 1 and 2 are plotted in Fig. 3.13-(b). For depth 1 the
reduction ranges from 70% for close to deterministic inputs to 15% for α = 1/2 while for
depth 2 the range is from 50% to 10%.

Partitioned Variables

Next we applied our procedure to a network where the variables are partitioned into clus-
ters of size 2 and 4 and each automaton observes only the states of the automata in its
cluster. The results are plotted in Fig. 3.13-(c). For 2-clusters the range or reduction is
between 65% for almost deterministic inputs and 15% for α = 0.5, while for 4-clusters
the corresponding reductions are less than 50% and 10%.

Arbitrary Sparse Network

In the last class of examples we consider arbitrary networks where each automaton ob-
serves the states of k randomly chosen other automata. Fig. 3.13-(d) shows the results
obtained for k = 2 and 4. In the former case we obtain 45% for α = 0.05 and around
5% for α = 0.5, while for the latter we obtain the worst results: less than 10% for quasi-

41

3. Power Aware Synthesis for Combinatorial Power Reduction

α Bern iMar casc1 casc2 part2 part4 spar2 spar4
0.05 0.115 0.110 0.117 0.102 0.118 0.060 0.093 0.020
0.10 0.106 0.104 0.105 0.076 0.091 0.041 0.075 0.017
0.15 0.095 0.097 0.089 0.060 0.081 0.037 0.057 0.015
0.20 0.093 0.091 0.079 0.050 0.074 0.029 0.047 0.013
0.25 0.084 0.088 0.066 0.041 0.061 0.023 0.040 0.011
0.30 0.084 0.081 0.063 0.032 0.055 0.019 0.032 0.009
0.35 0.071 0.071 0.048 0.029 0.049 0.016 0.027 0.008
0.40 0.065 0.067 0.040 0.022 0.043 0.013 0.023 0.007
0.45 0.063 0.061 0.037 0.021 0.036 0.012 0.021 0.006
0.50 0.054 0.057 0.036 0.019 0.031 0.011 0.018 0.005
0.55 0.040 0.044 0.026 0.013 0.024 0.008 0.014 0.004
0.60 0.031 0.031 0.018 0.010 0.017 0.006 0.010 0.002
0.65 0.023 0.024 0.013 0.007 0.013 0.004 0.006 0.002
0.70 0.016 0.017 0.009 0.005 0.009 0.002 0.004 0.001
0.75 0.010 0.011 0.006 0.003 0.005 0.001 0.003 0.001
0.80 0.007 0.007 0.003 0.002 0.003 0.000 0.001 0.000
0.85 0.003 0.003 0.001 0.000 0.001 0.000 0.000 0.000
0.90 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
0.95 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 3.4: The absolute reduction in number of switching per gate per time step for all
the models.

deterministic inputs and less than 5% when probabilities are drawn anywhere in [0, 1].
Table 3.4 shows the average number of absolute switching elimination per gate in one

time step. Upon closer inspection we observe that the results become consistently worse
as the number of variables observed by an automaton becomes larger, quite independently
of the interaction pattern. This may be an artifact of the way we generate model instances.
The reason is that when an automaton has several transition matrices, the values of an
entry (u, v) in different matrices may be taken from opposite sides of Iα, cancel each other
and render the behavior of the variables more random and less regular.

3.7.2 Evaluation on small circuits

For evaluation we use the following circuits where we apply our procedure to full AIG

Mini Instruction Decoder We consider a very simple hand-held calculator whose in-
structions are listed in Table 3.5. The instruction are encoded using 4 bits although
3 bits would suffice, to reflect the fact that in a real application often not all the
possible input combinations are used.

We assume that the typical use of the calculator will be just to perform an operation
(add, subtract, multiply, divide) on two numbers typed into a numeric keypad. More

42

3. Power Aware Synthesis for Combinatorial Power Reduction

(a) (b)

(c) (d)

Figure 3.13: The average switching reduction as a function of the uniformity parameter α
for different input models: (a): Independent inputs – Bernoulli (dashed red) and Markov
processes. (b): Variables are arranged in a cascade structure of depth 1 (dashed red) and 2
(c): Variables are partitioned into mutually-dependent clusters of size 2 (dashed red) and
4 (d): Each variable depends on 2 (dashed red) and 4 other arbitrary variables.

instruction code meaning
LOAD 1001 loading from numerical keys
LOADM 1010 loading from memory
SET_ADD 1100 pressing ’+’
SET_SUB 1101 pressing ’−’
SET_MUL 1110 pressing ’×’
SET_DIV 1111 pressing ’÷’
EVAL 0000 pressing ’=’
STORE 0101 saving result to memory

Table 3.5: The instruction set of the calculator.

43

3. Power Aware Synthesis for Combinatorial Power Reduction

start set op op set loaded

store

plm:LOADM

1−plm:LOAD

padd:SET_ADD

psub:SET_SUB

pmul:SET_MUL

pdiv:SET_DIV

plm:LOADM

1−plm:LOAD

psm:EVAL

1−psm:EVAL

STORE

Figure 3.14: The probabilistic model of the instruction generator.

sophisticated users might perform more complex operations, say add three numbers
at once, but with a lower probability. The Markov model for instruction sequences
is depicted in Fig. 3.14 and explained below:

1. With probability plm load an argument previously stored in memory, otherwise
just type in some number as the first argument.

2. Press one of {+,−,×,÷} with respective probabilities {padd, psub, pmul, pdiv}.

3. Load the second argument either from memory (probability plm) or by typing
the number.

4. Evaluate by pressing ‘=’ and then with probability Psm store the result in mem-
ory.

For the experiment we set the parameters of the model as follows:

plm = 0.1 padd = 0.4 psub = 0.3
pmul = 0.2 pdiv = 0.1 psm = 0.1

Core SPI As a second example we use an open source implementation of a Serial Pe-
ripheral Interface, which is a synchronous communication interface specification
available on Motorola’s MC68HC11 family of CPUs [70, 33]. The project is avail-
able online at opencores.org.

We generated input patterns by simulating the test benches of the designs. The data
was used to optimize the circuits on the AIG level. Table 3.6 compares the number of
switching during the test bench execution in each design. The column level-greedy con-
tains the switching when the circuits were optimized using the level-greedy algorithm.
The minimum contains the minimal switching obtained by the enumerative algorithm. In
the column maximum we used the enumerative approach to find the architecture with the

44

opencores.org

3. Power Aware Synthesis for Combinatorial Power Reduction

maximum minimum level-greedy
Mini Instruction Decoder 250338 128118 158726

Core SPI (opencores) 20577 19681 19681

Table 3.6: Performance without preprocessing on small realistic circuits

maximum minimum level-greedy
Mini Instruction Decoder 73976 72288 72288

Core SPI (opencores) 19555 19233 19233

Table 3.7: Performance with preprocessing on small realistic circuits

worst switching. The difference between minimum and maximum gives us some infor-
mation about the size of potential optimization that we can achieve. In case of the Mini
Instruction Decoder we achieve 49% switching reduction with the enumerative algorithm
as compared to the worst case. The level-greedy approach gives slightly worse results
with 37% of reduction. In the SPI case the results are considerably worse, achieving only
4% reduction for both algorithms, which is probably due to a relatively smaller number
of large and cones in the design.

3.7.3 Effect of the preprocessing

The ABC tool provides various algorithms that can be used to optimize logic networks by
reducing the number of AIG nodes and logic levels, balancing the cones, merging func-
tionally equivalent nodes and so forth. Such processing would certainly interfere with our
reorganization of the AIG, wiping out all the savings if applied after our method. Still we
can consider the case when the design is preprocessed before our method is applied in
order to see if the standard optimization leaves some space for our algorithm to optimize.
The preprocessing was done by subsequently applying the ABC optimization commands
refactor, rewrite, fraig and balance. Table 3.7 compares the number of switching dur-
ing the test bench execution in each design achieved by our algorithms when applied to
designs that were preprocessed. We can see that the potential savings are significantly
smaller (about 2% in both cases) as most of the switching was already removed by the
preprocessing. The preprocessing also wipes out the difference between the enumerative
and the level-greedy method.

45

3. Power Aware Synthesis for Combinatorial Power Reduction

maximum minimum level-greedy
switching # switching # switching

All gates 179142 175242 192944
AND2X1 6 44460 6 28716 9 36496
INVX1 12 47180 14 58048 14 51608

NAND2X1 2 15744 4 18032 6 32052
NAND3X1 14 47266 15 46226 15 43472
NOR2X1 2 14900 3 15744 3 20840
NOR3X1 2 9592 2 8476 2 8476

Table 3.8: Performance without preprocessing on mapped Mini Instruction Decoder

maximum minimum level-greedy
switching # switching # switching

All gates 106936 104132 104132
AND2X1 11 63812 11 66508 11 66508
INVX1 8 32960 8 32116 8 32116

NAND2X1 3 5236 0 0 0 0
NAND3X1 1 1116 4 5508 4 5508
NOR2X1 0 0 0 0 0 0
NOR3X1 1 3812 0 0 0 0

Table 3.9: Performance with preprocessing on mapped Mini Instruction Decoder

3.8 Technology level Evaluation

So far we considered only savings on the AIG abstraction level. However, what counts
in the end are the savings on the physical level. To get a better estimate of this we used
ABC to map the optimized AIG models to a 0.35 micron TSMC library. We tested the
switching reduction with and without preprocessing. Tables 3.8, 3.9, 3.10 and 3.11 sum
up the results with and without preprocessing on the Decoder and SPI designs. For each
design we applied the enumerative algorithm to find the best and worst switching and we
also used the level-greedy algorithm. Than we mapped the resulting AIGs to the gates
provided by the library. For each type of gates present in the designs after mapping we
show the number of the gates of this type and the switching in the gates of this type.
However, we were not able to isolate some effects inherent to the mapping and AIG
representation, therefore the results are not directly comparable. For instance in Table
3.10 the variant with minimal switching on AIG level has more mapped gates than the
variant with maximum AIG level switching, therefore it is sub-optimal in space which
makes the switching results incomparable. Additionally, different gate types have various
physical properties and the power consumed by a gate during switching depends also on
the gate’s fanout. Therefore the results are inconclusive and the question of the effect of
technology mapping on the AIG optimized by our method remains open.

