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Abstract. We develop a new technique for generatingsmall-complexity abstrac-
tions of timed automata that provide an approximation of theirtimed input-output
behavior. This abstraction is obtained by first augmenting the automaton with
additionalinput clocks, computing the “reachable” timed automaton that corre-
sponds to the augmented model and finally “hiding” the internal variables and
clocks of the system. As a result we obtain a timed automaton that does not allow
any qualitative behavior which is infeasible due to timing constraints, and which
maintains a relaxed form of the timing constraints associated with the feasible be-
haviors. We have implemented this technique and applied it to several examples
from different application domains.

1 Introduction

The basic premise of a component-based design methodology is that a component (a
hardware IP block, a software module, a network router) can be used during the con-
struction of a system without deep knowledge of its intimateinternal structure but rather
using a more abstract (and conservative) description of itsobservable input-output be-
havior. This description should be sufficiently detailed toprove the correct interaction
of the component with the entire system, and sufficiently small to avoid state explo-
sion. In this work we extend this methodology totimed systems models that reflect
alsoquantitative performance information. Phenomena such as delays in circuits and
communication networks, as well as execution and response times of software are the
natural application domains for such models. Using the new abstraction technique pre-
sented in the paper, we canautomatically build a conservative approximation of the
timed input-output behavior of the component such that any performance guarantees
obtained using the abstract model, hold also for the concrete model.

This technique, which has been implemented into a tool, transforms a high-level
description of the timed systems1 into a product of timed automata that captures all
the possible behaviors of the system underall admissible inputs andchoices of delay
parameters. From this automaton which has one state variable and one clock variable-
for every timed element2 we generate an abstract model with fewer states and clocks
which provides anover-approximation of the time-dependent input-output behavior of

1 For circuits this description consists of a network of logical gates with bi-bounded delay el-
ements, for embedded software it consists of descriptions of tasks, resources, durations and
scheduling policies.

2 A timed element is something that measures the time since the occurrence ofsome event and
uses this value to guard a transition.



the system. This simplified model can replace the original model within a hierarchi-
cal/compositional reasoning methodology. Our technique allows the user to select the
appropriate level of aggressiveness in the abstraction, that is, the level of relaxation of
the timing and ordering constraints in the abstract model, to achieve a good trade off
between the complexity of the model and its faithfulness to the concrete behavior of the
system. The major steps in our procedure are:

1. Introduction of additionalinput clocks, each of which measures the time elapsed
since the occurrence of a particular input event. When the effect of this event is
propagated through the system, its associated clock is deactivated and can be reused
by future events.3 These “dynamic clocks” constitute a novel and non-trivial feature
in the theory and practice of timed automata and their numberis always bounded,
depending on the variability of the input and the structure of the system.

2. Full-fledged reachability analysis of the automaton, resulting in a modified automa-
ton from which all behaviors that violate timing constraints are eliminated.

3. Generation of an abstract model byhiding all internal clocks and variables and
projecting the timing constraints on the input clocks.

4. Minimization of the automaton by merging states which areequivalent (or approximately-
equivalent) with respect to observable input-output behavior.

The rest of the paper is organized as follows. Section 2 givessome background on
abstraction in general while Section 3 offers a quick surveyof timed automata and the
computational difficulty inherent in their analysis. Section 4 illustrates our modeling
approach and describes the various stages of our abstraction procedure. Preliminary
experimental results are described and discussed in Section 5 followed by suggestions
for future work.

2 Abstraction in General

In verification and other system design activities we have often to deal with a system
modelS which is too complex to analyze due to its large or even infinite state space.
In this case we can try to replaceS with a more abstract modelS′ with the following
properties: 1) The complexity ofS′ is smaller than that ofS, where complexity is
viewed operationally, that is,S′ is easier to analyze thanS using some verification
tool; 2) Every observable behavior ofS is also a behavior ofS′, but not vice versa
(conservative approximation).

Analyzing S′ is computationally easier than the verification ofS but due to over
approximation, it may happen that the verification ofS′ may fail althoughS is correct.
The navigation in the space of possible abstractions ofS in order to find one which
is sufficiently simple to avoid explosion yet sufficiently detailed to prove the property
in question, is a major research topic, especially for infinite-state systems such as those

3 We restrict ourselves to systems with anacyclic structure, systems in which every cycle in the
transition graph has at least one transition labelled with an input event. Suchsystems do not
generate “autonomous” cycles and hence every input event generates a “wave” of reactions
that propagate through the system within a finite time.



used to model software. The current paper is concerned with adapting this methodology
to timed systems defined using thetimed automaton formalism, but before moving to
those, let us contemplate briefly on the nature of abstraction.