46

3. Power Aware Synthesis for Combinatorial Power Reduction

maximum minimum level-greedy
switching # switching # switching

All gates 177 21819 162 17530 162 17530
AND2X1 2 451 3 163 3 163
AOI21X1 4 580 4 580 4 580
INVX1 53 9699 54 9795 54 9795

MUX2X1 32 1648 48 1648 48 1648
NAND2X1 29 3118 40 3677 40 3677
NAND3X1 8 963 7 834 7 834
NOR2X1 32 4128 4 513 4 513
OAI21X1 16 1040 1 128 1 128

XNOR2X1 1 192 1 192 1 192

Table 3.10: Performance without preprocessing on mapped SPI

maximum minimum level-greedy
switching # switching # switching

All gates 174 21438 175 20732 175 20732
AND2X1 2 451 1 2 1 2
AOI21X1 4 580 2 386 2 386
INVX1 53 9699 55 9637 55 9637

MUX2X1 32 1648 32 1648 32 1648
NAND2X1 25 2671 22 2157 22 2157
NAND3X1 8 963 12 1349 12 1349
NOR2X1 32 4128 32 4128 32 4128
OAI21X1 17 1106 18 1233 18 1233

XNOR2X1 1 192 1 192 1 192

Table 3.11: Performance with preprocessing on mapped SPI

47

3. Power Aware Synthesis for Combinatorial Power Reduction

3.9 Discussion

The interest in switching reduction and in the evaluation of circuit behavior against prob-
abilistic models in general [31] is not new. Concerning switching reduction we can distin-
guish between an abstract approach like ours which focuses only on the number of tran-
sitions as an approximate indicator of power consumption and more physical approaches
that map abstract circuits onto a concrete technology where power consumption can be
measured more accurately. The work of [64] which belongs to the second category, men-
tions the abstract problem that we solve here as a suggestion for future work that could
be plugged upstream to their own work on power-aware mapping using a real technology
library. The work of [71] is also of this type, mapping abstract AIGs to real gates. The
input is specified as a set of input vectors (patterns) and simulation with these patterns
is used to estimate power consumption for different mappings alternatives onto real gates
from a library.

The work of [67, 66] applies a similar reasoning concerning input pairing for 2and
gates and uses a variant of Huffman’s algorithm for constructing a binary tree with mini-
mal average weighted path length [47]. However, this work is restricted to the case were
variables are assumed to be generated by independent Bernoulli processes while our ap-
proach is applicable to any small-description Markov process or any user-provided train-
ing sequence. Moreover, they use a greedy pairing algorithm such that at each step of
the algorithm one pair of variables, the one which induces the least expected number of
switching is selected as an input to an and gate. Experiments show that our scheme which
treats at once a complete level of the tree via optimal matching is significantly more effi-
cient.

The work of [56] also uses Huffman’s algorithm but in a different way that seems
to yield a random balanced tree. They do not give any explicit probabilistic model but
introduce some delay assumptions and claim their algorithm to be optimal in terms of
reducing only the switching activity which is due to glitches. This is the place to mention
that as we do not model gate delays, we cannot detect glitches but one may argue that their
importance in balanced trees structures is less pronounced. The work of [66] is extended
significantly in [72] who give an optimal algorithm for unbounded depth 2and synthesis,
restricted to a Bernoulli input model. Their algorithm tends to produce deep circuits with
long delays.

To summarize, we devised a novel procedure for an early step in the synthesis flow for
digital circuits/functions. The major novelty of the algorithm is its ability to approximate
in a tractable manner, polynomial in the number of inputs to an and gate, the minimal
average-case number of switches, based on a training input sequence. The approach can
be applied, in principle to any probabilistic model of the input but, of course, formal
guarantees of approximation quality can be given only in restricted cases.

For synthetic empirical evaluation we developed an original framework based on
sparsely interacting networks of probabilistic automata and ran extensive experiments
under various probabilistic models of the input. The reduction obtained on these synthetic
examples were quite impressive, reaching, in some cases, dozens of percents. Then we

48

3. Power Aware Synthesis for Combinatorial Power Reduction

explored the question of applicability of our method to real applications in terms of cir-
cuit structure and input model. The results on the AIG level seems encouraging, however
the savings are minimal if other AIG optimization methods were used as preprocessing
steps. Finally we did experiments in the direction of preliminary estimation of the impact
of the technology mapping step, however the results have been so far inconclusive.

49

When you are stuck in a traffic jam with a Porsche, all you
do is burn more gas in idle.

Steve Swartz

4
Sequential Power Reduction with Activity

Triggers

Although power consumption can be measured and estimated precisely only after phys-
ical implementation it turned out to be important to have reliable approximative power
analysis early in the design flow, at the register transfer level (RTL). Architectural deci-
sions made at the RTL level can severely impact power consumption and detection of bad
architectural choices at later stages might require an iteration back to RTL. In the cur-
rent highly competitive and fast paced market any delay in production causes significant
financial consequences for the manufacturer not only due to the price of additional devel-
opment but often mainly due to the cost of losing the opportunity of marketing a device
early before the competitors start offering similar or more advanced solutions. Therefore,
in order to reduce the development time it is essential for the designers to be able to assess
and optimize power related properties of the design as early in the design flow as possible,
even if these are only approximations of the physical level behavior.

A prominent source of power dissipation is dynamic power, which is consumed when
the transistors in the circuit change their states [17]. A significant part of this power is
dissipated in the clock tree [9]. Clock gating is one of the most efficient techniques for
reducing power dissipation. It is based on disabling the clock of design blocks when they
do not perform any useful computation. This leads to direct power savings in the clock
tree and, in some cases, in the block itself [40]. The implementation of this technique
depends on clock gating conditions, which specify when an associated block can be safely
deactivated.

Clock gating conditions can be identified at two abstraction levels. At the architectural
(or conceptual) level, large functional units may be clock-gated using high-level control
signals. For instance, the floating point unit of a processor can be clock-gated when the

50

4. Sequential Power Reduction with Activity Triggers

currently processed instructions do not require such a computation. At the local level,
registers can be clock-gated based on a local analysis of the circuit logic. This typically
involves looking at the conditions under which the register data is being read (e.g., using
select conditions), or propagating enables of upstream/downstream registers.

Local clock-gating has been shown to significantly reduce dynamic power consump-
tion and is supported by several EDA tools that identify and implement clock-gating based
on ODC/STC conditions, a technique which has shown some success [7]. However, a typ-
ical issue in this methodology is the complexity of the enable conditions at the local level.
Sometimes these conditions are too complex and will be avoided by designers because it
is unclear if the change will be safe at later design stages such as timing closure and rout-
ing. Another issue is the trade-off between the power savings achieved and the number
of required changes in the RTL. Local conditions typically apply to a single bus or few
flip-flops and complex (and hard to verify) conditions should be used to obtain significant
savings.

Being able to provide simple and easily understandable power saving opportunities
is thus an important requirement for power reduction tools. We claim that this can be
achieved by detecting clock gating conditions at an intermediate level of abstraction,
coarser than typical local clock gating methods but small enough to be difficult to spot
by manual analysis. Typical targets for this type of conditions are medium-size functional
units such as HDL modules with significant dynamic power. There are several advantages
in using such clock gating conditions.

1. We can target simple and architecture-related conditions made of a few control
signals which are cheap to implement in terms of added circuitry. They are more com-
prehensible to designers who can judge their correctness by themselves and make more
confident decisions whether or not to use them. Ideal conditions are such that the designer
himself could discover by a detailed manual analysis.

2. A single clock gating implementation can save much larger amount of power if it
is used higher in the design hierarchy which furthermore enhances the complexity/saving
trade-off compared to classical local methods.

Intermediate level clock gating closes a gap between conceptual and local clock gat-
ing. Clock gating at this level is very attractive, because of its potential to provide sig-
nificant power savings with minimal changes to the circuit. Moreover, to the best of our
knowledge, conditions for intermediate level clock gating are currently beyond the scope
of what EDA tools can identify. It is an empirical question whether they are abundant, at
least in some application domains, and how difficult it is to find them. The preliminary
findings from our experiments are encouraging.

Main contributions

• We introduce a class of clock gating conditions called activity triggers that target
intermediate size design blocks and which are typically related to architectural in-
tent.

• We develop an algorithm which heuristically detects potential activity triggers

51

4. Sequential Power Reduction with Activity Triggers

based on a statistical analysis of activity files (VCD or FSDB) generated by RTL
simulation of the design. These potential triggers should be verified by a designer
or using formal methods.

• We formalize the concept of activity triggers and their associated clock gating con-
ditions. We define the temporal property corresponding to the fact that the trigger
is correct and the clock gating based on the trigger is safe. We use model checking
to formally verify the property.

• We propose and discuss a complete methodology where these techniques, that we
have implemented within a commercial EDA tool, are used in an iterative semi-
automatic fashion for finding activity triggers and efficient clock gating conditions.
We demonstrate the methodology on an industrial video processing design, achiev-
ing a significant reduction of power.

Organization of the chapter

The rest of this chapter is organized as follows. Section 4.1 serves to summarize the
concept of clock gating and to present some common methods of implementation. Section
4.2 presents related work on power reduction using clock gating techniques. Section 4.3
introduces the idea of activity triggers and illustrates them on a simple (but yet realistic)
design. The concept of activity triggers is then more formally stated in Section 2.3.2. The
core of our method – the statistical detection and formal verification of activity triggers
is described in Sections 2.3.2 and 4.5. The complete proposed methodology is detailed in
Section 4.6. In Section 4.7 we present the experimental results on the video processing
case study. Finally we conclude in Section 4.8 and discuss potential extensions of our
work.

52

4. Sequential Power Reduction with Activity Triggers

4.1 Clock Gating Fundamentals

In this section we present the idea of clock gating and some well known techniques to
determine the conditions under which clock gating can be used safely. Consider a simple
sequential memory element (flip-flop) depicted in Figure 4.1. The flip-flop is synchro-
nized by the clock signal clk. This means that the value of the input signal is propagated
to the output always at the rising edge of the clock (when the value of the clk changes
from logical zero to one).

clk

in D Q
EN

out

en

Figure 4.1: A simple sequential element

In case that the output value of the flip-flop is not needed at some point during the
operation of the circuit, it is advantageous to disable the flip-flop so that it ignores the
rising clock and is idle until re-enabled. The idea of disabling flops is based on the fact
that the change of the flop state costs energy, therefore if we can switch off the flop when
it is not needed, we can reduce the number of switches and save energy.