A discrete componentS, such as a digital circuit or a reactive program, is a device
that maintains some relationship between the sequence of inputs it observes and the
sequence of outputs it emits. Mathematically speaking, it can be viewed as atransducer,
an input-output transition systemS = (X,Y,Z, δ, γ) that reads inputs ranging overX,
makes transitions in its state spaceY , according to the transition relationδ, and outputs
elements ofZ according to the output functionγ. If we view S as a “white box” and
observe also the sequence of states visited while producingthe output (see Figure 1-(a)),
we can viewS as realizing some sequential functionf from X∗ to Y ∗ × Z∗ However,
we do not really care about the internal states ofS, it is only the input-output function
(or relation) fromX∗ to Z∗ which determines whetherS interacts correctly with its
environment and meets its specification. So the most naturalsimplification is to hideY
and consider the sequential functionf : X∗ → Z∗ as the essence ofS.

However, contrary to what one may prematurely think, hidingY and projecting onto
the output does not imply that we gain anything in complexityneither lose anything in
accuracy. The reason is that every sequential function has its inherent state space struc-
ture (minimal realization, Myhill-Nerode congruence relation), regardless of whether
the states themselves are observable. In other words, hiding internal states from outside
observation does not change the state space nor the transition function, which remains
of the formy′ = δ(y, x). The only thing it does is to “remove” the states from the
output function (see Figure 1-(a)).
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Fig. 1. (a) Hiding internal states from the outside does not necessarily reduce complexity; (b) An
abstractionS′ of S obtained by mergingy1 andy2 into y12.

Real abstractions, do reduce complexity and lose information by simplifying the
transition relation. The most common way to do so is to define an equivalence re-
lation ∼ on Y and replaceS = (X,Y,Z, δ, γ) with S′ = (X,Y ′, Z, δ′, γ′) where
Y ′ = Y/ ∼, the set of partition blocks of∼. In other words we merge together states
that are∼-equivalent (see Figure 1-(b)). A transition(y′

1, x, z, y′

2) exists inS′ if a tran-
sition (y1, x, z, y2) exists forsome y1 ∈ y′

1 andy2 ∈ y′

2. Such an abstraction may lose
information and generate more behaviors then are really possible inS. For example, the
behaviorx1/z1z4 is possible inS′ while in S we have eitherx1/z1z3 or x2/z2z4.

Our goal is to export these ideas to timed automata by hiding some clocks variables,
but the explanation is much more complicated because in timed automata, like in any



other automata with auxiliary variables, the visible transition graph does not convey all
the information on the system dynamics but rather a projection of it.

3 Timed Models

Timed extensions of discrete transition systems, such as timed automata or Petri nets,
allow one to reason about systems in anextremely important level of abstraction. At
this level, the process of switching between two discrete states is refined into two tran-
sitions,initiation andconclusion, separated by some real-valueddelay, which is often
not known exactly but bounded. Among the numerous phenomenathat can benefit from
this style of modeling we mention the execution time of a block of code in a real-time
program, communication delays in a network, and the time it takes for a digital elec-
tronic gate (or a more complex block) to stabilize to a new value after its input has
changed. In this paper we demonstrate our approach using models based on networks
of Boolean gates due to their notational economy and becauseit is easy to generate
large examples in a uniform way, but the techniques developed can be adapted to other
description levels and application domains.

Timed automata modelduration of actions using auxiliaryclock variables. To ex-
press a timing constraint between two transitions (such as the initiation and termination
of a process) a clock is reset to zero while taking the first transition, and its value is
tested to satisfy the constraint as a pre-condition (“guard”) for the second transition.
Between transitions, when the automaton stays in a state, the value of all active clocks
progress in the same pace, representing at each moment the time elapsed since the oc-
currence of their respective events.

At each moment along the real-time axis, the state of the automaton is character-
ized by a configuration(q, v) with q being a discrete state andv a vector of clock
valuations ranging over some bounded subset ofR

n. Albeit the infinite state space, the
basic verification questions for timed automata are decidable [AD94]. Existing deci-
sion techniques suffer, however, from the usual state-explosion problem, aggravated by
the clock-explosion problem: during reachability analysis we need to store “symbolic
states” of the form(q, P ) whereq is a discrete state andP is a set of clock valua-
tions. These sets are expressed by a conjunction of constraints of forms likex < d or
x − y < d, and constitute a special class of convex polyhedra that we call timed poly-
hedra. In a state wheren clocks are active, timed polyhedra can ben-dimensional and
admit up to two constraints for each pair of variables. Consequently the analysis of a
system consisting ofn timed components may generate in the worst caseO(2n·n!) sym-
bolic states, each with anO(n2) representation size. Although a lot of effort has been in-
vested during the last decade in finding more efficient ways toanalyze timed automata,
scalability toward the size requirements of circuit analysis has not been achieved. In
this work we start exploringcompositional reasoning via abstraction as an alternative
road toward scaling-up timed automata technology.