Disabling can be realized by a special enable input pin shown in Figure 4.1. Another
way is to gate the clock. An idealized version of this approach is portrayed in Figure 4.1.
When the enabling signal is 0, the clock going to the flip-flop is gated – set to 0, therefore
as it is stable there will be no activity in the flip-flop. This view is idealized as in reality,
using a simple and gate for clock gating can lead to glitches in the flip-flop. This can
be fixed by using a special clock gating cell with a slightly more complicated structure,
however full explanation of these issues is unnecessary for understanding the principle of
clock gating.

clk

∧

en

in D Q out

Figure 4.2: Implementation of clock gating (idealized)

In typical circuits there is a very large number of memory elements. The clock signal
must be routed to all of them. This is realized by a clock tree, which is rooted at some
global clock signal and whose branches lead to flip-flops. This allows us to apply clock
gating higher in the clock tree, disabling a group of sequential elements at once by adding

53

4. Sequential Power Reduction with Activity Triggers

only one clock gating cell to the design. Furthermore, the switching activity is reduced
also in the clock tree structure itself which is beneficial as clock trees typically account
for a significant part of dynamic power dissipation

A signal that can be used as enabler is called a clock gating condition. The obvious
problem is how to compute clock gating conditions in correct and efficient way. In the
rest of this Section we describe the principles of two commonly-used methods.

ODC (Output don’t care)

ODCs [65, 4, 28, 20, 7] were originally introduced for application in logic synthesis.
The clock can be gated if the outputs of a module are not observable.

For illustration consider the circuit in Figure 4.3. If select = 0, we know that in the
next cycle the output of a sub-circuit X will be chosen by the multiplexer and therefore
it is not important what value will be saved in the flop which feeds its value to the other
input of the multiplexer. Hence we can enable this flop in a particular cycle if select = 1.
The enabling condition is thus

en = select.

A naive implementation of this condition is shown in Figure 4.4

select D Q
EN

X

in D Q
EN

0

1
out

en

Figure 4.3: ODC example

STC (Stability Condition)

STCs[28, 7, 35] utilize the fact that if the next value of a memory element is equal
to the current one, the register can be gated and the clock switching power saved. This is
especially useful if an STC is valid for a larger block of registers, so that gating can be
performed higher in the clock tree.

An example of a circuit from which we can derive STC is shown in Figure 4.5. We
know that if the inputs to the combinatorial block X do not change, also the output of
the block will stay stable. Therefore we can safely disable the flip-flop at the output. We
know that a register output doesn’t change if the register is disabled or if the input to the

54

4. Sequential Power Reduction with Activity Triggers

select D Q
EN

X

in D Q
EN

0

1
out

Figure 4.4: ODC example – with implemented enabling condition

data1

en1

data2

en2

D Q
EN

D Q
EN

X D Q
EN

Figure 4.5: STC example – with implemented enabling condition

register is the same as the current output. Therefore the full enabling condition in the case
of the last flop in the circuit of Figure 4.5 is

((D1 = Q1) ∨ ¬EN1) ∧ (D2 = Q2) ∨ ¬EN2)).

To implement such a complex condition in its entirety requires a relatively large amount
of additional circuitry, so it would not be advantageous to use it in the circuit unless power
reduction is very significant, for instance if we were disabling a thousand of registers in-
stead of just one. In case that the cost of the enabling function is too high to be justified by
the obtained power reduction, it is common to use a simpler condition which implies the
optimal condition. In the case of Figure 4.5 we might use EN1∨EN2. The implementation
is depicted in the figure.

55

4. Sequential Power Reduction with Activity Triggers

4.2 Related work

There are multiple algorithms to compute clock gating conditions. In general, the ap-
proaches can be classified as Observability don’t care (ODC) or Stability condition (STC)
based (Section 4.1). Activity triggers are essentially STCs that are valid for relatively large
design blocks.

Ideal clock gating conditions are often very complex and the cost of the additional
clock gating circuitry would be higher than the savings. Therefore, approximate methods
that compute weaker but simpler conditions were developed [3, 2, 4]. Our methodology
is designed to compute simple conditions, hence approximation methods are not needed.

When designers are analyzing a circuit in order to find local clock gating conditions,
some gating can be already present. This can be due to gating on the architectural level,
or due to reusing parts of the design that are already gated. Some authors [28, 4] focused
at strengthening such conditions that are already implemented in the circuit, strength-
ening conditions that were computed by other methods and combining them into more
powerful conditions. Conditions discovered by our approach can be used as an input for
these strengthening methods. Conversely, some partial clock gating in the analyzed design
block could be used for simplifying the formal verification part of our flow, however this
is not implemented in our tool. For detection, we ignore signals that are already used for
clock gating, as our main goal is to find conditions that were not considered previously
by a designer.

Hurst [35] introduces a guess-and-prove approach, which selects clock gating condi-
tion candidates from the existing nets in the design using heuristic based on timing and
structural considerations. Candidates are then pruned using simulation and a formal proof
is attempted for the remaining nets. Such conditions have the benefit of being already
physically available in the design, therefore the added clock gating circuitry is very sim-
ple. A similar guess-and-prove approach was described in [24] where the candidates are
not single nets but pairs of them, such that a simple invariant holds over them (a partic-
ular value of one signal implies a particular value of other signals). The invariant can be
used for ODC based clock gating (the fanin of the implied signal can be disabled). The
functional correctness has to be formally verified.

Another guess-and-prove method is described in [5] and [69]. This approach uses
machine learning on simulation traces to infer clock gating conditions that are less com-
plex and cheaper to implement than those coming from the traditional structural detection
methods (e.g., [7]). In contrast with [35], simulation traces in [5, 69] are not used only to
prune incorrect candidates, but also to collect the candidates from the positive examples
in the simulation. The conditions are however very local (the analysis is done on the level
of single registers). Outside of power reduction context, the idea of mining simulation
traces for useful design intent related invariants was introduced in [25] for software and
later in [32] for hardware.

Our approach is based on a guess-and-prove concept, the candidates are generated
based on statistical analysis of a simulation trace, which yields a relatively small set of
candidates for clock gating. Furthermore, we include the user in the loop, so that he or

56

4. Sequential Power Reduction with Activity Triggers

she can interactively add constraints, which may be necessary for the formal check or
he can verify candidates manually if the module is too large for a formal check, but the
condition is simple and easy to understood. The main advantage compared to previous
work, however, is that the conditions that we collect are usually coarse grained, simple
and closely related to the design intent.

57

4. Sequential Power Reduction with Activity Triggers

4.3 Activity triggers

Our approach is focused on clock gating conditions that are not necessarily optimal for a
particular register but are simple to implement and shared by many registers; typically by
an entire HDL module. These conditions are related to different modes in which a digital
design operates. If a circuit operates in multiple different modes, there may be parts of the
circuit that are used only for one of these modes. Thus, the goal is to find conditions that
correspond to moving in and out of such modes.

To illustrate the concept we use a simple UART (Universal Asynchronous Receiver/-
Transmitter) circuit. UART is a common digital design that can be used to interface fast
electronic circuitry (from now on ‘a computer’) with slow peripheral devices. A device is
connected to the UART by a serial line that allows to communicate data in a sequential
fashion (one bit at a time). The communication follows a specific protocol. When there is
no data transfer, the value on the serial line is set to logical 1. When the sender wants to
transfer data, it first sets the serial line to 0 (start bit) for one time frame and then follows
by transferring one byte of data, 1 bit per frame (8 frames). Subsequently, the protocol
requires the sender to insert at least two frames with logical value 1 (stop bits). Then the
sender can continue sending another byte (starting with start bit) or stays idle until another
transmission is needed. Fig. 4.6 depicts a transmission of one byte via serial line.

The implementation of UART that we use is based on an open source design available
at http://opencores.org/project,osdvu. It is a simple implementation that sup-
ports only the core functionality. The design (Fig. 4.7) is divided into two main modules.

The RECEIVER facilitates the communications sent from a peripheral device to a com-
puter. It listens at the serial input line rx. It is idle until the peripheral sets the line to 0
announcing a start of a transmission. During the next 8 frames the UART samples value
from the serial line in the middle of the time frame multiple times in order to minimize
possible errors. The collected bits are placed in the output register rx_byte. After a whole
byte is received, the availability of new data is signaled to the computer by raising flag
received (which will typically generate an interruption in the computer). If the commu-
nication protocol is not followed (e.g. missing stop bits), the UART goes to an error state
(signaled by raising flag recv_error). The UART recovers from the error by waiting for
a long time (sufficient to perform multiple transmissions) and then returning to the initial
state.

The TRANSMITTER can be used by a computer to send data to a peripheral device. The
computer fills the input bus tx_byte with a byte of data that it wants to transmit. Then it
sets transmit to 1. The UART transmits the byte to the serial line tx. The UART utilizes
the flag is_transmitting to announce its current state: 0 signalizes to the computer that
the UART is ready to transmit another byte.

Both the TRANSMITTER and the RECEIVER are divided into three main register sub-
groups, which can be implemented as HDL modules but do not have to, if the designer
does not aim for a maximal modularization.

1. CONTROL is a unit, which controls the operation. It contains a register bus that rep-
resents the control FSM plus a few additional control registers.

58

4. Sequential Power Reduction with Activity Triggers

line idle

start bit

1 1

0

1

0 0

1

0

two stop bits
line idle

data transmission

Figure 4.6: Serial line transmission of the character ‘K’ in the ACSCII encoding

TRANSMITER

RECEIVER

uart

UART

clk

rst

rx

transmit

tx_byte[7:0]

received

recv_byte[7:0]

is_receiving

recv_error

is_transmitting

tx

CNT

o
u
t

re
g

in
p
 r

e
g

CNT

CONTROL

FSM

CONTROL

FSM

Figure 4.7: Schema of a simple UART design

2. CNT is a counter that is used to measure the time elapsed in various FSM states.

3. inp_reg/out_reg are register buses, which are used to store the received byte in
the RECEIVER and the byte to be transmitted by the TRANSMITTER.

Consider the control automaton of the TRANSMITTER module in Figure 4.3. Every
state corresponds to a mode of operation of the TRANSMITTER and not all submodules of
the TRANSMITTER are used in every state:

IDLE: Initial state before the beginning of a transmission. The state is left when the
transmit flag is raised. The input tx_byte is propagated into the input register together
with changing the FSM state. All registers in the TRANSMITTER are stable in this state.
SENDING: The transmission is performed in this state. Some registers in CONTROL and
CNT submodules are used extensively.
DELAY RESTART: The TRANSMITTER waits for a predefined time after the transmis-
sion is finished. CNT is used.

59

4. Sequential Power Reduction with Activity Triggers

IDLE SENDING

DELAY
RESTART

RECOVER

transmit == 1

transm
ission

sent

waiting finished

transm
it

=
=

0

Figure 4.8: UART transmitter control FSM

RECOVER: The design waits in case the transmit flag was not set to 0. No registers
are used beside those in the FSM upon leaving the state.

The registers that are not changing value in a particular mode can be clock gated.
For instance, we can clock gate the entire transmitter when it is in the mode associated
with the IDLE state of the FSM. However the state cannot be used as a clock gating con-
dition directly, because clock gating would prevent the state of the FSM to be changed
and the design would remain in IDLE state indefinitely. Instead, we identify the condi-
tions associated with entering and leaving the state. Particularly, the condition associated
with entering the IDLE state and starting the clock gating would be ‘FSM==RECOVER &&
transmit==0’. The condition for disabling the clock gating and leaving the FSM state
would be simply ‘transmit==1’.

We can find similar conditions for every state in the FSM and use them for clock
gating of registers that are not used in that state. Furthermore, some registers are used
only in rare situations. For instance the value in the input registers can be changed only
when taking the transition from IDLE to SENDING. Hence the clock enabling condition
for this register group would be ‘FSM==IDLE && transmit==0’ and the clock disabling
condition would be ‘FSM==SENDING’. This way we can activate the input registers clock
only when it is needed (one out of multiple thousands clock cycles).

The conditions that we identified are defined only on a few signals, so the additional
clock gating logic will be simple and they are valid for relatively big design blocks (more
than just one bus or a few registers), so they are more coarse than typical local clock
gating conditions.

Ideally, such intermediate level coarser conditions should be identified by a designer.
Then, if their validity is not obvious, our framework can be used to formally verify it.
However, because of the extreme complexity of current designs and the reuse of old mod-
ules and purchased IPs, it is usually not possible for one person to have a detailed knowl-
edge of all low level aspects of a design. For instance, if the UART was used in practice,

60

4. Sequential Power Reduction with Activity Triggers

it would be probably just a small part of a much bigger system and the designer might
reuse the UART from some old project. In such a case would probably regard it as a black
box component and he would not have time to perform a detailed manual analysis of the
internal implementation.

Hence, intermediate level clock gating conditions are often not recognized by de-
signers and it is very useful to have an automatic tool to identify them. Furthermore, we
observed that activity of some modules is not always triggered by a static condition like
a state of a bus (representing an FSM state for instance) or a signal but often the activity
triggering event corresponds rather to a transition. For instance, setting an instruction reg-
ister to a particular value triggers the activity, which can continue for some time even after
the value of the register is changed. This often occurs in cases in which some handshake
mechanism is implemented.

We introduce the concept of idle modes and activity triggers. An idle mode of a sub-
circuit is a mode in which it is safe to clock gate the sub-circuit. It will be associated with
two events: a stop event, which forces the design to enter a idle mode, and a start event,
which happens always before the exit from the idle mode. The combination of stop and
start can be used for clock gating and is called an activity trigger.

It is possible that it takes some time for the module to enter the idle mode after an
occurrence of a stop event. In this case, the module becomes stable only after a given
number of cycles. This parameter is called offset and is also a part of the activity trigger.

61

4. Sequential Power Reduction with Activity Triggers

4.4 Formal modeling and verification

We will use linear time temporal logic (LTL) with past operators (PLTL) [50, 51] to spec-
ify execution traces. This allows us to define the validity of activity triggers as properties
that must hold for every execution of the circuit. Using past operators is more natural in
our context than standard LTL as the clock gating conditions need to refer to the past
behavior of a circuit.

Definition 7. A PLTL formula over a set of variables X is defined inductively as follows.

1. For x ∈ X, x is a PLTL formula.

2. Let Ψ and Φ be PLTL formulae. The following are also PLTL formulae:

• ¬Φ

• Φ ∧ Ψ

• �Φ (previously Φ)

• ΦSΨ (Φ since Ψ)

The rest of the Boolean and temporal operators can be derived from ¬,∧,�,S. We
also introduce a shortcut for a multiple application of the � operator, letting �0Φ = Φ and
�iΦ = � �i−1 Φ when i>0.

Definition 8 (PLTL Semantics). Satisfaction of a PLTL formula Φ by a trace σ at a time
t, denoted by (σ, t) |= Φ, is defined as follows

(σ, t) |= x ⇔ x[t] (in the context of σ)
(σ, t) |= ¬Φ ⇔ (σ, t) 6|= Φ

(σ, t) |= �Φ ⇔ t,0 and (σ, t−1) |= Φ

(σ, t) |= ΦSΨ ⇔ ∃ j, 0 ≤ j ≤ t such that (σ, j) |= Ψ

∀i, j < i ≤ t such that (σ, i) |= Φ.

(4.1)

Satisfaction of a formula by an entire trace is defined as satisfaction (backwards) from its
last state.

σ |= Φ⇔ (σ, |σ|) |= Φ (4.2)

We will use PLTL to define stability and other properties related to activity triggers.

Definition 9. Let D = (X,Q,T, q0) be a design and let σ = q[0], . . . , q[τ] be an execution
trace. The stability of a signal x ∈ X is defined as follows

stable(x) = (x ∧ �(x)) ∨ (¬x ∧ �(¬x)). (4.3)

Furthermore, we can naturally extend the notion to define stability of an arbitrary set of
signals M ⊆ X.

stable(M) =
∧
x∈M

stable(x). (4.4)

62

4. Sequential Power Reduction with Activity Triggers

This notion is important for clock gating because if M represents a set of sequential
elements of the original circuit, these elements can be gated in clock cycles in which
stable(M) is satisfied.

We can now define activity triggering events that control the transition of sub-circuits
into and out of idle modes where all their registers are stable. Such events can be, in prin-
ciple, sequences specified by any PLTL formulae, but for statistical detection we restrict
them to be transitions on a set of signals.

Definition 10 (Signal transitions). Let σ be an execution trace and let (x1, · · · , xn) be an
ordered set of signals. Let b1, · · · , bn, b′1, · · · , b

′
n ∈ B. We say that (x1, · · · , xn) makes a

transition (b1, · · · , bn)→ (b′1, · · · , b
′
n) at time t if

(σ, t) |=
n∧

i=0

((xi ↔ b′i) ∧ �(xi ↔ bi)).

An activity trigger for a module M consists of two events α and β such that α initiates
the activity of M and β stops it. Typically, a module needs a few cycles to stabilize after the
occurrence of β. The length of the stabilization period (offset) is denoted by d. When M is
active, the occurrence of β should enforce M to become idle within d time steps unless it
has been aborted by an occurrence of α. This condition, whose satisfaction initiates clock
gating, is expressed in PLTL as:

�dβ ∧

d∧
i=0

�i¬α.

Clock gating can be continued as long as the start event α has not been observed.

Definition 11 (Valid activity trigger). Let α, β be signal transitions (or more generally any
PLTL formulae) and d a positive integer. A triple (α, β, d) is a valid activity trigger for a
module M if all traces of the circuit satisfy

¬αS

�dβ ∧

d∧
i=0

�i¬α

⇒ stable(M), (4.5)

Formal verification

A key feature of our methodology is that it can be formally verified whether a given
candidate is a valid activity trigger for a module or a set of registers. To prove that an
activity trigger (α, β, d) is indeed valid, we need to show that (4.5) holds for all possible
behaviors of the system.

To implement this check using a circuit-oriented model checker we encode the con-
dition stable(M), which monitors the stability of a set of registers in the sense of (4.3)
and (4.4), as an additional signal which is low if the value of some registers changed in
the last clock cycle. Change detection for a simple memory element is realized by ap-
plying ’exclusive nor’ (XNOR) to its input and output. For a more complex register, we

63

4. Sequential Power Reduction with Activity Triggers

store the previous value in an auxiliary register and apply the XNOR to the two registers.
Combining the results for all registers we obtain the required signal.

Using this new signal we construct an observer automaton (Fig. 4.9) which corre-
sponds to the temporal formula (4.5). When this automaton is composed with the circuit
automaton, it will enter the property violation state and only if (4.5) is violated. Thus va-
lidity of candidate activity triggers amounts to non-reachability of the error state, which
can be proved using any formal verification tool capable of proving safety properties. For
the tools used in our implementation see Section 4.6.

If the activity triggers are valid, the monitor automaton can be used, in principle,
to control clock gating, enabled exactly when it is MODULE IDLE state (Fig. 4.9). This
application of the monitor is, however, possible only if the inputs α and β of the automaton
are not affected by the clock gating itself.

Constraints

Often it is not possible to prove the validity of an activity trigger under every possible
input, but it is still valid under all input scenarios that can occur in our system. For instance
we assume by default that the reset signal is used only at the beginning of any possible
execution to initialize the design. A non-default assumption can, for instance, fix the value
of some configuration registers or force the input signal values to follow some protocol.
The UART’s communication protocol can be an example of a complex input assumption.
Another assumption for UART is that the clock driving the input is much slower than the
clock driving the UART. Most of modern electronic designs are configurable and are used
as a part of a bigger system that implies constraints on the input, therefore it is important to
have a mechanism that allows to specify such constraints so that only constraint-satisfying
behavior is considered by the reachability analysis. In our tool, we employ user-defined
constraints during the formal check.