4 Timed Abstraction

Timed automata are quite intuitive but their formal definition can be rather irritating out-
side formal verification circles. To address potential users of the proposed technology
we avoid formalization and illustrate our technique using arunning example.

4.1 Modeling

Figure 2 shows atimed Boolean circuit and one of its possible behaviors. The circuit
has an input signalx which may switch arbitrarily, but with bounded variability, that
is, it has to wait at least5 time units between subsequent switchings. Changes inx are
propagated through abi-bounded delay element whose outputy follows the value ofx
within somet ∈ [1, 2] time units and is fed into a similar delay element with outputz.
Mathematically speaking the relation between signals maintained by the circuit can be
expressed by thedelay inclusions y ∈ D[1,2](x) and z ∈ D[1,2](y)

Following the principles laid out in [MP95] we model the input and the components
using the automataAx, Ay andAz of Figure 3. We label transitions byinput events,
guards, clock resets andoutput events, for instance, a transition labeled byx+, cy <
2/{cz}, y

− can be taken upon the rising ofx, provided thatcy < 2, and its effect is
to resetcz and lowery. The input automatonAx guarantees bounded variability by
guarding its transitions with the conditioncx > 5 and by resetting clockcx to zero at
every transition.

The modeling ofdelay elements by timed automata is a crucial ingredient of our
methodology. The automatonAy starts at a stable state0 where its value coincides
with the value of its inputx. Upon a change inx it moves to anexcited state 0′ while
resetting its clockcy. The “stabilize” transition from0′ to 1 through whichy “catches
up” with x, may happen whency ∈ [1, 2], that is, inside the time window[t + 1, t + 2]
with t being the time whenx has changed.4 Note that the “excite” transition from0 to
0′ is always triggered by an external input but is not visible from the outside, while the
stabilization transition from0′ to 1 is generated autonomously without an input event
(unless one considers the passage of time as such) and is visible to the outside world.
Composing the three automata we get the global automatonA of Figure 4. Note also
that each clock isactive only in global states in which its corresponding gate is excited.

There are different approaches for treating the case wherex changes its value again
before propagating to y. For the purpose of this work, we assume that the automaton
returns from0′ to 0 (a “regret” transition) and thus it “forgets” the whole episode. Other
approaches may treat this phenomenon as an error (“glitch”), or model it in a manner
more faithful to the physical realization of logical gates.Either way, this guarantees that
the number of events that may be “alive” in the systems is bounded, regardless of the
input frequency. In other domains this effect can be achieved by admission controllers
or bounded buffers.

4 The fact that the automatonmust leave state0′ whencx reaches2 can be expressed either
using staying conditions (“invariants”) associated with states, or “deadlines” and “urgencies”
associated with transitions, [SY96]. Using the latter terminology, stabilization transitions are
delayable.



Thesemantics of this automaton consists of allxyz signals it can generate, that is,
the signals carried by all runs of the automaton. These runs are sequences of configu-
rations separated by transitions or by time-passage periods. The behavior wherex rises
at6, y follows after1 time unit andz follows 1.9 times units aftery, is captured by the
following run where⊥ denotes inactive clocks:

0

@

x, cx
y, cy
z, cz

1

A :

0

@

0′, 0
0, ⊥
0, ⊥

1

A

6
−→

0

@

0′, 6
0, ⊥
0, ⊥

1

A

x+
−→

0

@

1′, 0

0′, 0
0, ⊥

1

A

1
−→

0

@

1′, 1

0′, 1
0, ⊥

1

A

y+
−→

0

@

1′, 1
1, ⊥

0′, 0

1

A

1.9
−→

0

@

1′, 2.9
1, ⊥

0′, 1.9

1

A

z+
−→

0

@

1′, 2.9
1, ⊥
1, ⊥

1

A

The circuit behavior carried by this run can be represented either in a state-based man-
ner (as a signal) or in an event-based manner (as a time-eventsequence, see [ACM02])
as follows:
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We use the termqualitative behavior to denote the sequence of signal values without
reference to timing. For this example the qualitative behavior is x+y+z+ and can be
viewed as an equivalence class of all signals of the formt1 · x

+ · t2 · y
+ · t3 · z

+ · t4 for
anyt1, t2, t3, t4 ≥ 0.