It is typical that industrial designs do not contain all the constraints necessary for
a successful proof of an otherwise valid trigger. For such cases we propose an iterative
constraint refinement procedure – when the trigger is disproved, the designer can manu-
ally examine the provided counter-example. In case the counter-example does represent
a behavior that cannot occur in the circuit, the designer can add a constraint and run the
formal check again. This can be repeated until we find a realistic counter-example or until
the trigger is proven.

64

4. Sequential Power Reduction with Activity Triggers

MODULE
ACTIVE

¬β ∨ α

MODULE
IDLE

α ∧ stable

· · ·¬αβ ∨ ¬α ¬α ¬α
d−1 delay nodes

α α α

¬α ∧ stable

PROPERTY
VIOLATION

¬stable

Figure 4.9: An automaton for checking validity of activity triggers.

65

4. Sequential Power Reduction with Activity Triggers

4.5 Statistical trigger detection

Power optimization at the architectural level is sometimes performed by design teams
as they analyze the simulation to find potential optimizations (e.g., idle periods where
the clock is still active) or power bugs in the RTL (e.g., cases where the idle state of a
block is badly implemented and the block still has activity). As the design scale increases
this methodology may get difficult, prone to error, and time consuming. Also the use
of third party IPs for which little knowledge on the architectural properties is known may
complicate the analysis. The methodology we propose starts with automatically analyzing
the simulation file in a first step, in order to identify the design blocks of interest (i.e. with
significant potential power savings) as well as to point out the interesting activity events
and signals that trigger them. In a second step, we provide a formal flow that can verify
clock gating conditions based on activity triggers. This may be done either on the triggers
found during our automatic simulation analysis or on trigger conditions directly provided
by the user. When the verification is successful, the clock gating condition is proved to be
safe in the sense that a whole block may be clock-gated without disrupting the functional
behavior of the design.

To detect activity triggers we use a heuristics-based statistical approach. The idea is
based on a hypothesis that the activity triggering events can be found in a short time
window before and after the idle periods in the simulation traces. The user performs an
RTL simulation of the design, based on a set of test vectors that should represent standard
behavior of the circuit. Such vectors are commonly used by designers, e.g., for functional
verification or power estimation. The changes of signal values during the simulation are
stored in a file (VCD or FSDB). Then our detection tool performs the following steps in
order to find a set of events that have a good chance of being activity triggers.

Figure 4.10: Idle periods in a simulation

Design decomposition

First, we need to define the set of sub-circuits for which we want to analyze the activity.
In general, a sub-circuit can be any set of registers chosen by some meaningful strategy.
Typically, these are RTL modules or user-defined register groups. For simplicity, we refer
to the chosen sub-circuits as modules.

66

4. Sequential Power Reduction with Activity Triggers

Idle periods detection

For every module we analyze the activity. We identify all the idle periods – i.e., intervals
in which no registers were switching. For such intervals, there will be a minimal length in
order to exclude very short periods that may be noise.

Finding potential triggers

For each idle period, we look for signals having a transition during a short window be-
fore/after the period. The size of this window is a parameter to the procedure. For instance,
if a signal goes 0→ 1 before every idle period, it is a good stop event candidate. We also
analyze transitions of small buses. For instance if a bus always goes 0001 → 0010 after
an idle period, it is a start signal candidate. This is especially useful for buses that hold an
FSM state.

To distinguish between potential candidates, we introduce two statistical indicators
for each transition, coverage and noise. The coverage is the percentage of the idle periods
that may be affected by a transition (i.e., the transition is observed before the period). The
noise is the percentage of transition occurrences outside of the window before/after the
idle period (Fig. 4.11). Candidates with high coverage and low noise are considered to be
strong candidates, even though not all of the true triggers need to have 100 % coverage
(not every idle period has to be controlled by that trigger) and 0% noise (e.g., a start event
happening within an active period is possible but has no effect). However, experiments
show high/low coverage/noise to be a good indicator.

Figure 4.11: Coverage and noise

Filtering, ranking and reporting

We employ a number of heuristics to remove weak candidates or candidates that are
strongly depending on each other.

• We filter out all transitions that do not have a good coverage and noise rankings.

• We perform a structural check to remove signals that are not in the fanin/fanout
of the module. A start event related to a signal that cannot reach the module in its
fanout cone is eliminated (as it cannot influence the module). Respectively, a stop

67

4. Sequential Power Reduction with Activity Triggers

event related to a signal that does not have the module either in the fanin or fanout
cone is eliminated (it cannot influence or be influenced by the module).

• We remove highly active signals (like clocks), if they were not already removed due
to a high noise ranking.

• We compute shortest path from the signal to the module. This can be used to filter
out candidates that cannot have a causal relation to the activity event.

• We eliminate the candidates, which are already used for clock gating.

To illustrate the detection we will use the UART RECEIVER module. On Fig. 4.12 we
can see the combined activity of all nets in the receiver module during a test execution.
It contains blocks of activity that represent receptions of one transmission block each.
After the statistical analysis we find that the transition 000→001 of the FSM is reported
as a possible start event and the transition 0→1 of the signal received is reported as
a possible stop event. Both events have coverage 100% as the receiver’s FSM is moving
from 000 (wait for a new transmission) to 001 (start processing a new transmission) before
every block of activity (transmission processing) in the activity graph (Fig. 4.12) and we
can see the received flag being raised at the end of each activity period. Both events
have noise 0% as neither of them occurs in any other place in this simulation trace.

The pair (FSM : 000→001, received : 0→1) forms a valid activity trigger (with an
offset 1), which is then formally proved by the verification tool. However, the fact that
the start signal is defined on the FSM, which is contained in the module, means that we
cannot use it directly for clock gating of the entire module (as the FSM would be clock
gated and the module would never be activated again). We can use it to correctly clock
gate all the registers other than FSM though, which represent most of the module’s power
consumption.

Still, there exists an event which is a more desirable candidate for clock gating. The
UART’s communication protocol requires that the input serial line rx is set to 0 at the
beginning of an incoming transmission. This event can be used to clock gate the whole
receiver module, including the FSM and it is defined on one wire, hence the added clock
gating circuitry will be smaller. However, rx is used not only to start the transition, but
also to communicate the content of the transmission, hence it switches not only before
the active periods but many times also within the active periods. Therefore the noise rank-
ing of rx is very high and the event is filtered by the detection engine. An experienced
designer can easily recognize that the reported FSM : 000→001 event is triggered by
rx : 1→0 and use the latter for clock gating, however this phenomenon represents a
room for improvement of the current detection heuristic that will be addressed in future
research.

68

4. Sequential Power Reduction with Activity Triggers

Figure 4.12: Activity of UART receiver module

69

4. Sequential Power Reduction with Activity Triggers

4.6 Application flow

We provide a methodology and a tool for an extensive analysis of activity triggers in digi-
tal designs. In our flow, we expect the user to provide HDL files describing the design, the
constraint definitions (clocks and resets definitions, input constraints, etc.), and simulation
data (VCD, FSDB). Our tool provides two core functionalities:

Trigger detection

The input is the design HDL description and simulation data. The data is analyzed by our
statistical engine to infer a set of events that seem to trigger activity. These triggers need
to be verified by a designer or by the formal verification tool.

Formal verification tool

The input consists of an HDL description of a design, an activity trigger specification
and a time budget for verification. The trigger specifications can be supplied manually
or taken from the trigger detection engine. The tool uses ABC’s [63, 14] PDR engine
(property directed reachability [23, 13]) in attempt to prove the validity of the trigger,
while running BMC (bounded model checking [11]) and Rarity Simulation [18] engines in
parallel, which allows to disprove some incorrect triggers faster than only with PDR. The
result of the formal check can be either "VALID" if the trigger was proven, "INVALID" if
the verification engine found a counter-example, which is saved, or "TIMEOUT" in case
that the time budget was exceeded.

We propose a semi-automatic flow for the designers to be able to exploit the clock
gating opportunities maximally.

1. Run statistical trigger detection on trace files generated during simulation. The tool
will create a list of possible activity triggers for every module where some promis-
ing candidate is identified according to the heuristics described in Section 4.5.

2. Run the formal check with a reasonable time budget for every detected candidate.
The candidates that are proven at this stage can be used directly for clock gating.

3. For the candidates that are disproved or which were not proven within the allocated
time, these that have a high potential power reduction (number of affected registers)
should be selected for a manual examination. Sometimes it can be obvious that a
trigger candidate is correct and the designer may use it directly based on his expert
assessment.

4. Otherwise, the designer should examine the counter-example trace of the failing
triggers. If he realizes that the trace corresponds to a behavior that would not be
possible in a real execution of the circuit, he can specify input constraints as Sys-
tem Verilog Assertions (SVA [37]) and add them to the design files. This process of

70

4. Sequential Power Reduction with Activity Triggers

adding constraints can be repeated multiple times. Constraints that fix some config-
uration inputs or registers are usually necessary for the formal check to be success-
ful if the design is configurable.

5. In case the designer suspects that the activity is limited to just a part of a module, it
is possible to run the verification for a specified group of registers only.

Figure 4.13: ATD semi-automatic flow

For reasons explained before, the detection method performs best when the design
is highly modularized. For instance, in the original version of the UART example, the
receiver and the transmitter functionalities are implemented in the same Verilog
module. This leads to a strong interference between different scenarios, e.g., the active
periods resulting from reception in UART are marked as ‘not covered’ when evaluated
with respect to a trigger that is valid for the transmitter. Furthermore, it is not possible to
prove validity of any trigger, without manually specifying the group of registers for which
the trigger is valid (some triggers are valid for the receiver, some for the transmitter,
but not for both). Highly modularized design, where receiver, transmitter and ide-
ally also register groups as FSM and CNT allows the tool to detect and verify opportunities
that would be otherwise missed due to activity interference.

71

4. Sequential Power Reduction with Activity Triggers

4.7 Experimental results

In order to demonstrate the efficiency of our methodology we applied it to a real case
study: a cluster for video processing called SENDS (Smooth ENgine for Data Stream,
Figure 4.14).

Figure 4.14: A video processing architecture

SENDS is part of a larger, clusterized and configurable architecture for video pro-
cessing. This architecture is coupled with a CMOS image sensor integrated on the same
chip, from which it takes a pixel stream as input. The circuit can be configured to per-
form (concurrently or sequentially) several low-level processes such as various filtering,
contrast enhancement, de-noising or YUV to RGB conversion. These computations con-
stitute a pre-processing step for more involved image processing such as complex features
extraction. This kind of architecture is used, for instance, in smart cameras.