If we ignore timing constraints, remove all references to clocks from transition
guards and leave only the rising and falling labels, we obtain a timed automaton which
is practically equivalent to an untimed automaton. This canbe viewed as a very aggres-
sive form of abstraction whose set of qualitative behaviorsis the set of all sequences
of labels carried byall paths in the transition graph, for examplex+y+z+x−y−z− or
x+y+x−y−. However, taking timing into account one can see that given the variability
constraint onx, the second behavior is impossible because state110′ is never reached
with a combination of clock values that satisfies the guardcx > 5 ∧ cz < 2.
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Fig. 2. A simple timed circuit and a typical behavior.

4.2 Reachability Analysis

The analysis of the timed automaton itself, rather than its untimed abstraction, is typ-
ically performed by constructing thereachability graph, also known as thesimulation
graph [HNSY94], which gives a (somewhat non-intuitive) representation of that part
of the timed automaton which is reachable from some initial state or set of states. To
illustrate the idea let us compute the reachability graph for A starting from an initial
configuration(0′00, cx = 0). In this state we can let time progress indefinitely and can
reach all clock valuations satisfyingcx ≥ 0. This is represented as a “symbolic state”
(0′00, cx ≥ 0). The next step is to intersect this set with the transition guard cx > 5
to obtain all the configurations from which the transition labeled byx+ can be taken,
represented by the symbolic state(000, cx ≥ 5). Finally, by applying to this set the
resetting ofcx andcy, we obtain the symbolic state(10′0, cx = cy = 0).
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Fig. 3. Modeling the circuit of Figure 2 with timed automata.
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Fig. 4. The global automatonA = Ax ◦ Ax ◦ Az for the circuit.



The process is then repeated from the new symbolic state where time passage is
limited by 2 which is the upper bound on the rising ofy, hence the symbolic state
is (10′0, cx = cy ≤ 2). The transition back to0′00 cannot be taken due to empty
intersection with the guardcx > 5 and this transition is eliminated. The intersection
with the guardcy ∈ [1, 2] gives(10′0, 1 ≤ cx = cy ≤ 2) and the result of the transition
after resettingcz is (1′10′, cx ≤ 2∧cz = 0). In this state time can progress untilcz = 2
resulting in the symbolic state(1′10′, 1 ≤ cx − cz ≤ 2 ∧ cz ≤ 2) and so on and so
forth until we obtain the reachability graph of Figure 5. Theprocedure is guaranteed to
terminate due to the finite number of bounded timed polyhedra[AD94,HNSY94].

We interpret the reachability graph as a timed automatonA′ as follows: for each
symbolic state(q, P ) we define a copy of stateq whose staying condition (and its out-
going transition guards) are restricted to their intersections withP . Transitions whose
guards become empty in the process, as well as states that become unreachable, are
removed. On the other hand it may happen that the reachability graph contains two or
more symbolic states(q, P ) and(q, P ′) that correspond to alternative paths toq, and
hence the state will be split in the resulting timed automaton. For example state0′00
as an initial state can have all clock valuations withcx ≥ 0, but when reached again
through the pathx+y+z+x−y−z−, the value ofcx must always exceed2. Such state
splitting will occur very often in systems such as circuits where there are many “dia-
monds”, that is, two competing eventse1 ande2 that may happen in bothe1 ≺ e2 and
e2 ≺ e1 orders and converge to the same stateq. If these events reset clocksc1 andc2,
respectively, the reachability graph will contain two symbolic states,(q, c1 ≤ c2) and
(q, c2 ≤ c1).

It is not hard to see that the new timed automatonA′ admits exactly the same set
of behaviors as the original automatonA, together with an additional evident property
that any configurations that satisfies the staying conditionof a state is indeed reachable.
Every finite or infinite path (a qualitative behavior) in the transition graph ofA′ is an
untimed abstraction of afeasible behavior of A, a behavior that satisfies the timing con-
straints. If our goal is to verify some untimed property of the system, we can remove
the clocks fromA′ (after having used them to eliminate infeasible paths) and apply
standard untimed verification algorithms. However if we want to compose the system
with other components it might not be a good idea to get rid ofall timing information.
The untimed abstraction does not constrain in any way the time betweenx+, y+ and
z+, which can be arbitrarily small or large, and will make it difficult (if not impossible)
to prove the correctness of the interaction of the circuit with its environment. An ab-
straction which maintainssome of the timing constraints but which has less states and
clocks, would be very useful in this context.