The SENDS design is organized around an FSM controlling the data path schedul-
ing and reception/emission of the pixel stream. The data path can be configured. In this
particular case it features smoothing engines, which operate concurrently. The IP is con-
nected to its interface through a bus, and it has several inputs for configuration, control
and synchronization, as well as data/control inputs related to the pixel stream. The data
consists of columns of pixels each coming from the sensor. A pixel has 3 components:

72

4. Sequential Power Reduction with Activity Triggers

Red, Green, and Blue, 8 bits each. The processing is performed on a pixel window, where
the pixel in the center is computed based on neighboring pixels. The number of concur-
rently processed windows corresponds to the number of processing units available in the
architecture.

The pixel stream is first collected in the neighbors module. When the neighbors reg-
ister file has been filled with sufficient data, it notifies the unit control (uc) by raising
the signal start_uc. Then the unit control sends appropriate instructions (in particular
pixel addresses to be processed) to the macro_pe module. The macro_pe triggers the
data retrieval in the neighbors register file and launches the smoothing process. When the
computation is finished it notifies the uc which in turns notifies the serializer using signal
end_process. The filtered pixels are then sent by the macro_pe to the serializer which
outputs the result.

There are several activity triggers which may be identified for different modules of the
SENDS architecture. In particular, the smoothing engines are all controlled by the pair of
signals (start_uc, end_process), and they could be clock gated whenever they are non
active, waiting for sufficient pixels to come into the neighbors so that a new pixel window
may be processed. Given that the smoothing engines consume the largest part of dynamic
power, this activity trigger should be a valuable power reduction opportunity.

We applied our methodology to the SENDS design, using different test benches cor-
responding to different image processing algorithms. Our statistical detection was able to
correctly identify the activity trigger (start_uc, end_process) for the smoothing en-
gines in all the test benches, as well as other activity triggers for the unit control and the
serializer. We also applied the detection algorithm to the top level design composed of 4
SENDS clusters working in parallel. We were able to detect the corresponding pair for
each individual cluster in the design, which shows that the statistical detection scales up
to a higher design level. For each of those experiments, the detection took less than 20min
of computation.

For the case of a single SENDS cluster, we clock gated the macro_pe module using
the detected activity trigger. This was straightforward given that a single signal transition
controls the wake-up (start_uc: 0 → 1) and the shutdown (end_process: 0 → 1). We
did this experiment for two different image processes using 3x3 and 5x5 pixel windows.
We then estimated the power savings by running an RTL power estimation tool before
and after the modification (technology is CMOS TSMC 45nm worst-case). For the test
benches that we used, the clock gating brought power savings of 33% for the 3x3 case
and 40% for the 5x5 case.

Of course, the activity trigger for the smoothing engines can also be identified man-
ually with a detailed understanding of the SENDS architecture and how it is used and
configured at the top level. However, such power optimization is typically finer grained
that what is performed manually at the architectural level, and it could easily be missed.
This optimization is somehow at an intermediate level between what is done at the archi-
tecture/system level (such as shutting down a whole cluster when it is not used) and what
is done at the local register level such as ODC/STC. Furthermore we ran a commercial
tool for power reduction using ODC/STC based methods on the SENDS design, and it

73

4. Sequential Power Reduction with Activity Triggers

Figure 4.15: Mean power consumption depending on the pixel neighborhood width before
and after power optimization with the new elaborated optimization rule

was unable to find a simple and effective condition like the one found using our method-
ology. Some clock-gating opportunities were identified at the register level, but the enable
conditions were really complex, not comprehensible to designers that know the architec-
ture. In total ODC/STC based power reduction brought only 1 % power savings for the
same test benches.

Concerning the formal part, the initial result for the activity trigger (start_uc,
end_process) was unproved as we obtained a counter-example. Looking at the violating
trace we could quickly observe that the behavior was spurious. To eliminate the behavior
we added the following two SVA constraints:

1. A constraint for the architecture configuration (size of pixel window, number of
parallel smooth engines to use etc.). The constraint basically consisted in setting
the value of a configuration register appropriately.

2. A constraint to limit the pixel stream throughput. This was necessary to avoid
the behavior where the system gets overloaded with more data than it can han-
dle (in practice, the pixel stream is coming from the camera which has a limited
frame rate). To set this constraint we specified a minimum amount of time between
changes at the neighbors module input.

With these constraints our tool was able to formally prove the activity trigger property
in about 5 hours of running the formal engine. Therefore, in addition to detecting the
optimization automatically, we were able to provide a strong guarantee that the clock
gating based on the activity trigger does not alter the functional behavior of the IP.

74

4. Sequential Power Reduction with Activity Triggers

Furthermore, to explore the applicability of our method to a wider set of designs, we
tested our tool on a set of 49 industrial designs in a fully automated mode (i.e., we run the
formal check on all the candidates generated by the detection tool without specifying any
SVA constraints). We were able to identify a good number of triggers using the statisti-
cal detection for most of the designs. On the other hand the results of the formal check
were not conclusive as we got only few proofs but also some failures and many timeouts.
Given our experience on the SENDS design and other test cases, this can be explained by
the fact that SVA constraints are usually needed before we can prove the activity trigger
property, at least when it applies to a medium-size block. Additionally, in this fully au-
tomatic experiment we had to set quite a small timeout for the formal check, 15 minutes
per property. We did a more in-depth analysis for few designs where the activity triggers
looked promising. In particular we could see some triggers related to FIFOs (e.g., when a
FIFO is full or empty this entails that some other modules get blocked), and DMA (e.g.,
a module is idle while waiting for a DMA request to be processed).

design power power covered # registers reg-covered
1 4.169 mW 75.84% 26680 37.17%
2 7.163 mW 54.93% 9128 56.38%
3 0.479 mW 49.62% 1352 82.84%
4 7.145 mW 49.47% 9128 13.56%
5 5.314 µW 31.04% 326 33.74%
6 0.606 mW 16.30% 2070 6.96%
7 8.891 mW 15.58% 690 28.70%
8 92.491 mW 6.77% 30520 4.65%
9 55.851 mW 4.54% 107848 8.14%

10 92.444 mW 2.87% 114546 1.56%
11 1.430 µW 1.61% 162 14.81%
12 4.079 mW 0.70% 5292 0.15%
13 149.955 mW 0.61% 111012 1.11%
14 400.937 mW 0.31% 160530 1.58%
15 8.013 mW 0.05% 43504 0.01%
16 2.799 mW 0.02% 38158 0.04%

Table 4.1: Automated run – formal verification results

We present in Table 4.1 the formal verification results for the designs whose trig-
gers could be proved automatically. The ‘power’ column indicates the dynamic power
consumption of the circuit as computed by a power estimation tool and the ‘power cov-
ered’ column show what fraction of this power is consumed by the modules for which
we found and formally verified some activity triggers. Note that this is an upper bound
on the power reduction and the real savings depend on the relative duration of the idle
periods. The ‘#registers’ column contains the total number of registers in the circuit while
the column ‘reg-covered’ shows the percentage of registers that fall within the scope of
the triggers.

75

4. Sequential Power Reduction with Activity Triggers

As discussed before, the percentage of automatically proven triggers is quite small
compared to all opportunities detected by the statistical engine. We learned from the
SENDS experience that in most cases additional constraints are needed for a successful
formal proof. However, the main observation to be taken from Table 4.1 is the relatively
good scalability of the formal verification. We are able, within 15 minutes limit, to for-
mally prove some activity triggers for design blocks that contain thousands of registers
and consume enough dynamic power to be interesting for clock gating.

76

4. Sequential Power Reduction with Activity Triggers

4.8 Limitations and future work

We developed and implemented a method for semi-automatic detection of activity triggers
in electronic circuits as well as formal verification of their correctness. We demonstrated
that the method can achieve a significant power reduction on an image processing archi-
tecture for which we had a good knowledge of design intent. We also applied the method
in a fully automatic manner to a larger set of industrial designs with some more modest
results. The lesson from this experience is that a proper modularization, specification of
input constraints and some human intervention are, in most cases, crucial for a successful
application of the method. The major current limitations of the approach are:

1. The sensitivity of the statistical detection procedure to interference, especially in
designs that are not highly modularized;

2. The need for extensive simulation data in order to detect triggers. This prevents the
use of the method in very early stages of the design flow when such simulation data
may not be available.

3. The usual limitations related to the complexity of the formal check.

There is a room for improvement in addressing these issues. One idea is to use auto-
matic modularization, e.g., every bus is analyzed separately, to cope with the noise that
comes from a small part of the analyzed module. Furthermore, the trigger detection engine
could be improved, possibly using machine learning (as in [5, 69]) or design intent detec-
tion heuristics inspired by [32]. Some triggers may be purely functional, independent on
the environment. There is an initiative to work on structural analysis of such triggers that
would allow us to identify them without simulation, much earlier in the design flow, con-
tributing to the general ‘shift to the left’ trend in the silicon industry. We made some initial
research in this direction but so far we were not able to process non-trivial designs. The
success of the formal part of activity trigger detection strongly depends on the designers’
readiness to provide detailed input constraints that can be quite complex. We observed
that some natural constraints such as alternation of start and stop events are often present,
and hence can be used even if they are not specified. If the formal proof succeeds under
this assumption, it could be reported as a hint to the user. More constraint hints can be
obtained by data mining the simulation traces.

77

Hardware: the parts of a computer that can be kicked.

Jeff Pesis

5
Conclusion

In this thesis we presented two novel methods for reducing switching power in digital
circuits, power-aware synthesis and activity trigger detection.

Power-aware synthesis optimizes synthesis of combinatorial logic with respect to an
input model. The optimized logic exhibits lower switching during typical computation.
The optimization is performed on the AIG level by re-arranging and gates within and
cones. We implemented the method using AIG manipulation tools from the ABC software
and tested the method on a variety of synthetic models and two simple hardware designs.
The tests on synthetic models suggest that the potential for power reduction is strongly
related to amount of determinism in the input model with no savings for uniform input
and large savings for models that are almost deterministic. The method has two main
shortcomings. First the reduction is achieved on the AIG level and it is not clear that
switching reduction is preserved after technology mapping unless we restrict ourselves to
and and inverter gates. We performed experiments in this direction, however the results
are inconclusive. The second shortcoming is that the switching reduction is achieved on
AIG networks that were not optimized via other methods. When we preprocessed the AIG
by some space and time optimization tools from ABC, the switching reduction achieved
by power-aware synthesis was much less significant.

Activity trigger detection searches signal traces provided by simulation in order to
find signals that are statistically related to a temporary cease of activity in sub-circuits.
If the relation is not spurious, we can use these signals to efficiently clock gate these
sub-circuits. We verify the validity of the proposed clock gating by model checking. The
user is able to interact with the process by adding constraints if model checking returns
an unrealistic counter example. The main advantage over state-of-art clock gating con-
dition detection is that our method can detect conditions for larger sub-circuits and the
provided conditions are simple and usually related to design intent. Therefore they are

78

Acronyms

less expensive to implement and more understandable to human designers who may be
more comfortable using them. The main limitations are the need for extensive simulation
data, the sensitivity of the statistical detection to interference, insufficient modularization
at the HDL level in many designs and the usual limitations related to the complexity of
formal verification. The method was implemented as a new feature of an industrial EDA
software tool.

79

Acronyms

AIG And-Inverter Graph. 12, 15–17, 19, 20, 26, 29, 45, 46, 78, Glossary: And-Inverter
graph

ASIC application specific integrated circuit. 8

ATD Activity Trigger Detection. Glossary: activity trigger detection

CMOS complementary metal-oxide-semiconductor. 3

DAG Directed Acyclic Graph. 15, 20

EDA Electronic Design Automation. 12, 15

HDL hardware description language. 79

IC integrated circuit. 3

RTL Register Transfer Level. 8, 10, 12, 15, 50, Glossary: register transfer level

80

Glossary

ABC A System for Sequential Synthesis and Verification [63]. EDA software tool devel-
oped at Berkeley Verification and Synthesis Research Center . 15, 45, 46, 78

activity An average number of switches in a signal or (sub)circuit per clock cycle . 11,
17

activity trigger detection Our method to reduce the switching activity in sequential cir-
cuits by using activity triggering conditions for clock gating. 2, 10, 77, 78

activity triggers Conditions triggering activity or stability in a design block. Used for
clock gating in activity trigger detection. 52

And-Inverter graph And-Inverter graph A technology independent netlist . 12, 15

circuit design A stage in the ASIC design flow. Transforms an RTL description of an IC
into a netlist. Technology mapping is performed in this phase. 8, 12

clock gating A technique that reduces the dynamic power in circuits by disabling the
clock signal for sub circuits that currently do not perform a useful computation. 50,
53

clock tree A structere that routes the clock signal to individual sequential elements . 53,
54

cone A tree of andgates in AIG that can be merged into one functionally equivalent
andgate with multiple inputs . 19, 78

cut point Border nodes of a cone. Places where AIG can be cut into cones . 19

dynamic power The power that is consumed by charging the IC gate in direct proportion
to the switching rate of the gate. Main components are the switching power and
short circuit power. 6, 12, 50

gate A logical element performing a simple boolean function. Can be either abstract or
standard cells coming from a standard cell library . 8

Gnd the ground in the IC. 3

81

Glossary

input vector Stimuli applied to the circuit’s input’s. Sequence of input vectors deter-
mines the behavior of the circuit (together with initial values of registers) . 11

logic design A stage in the ASIC design flow. Transforms a behavioral description of an
IC into RTL by performing various steps including logic minimization. 8

netlist A data structure capturing abstract topology of a design. Contains gates from a
technology library. 8, 12, 13, 15

physical design A stage in the ASIC design flow during which a plan for the physical
layout of the chip is created .The gates in the netlist are mapped to physical desti-
nations on the chip, wires are routed, clock trees generated . 8

power dissipation transformation of electrical energy into heat during IC operation. 3

power-aware synthesis Our method to reduce the switching activity in combinatorial
circuits by optimizing their structure at the AIG. 2, 10, 16, 37, 78

register transfer level Register transfer level - a description of the function circuit by
using only ports, registers, buses and simple expressions for combinatorial logic.
Can be expressed in HDL languages . 8

short circuit power The power that is consumed by a temporal short circuit current that
flows through the transistors for short time when the switch is performed due to
the continuous nature of the real non-ideal transistors. Component of the dynamic
power. 5

standard cell A group of physical structures (transistors and wires) implementing a log-
ical gate. The information about physical properties of a standard cell are provided
in standard cell librarys . 8, 15

standard cell library A list of standard cells associated with information about delay,
power, space taken by the gate and other physical qualities. Standard cell libraries
are provided by the foundries where the chips are going to be manufactured . 15

switching activity The ratio between the number of switches in a gate and the clock rate.
Also can be seen as a probability that a given gate value will switch in a given clock
cycle.. 6

switching power the power that is consumed by charging the IC gate capacitance and
dissipated by discharging, component of the dynamic power. 3

technology mapping Process of mapping a netlist containing abstract gates to a netlist
of standard cells. 15

Vdd the source of charge in an IC or the voltage associated with this source. 3

82

Bibliography

[1] Henrik Andersen and Henrik Hulgaard. “Boolean expression diagrams”. In: Logic
in Computer Science, 1997. LICS’97. Proceedings., 12th Annual IEEE Symposium
on. IEEE. 1997, pp. 88–98.

[2] Eli Arbel, Cindy Eisner, and Oleg Rokhlenko. “Resurrecting infeasible clock-
gating functions”. In: Proceedings of the 46th annual Design Automation Confer-
ence (DAC). IEEE. 2009, pp. 160–165.

[3] Eli Arbel, Oleg Rokhlenko, and Karen Yorav. “SAT-based synthesis of clock gat-
ing functions using 3-valued abstraction”. In: Formal Methods in Computer-Aided
Design (FMCAD), 2009. IEEE. 2009, pp. 198–204.

[4] Pietro Babighian, Luca Benini, and Enrico Macii. “A scalable ODC-based algo-
rithm for RTL insertion of gated clocks”. In: Proceedings of the Design, Automa-
tion and Test in Europe Conference and Exhibition. Vol. 1. 2004, pp. 500–505.

[5] Pietro Babighian, Gila Kamhi, and Moshe Vardi. “Interactive presentation: Pow-
erQuest: trace driven data mining for power optimization”. In: Proceedings of the
conference on Design, automation and test in Europe (DATE). EDA Consortium.
2007, pp. 1078–1083.

[6] A Bellaouar and Mohamed I Elmasry. Low-power digital VLSI design: Circuits
and systems. Kluwer, 1995.

[7] L. Benini et al. “Symbolic synthesis of clock-gating logic for power optimization
of synchronous controllers”. In: ACM Transactions on Design Automation of Elec-
tronic Systems 4.4 (1999), pp. 351–375.

[8] Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. “A survey of design
techniques for system-level dynamic power management”. In: IEEE Transactions
on VLSI 8.3 (2000), pp. 299–316.

[9] Luca Benini and Giovanni DeMicheli. Dynamic power management: design tech-
niques and CAD tools. Springer Science & Business Media, 2012.

[10] Luca Benini et al. “Glitch power minimization by selective gate freezing”. In:
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 8.3 (2000),
pp. 287–298.

83

BIBLIOGRAPHY

[11] Armin Biere et al. “Symbolic Model Checking without BDDs”. In: Tools and Al-
gorithms for Construction and Analysis of Systems, 5th International Conference,
TACAS. 1999, pp. 193–207.

[12] Mark Bohr and Kaizad Mistry. Intel’s Revolutionary 22 nm Transistor Technology.
2011.

[13] Aaron R Bradley. “SAT-based model checking without unrolling”. In: Verification,
Model Checking, and Abstract Interpretation. Springer. 2011, pp. 70–87.

[14] Robert K. Brayton and Alan Mishchenko. “ABC: An Academic Industrial-Strength
Verification Tool”. In: Proceedings of the 22nd Computer Aided Verification Inter-
national Conference (CAV). 2010, pp. 24–40.

[15] Robert K Brayton et al. Logic minimization algorithms for VLSI synthesis.
Springer, 1984.

[16] Anantha P Chandrakasan and Robert W Brodersen. Low power digital CMOS de-
sign. Kluwer, 1995.

[17] Anantha P Chandrakasan, Samuel Sheng, and Robert W Brodersen. “Low-power
CMOS digital design”. In: IEICE Transactions on Electronics 75.4 (1992), 371–
382.

[18] Satrajit Chatterjee et al. “On Resolution Proofs for Combinational Equivalence”.
In: Proceedings of the 44th Design Automation Conference, DAC 2007, San Diego,
CA, USA, June 4-8, 2007. 2007, pp. 600–605.

[19] D. Chiou. “Keynote talk II: Accelerating data centers using reconfigurable logic”.
In: Formal Methods and Models for Codesign (MEMOCODE), 2015 ACM/IEEE
International Conference on. 2015, pp. 60–60.

[20] Jason Cong, Bin Liu, and Zhiru Zhang. “Behavior-level observability don’t-cares
and application to low-power behavioral synthesis”. In: Proceedings of the 2009
ACM/IEEE international symposium on Low power electronics and design. ACM.
2009, pp. 139–144.

[21] O. Coudert. “Gate sizing for constrained delay/power/area optimization”. In:
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 5.4 (1997),
pp. 465–472.

[22] Jack Edmonds. “Maximum matching and a polyhedron with 0, l-vertices”. In: J.
Res. Nat. Bur. Standards B 69 (1965), pp. 125–130.

[23] Niklas Een, Alan Mishchenko, and Robert Brayton. “Efficient implementation of
property directed reachability”. In: Formal Methods in Computer-Aided Design
(FMCAD), 2011. IEEE. 2011, pp. 125–134.

[24] Mahmoud Elbayoumi, Michael S Hsiao, and Mustafa ElNainay. “Novel SAT-
based invariant-directed low-power synthesis”. In: 16th International Symposium
on Quality Electronic Design (ISQED), 2015. IEEE. 2015, pp. 217–222.

84

BIBLIOGRAPHY

[25] Michael D Ernst et al. “Dynamically discovering likely program invariants to sup-
port program evolution”. In: IEEE Transactions on Software Engineering 27.2
(2001), pp. 99–123.

[26] Michele Favalli and Luca Benini. “Analysis of glitch power dissipation in CMOS
ICs”. In: Proceedings of the 1995 international symposium on Low power design.
ACM. 1995, pp. 123–128.

[27] Richard Phillips Feynman, JG Hey, and Robin W Allen. Feynman lectures on com-
putation. Addison-Wesley Longman Publishing Co., Inc., 1998.

[28] Ranan Fraer, Gila Kamhi, and Muhammad K. Mhameed. “A New Paradigm for
Synthesis and Propagation of Clock Gating Conditions”. In: Proceedings of the
45th Annual Design Automation Conference (DAC). Anaheim, California: ACM,
2008, pp. 658–663. isbn: 978-1-60558-115-6.

[29] Malay K. Ganai and Andreas Kuehlmann. “On-the-Fly Compression of Logical
Circuits”. In: in International Workshop on Logic Synthesis. 2000.

[30] Gary D Hachtel and Fabio Somenzi. Logic synthesis and verification algorithms.
Springer, 2006.

[31] Gary D Hachtel et al. “Markovian analysis of large finite state machines”. In:
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on 15.12 (1996), pp. 1479–1493.

[32] Sudheendra Hangal et al. “IODINE: a tool to automatically infer dynamic invari-
ants for hardware designs”. In: Proceedings of the 42nd annual Design Automation
Conference (DAC). ACM. 2005, pp. 775–778.

[33] Richard Herveille. SPI Core. [Online; accessed 9-March-2016]. 2014. url: http :
//opencores.org/projects,@simple_spi.

[34] Henrik Hulgaard, Poul Frederick Williams, and Henrik Reif Andersen. “Equiva-
lence checking of combinational circuits using boolean expression diagrams”. In:
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
18.7 (1999), pp. 903–917.

[35] Aaron P Hurst. “Automatic synthesis of clock gating logic with controlled netlist
perturbation”. In: Proceedings of the 45th annual Design Automation Conference
(DAC). ACM. 2008, pp. 654–657.

[36] “IEEE Standard for Standard SystemC Language Reference Manual”. In: IEEE Std
1666-2011 (Revision of IEEE Std 1666-2005) (2012).

[37] IEEE Standard for SystemVerilog – Unified Hardware Design, Specification, and
Verification (IEEE Std 1800–2005). 2005.

[38] “IEEE Standard for Verilog Hardware Description Language”. In: IEEE Std 1364-
2005 (Revision of IEEE Std 1364-2001) (2006).

[39] “IEEE Standard VHDL Language Reference Manual”. In: IEEE Std 1076-2008
(Revision of IEEE Std 1076-2002) (2009).

85

http://opencores.org/projects,simple_spi
http://opencores.org/projects,simple_spi

BIBLIOGRAPHY

[40] Hans Jacobson et al. “Stretching the limits of clock-gating efficiency in server-class
processors”. In: Proceedings of the International Symposium on High-Performance
Computer Architecture. 2005, pp. 238–242.

[41] Kurt Keutzer. “DAGON: technology binding and local optimization by DAG
matching”. In: Papers on Twenty-five years of electronic design automation. ACM.
1988, pp. 617–624.

[42] Nam Sung Kim et al. “Leakage current: Moore’s law meets static power”. In: com-
puter 36.12 (2003), pp. 68–75.

[43] Zvi Kohavi and Niraj K Jha. Switching and finite automata theory. Cambridge
University Press, 2010.

[44] Thomas Koshy. “Catalan numbers with applications”. In: (2008).

[45] Jan Lanik and Oded Maler. “On Switching Aware Synthesis for Combinational Cir-
cuits”. In: Hardware and Software: Verification and Testing. Ed. by Nir Piterman.
Vol. 9434. Lecture Notes in Computer Science. Springer International Publishing,
2015, pp. 276–291.

[46] Jan Lanik et al. “Reducing power with activity trigger analysis”. In: Formal Meth-
ods and Models for Codesign (MEMOCODE), 2015 ACM/IEEE International
Conference on. IEEE. 2015, pp. 169–178.

[47] Lawrence L Larmore and Daniel S Hirschberg. “A fast algorithm for optimal
length-limited Huffman codes”. In: Journal of the ACM (JACM) 37.3 (1990),
pp. 464–473.

[48] Eugene L Lawler. Combinatorial optimization: networks and matroids. Courier
Dover Publications, 1976.

[49] Eric Lehman et al. “Logic decomposition during technology mapping”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 16.8
(1997), pp. 813–834.

[50] Orna Lichtenstein, Amir Pnueli, and Lenore Zuck. “The glory of the past”. English.
In: Logics of Programs. Ed. by Rohit Parikh. Vol. 193. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 1985, pp. 196–218.

[51] Zohar Manna and Amir Pnueli. Temporal verification of reactive systems: safety.
Springer Science & Business Media, 2012.

[52] Alan Mishchenko and Robert Brayton. “Faster logic manipulation for large de-
signs”. In: (2013).

[53] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. “DAG-aware AIG
rewriting a fresh look at combinational logic synthesis”. In: Proceedings of the
43rd annual Design Automation Conference. ACM. 2006, pp. 532–535.

[54] Alan Mishchenko et al. “A semi-canonical form for sequential AIGs”. In: Proceed-
ings of the Conference on Design, Automation and Test in Europe. EDA Consor-
tium. 2013, pp. 797–802.

86

BIBLIOGRAPHY

[55] Trevor Mudge. “Power: A first-class architectural design constraint”. In: Computer
4 (2001), pp. 52–58.

[56] Rajeev Murgai, Robert K Brayton, and Alberto Sangiovanni-Vincentelli. “Decom-
position of logic functions for minimum transition activity”. In: Proceedings of
the 1995 European conference on Design and Test. IEEE Computer Society. 1995,
p. 404.

[57] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: al-
gorithms and complexity. Courier Dover Publications, 1998.

[58] Joseph Paradiso, Thad Starner, et al. “Energy scavenging for mobile and wireless
electronics”. In: Pervasive Computing, IEEE 4.1 (2005), pp. 18–27.

[59] Jan Rabaey. Low power design essentials. Springer Science & Business Media,
2009.

[60] Jan M Rabaey and Massoud Pedram. Low power design methodologies. Springer,
1996.

[61] Tsutomu Sasao. Switching theory for logic synthesis. Vol. 1. 0. Springer, 1999.

[62] Naveed A Sherwani. Algorithms for VLSI physical design automation. Springer
Science & Business Media, 2012.

[63] Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential
Synthesis and Verification. http://www.eecs.berkeley.edu/∼alanmi/abc/. 2015.

[64] Vivek Tiwari, Pranav Ashar, and Sharad Malik. “Technology mapping for low
power”. In: Design Automation, 1993. 30th Conference on. IEEE. 1993, pp. 74–
79.

[65] Vivek Tiwari, Sharad Malik, and Pranav Ashar. “Guarded evaluation: Push-
ing power management to logic synthesis/design”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 17.10 (1998), 1051–
1060.

[66] Chi-Ying Tsui, Massoud Pedram, and Alvin M Despain. “Power efficient technol-
ogy decomposition and mapping under an extended power consumption model”.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 13.9 (1994), pp. 1110–1122.

[67] Chi-Ying Tsui, Massoud Pedram, and Alvin M Despain. “Technology decompo-
sition and mapping targeting low power dissipation”. In: Proceedings of the 30th
international Design Automation Conference. ACM. 1993, pp. 68–73.

[68] Neil HE Weste and Kamran Eshraghian. Principles of CMOS VLSI design. Vol. 2.
Addison-Wesley Reading, MA, 1993.

[69] Roni Wiener, Gila Kamhi, and Moshe Y Vardi. “Intelligate: scalable dynamic
invariant learning for power reduction”. In: Integrated Circuit and System De-
sign. Power and Timing Modeling, Optimization and Simulation. Springer, 2009,
pp. 52–61.

87

BIBLIOGRAPHY

[70] Wikipedia. Serial Peripheral Interface Bus — Wikipedia, The Free Encyclopedia.
[Online; accessed 9-March-2016]. 2016. url: https://en.wikipedia.org/w/ index.
php?title=Serial_Peripheral_Interface_Bus&oldid=704779254.

[71] Chingwei Yeh, Chin-Chao Chang, and Jinn-Shyan Wang. “Technology mapping
for low power”. In: Design Automation Conference, 1999. Proceedings of the ASP-
DAC’99. Asia and South Pacific. IEEE. 1999, pp. 145–148.

[72] Hai Zhou and DF Wong. “An exact gate decomposition algorithm for low-power
technology mapping”. In: Proceedings of the 1997 IEEE/ACM international con-
ference on Computer-aided design. IEEE Computer Society. 1997, pp. 575–580.

88

https://en.wikipedia.org/w/index.php?title=Serial_Peripheral_Interface_Bus&oldid=704779254
https://en.wikipedia.org/w/index.php?title=Serial_Peripheral_Interface_Bus&oldid=704779254

	Introduction
	Circuits and Power
	 Power Dissipation in CMOS Logic Gates
	 Dynamic power and switching activity
	 Design flow
	 Position of our techniques in the design flow
	 Formal model for circuits and switching

	Power Aware Synthesis for Combinatorial Power Reduction
	 Circuit Synthesis with AIGs
	 AIG data structure

	 Importance of Input Characterization for Switching
	 AND Cone Decomposition
	 Problem Statement
	 Solution Space

	 A Level-Greedy Approach
	 Examples of suboptimality

	 An Enumerative Approach
	 Implementation
	 Balanced trees
	 Complexity

	 AIG level Evaluation
	 Synthetic Input Generators
	 Evaluation on small circuits
	 Effect of the preprocessing

	 Technology level Evaluation
	 Discussion

	Sequential Power Reduction with Activity Triggers
	 Clock Gating Fundamentals
	 Related work
	 Activity triggers
	 Formal modeling and verification
	 Statistical trigger detection
	 Application flow
	 Experimental results
	 Limitations and future work

	Conclusion
	Acronyms