4.3 Abstraction by Clock Projection

We want the abstract model to approximate thetimed input-output relationship main-
tained by the system. Clockcx measures the time since the last change in the external
input x while clockscy andcz measure time elapsed since the occurrence ofinternal
events, the excitation of the two gates, events that are of no interest to the general pub-
lic. We can thus “hide” these clocks and project the guards and staying conditions on
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Fig. 5. The reachability graph of the automaton in Figure 4, interpreted as a timed automatonA′.

clock cx to obtain the automatonA′′ of Figure 6. Note that a projection of a polyhe-
dronP into a lower dimensional polyhedronP ′ makes some of the constraints which
are implicit (redundant) inP , explicit in P ′. For example the polyhedron defined by
1 ≤ cz ≤ 2 ∧ 1 ≤ cx − cz ≤ 2 is projected onto2 ≤ cx ≤ 4.
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Fig. 6. The automatonA′′ obtained fromA′ by hiding clockscy andcz. The dotted boxes group
together states that differ only by the value if the internal variabley.

Wheny is not observable outside the system, the set of allxz behaviors ofA′′ is
exactly that ofA andA′ and no information is lost. Unfortunately, in the general case,
the projection of clocks does lose information. Consider the same circuit but withy
visible to the external world. In this caseA′′ is an over approximation because it allows
a behavior like5 · x+ · 1 · y+ · 3 · z+, wherey “chooses” to change in the earliest time
t ∈ [1, 2] afterx whilez is allowed to chooses the largest element in[2, 4] = [1+1, 2+2]
while in A andA′ its choices were restricted to the interval[t + 1, t + 2]. This is the
type of accuracy we are ready to sacrifice for the purpose of complexity reduction.



The outcome of our abstraction technique is a timed automaton over the inputs and
outputs of the system, where output transition guards involve clocks that measure the
time elapsed since the occurrence of input events. In the previous example we used
input clock cx which was reset atevery change inx. This construction was correct
because thevariability constraint prevented the arrival of anx-event while the circuit is
still busy “digesting” the previous event. When this constraint is relaxed, anx-labeled
transition may be taken in a state where one or more gates excited by the previousx-
transition have not yet stabilized. In our example, if we change the variability constraint
from cx ≥ 5 to cx ≥ 3, x may change at state1′10′ wherey has already stabilized but
z is still excited by the previous change. If we resetcx we lose the time of that previous
event, and when we project transitions guards oncx we do not express the temporal
distance between the rising ofz and itstriggering event.5

To guarantee correct abstraction each input event should resetits proper clock which
will stay active as long as the “wave” of reactions it triggered has not propagated
through the system. Within our modeling methodology, the number of input events
that may be active simultaneously in an acyclic system is bounded and hence a finite
number of clocks will suffice to retain the information necessary for relating the timing
of input and output events. To implement these input clocks we modify the timed au-
tomaton model to include a pool ofdynamic clocks which are activated by input events
and killed when the effect of these events propagates to the output. The attachment of
these clocks to input events is not fixed and the same clock can, for example, denote at
some point the time elapsed since the oldestx1 event still in the system, and at some
other point, the time since the most recentx2 event. Technically speaking, we replace
the input generator by one which creates a new clock at every transition, and keeps track
of the input events that are still alive in the system and the clocks that represent them.
It is worth mentioning that such dynamic clocks are useful inother, more theoretical,
contexts [MPN05].

4.4 Minimization

By hiding internal clocks we obtain an abstract model whose number of clocks need not
be equal to the number of timed elements but rather depends onthe maximal number
of input events that may be “alive” simultaneously in the system. The number of such
events depends, of course, on the size of the system as well ason other properties such as
the number of inputs, their variability as well as structural properties such as width vs.
depth (sequentiality vs. parallelism). Under reasonable assumptions concerning these
parameters, the reduction in the number of clocks is significant.

The final step in our procedure aims at reducing the number ofdiscrete states by
merging states that are equivalent or approximately equivalent in terms of the observ-
able behaviors they admit. Candidates for merging are states that differ from each other
only by values of internal variables and of clocks, for example states such as1′0′0 and
1′10′ in automatonA′′ of Figure 6, after hidingy. A commonly-used minimization rule
(also for untimed systems) is the following.

5 In our previous work [BBM03] we have applied this abstraction techniqueto systems whose
inputs changesonly once at time zero, so that one additional clock was sufficient to project on.



Let q be a source state for several paths, each consisting of a sequence of unobserv-
able transitions, except the last transition which changesone observable variable and
goes to stateq′. In this caseq and all the intermediate states can be collapsed into one
state whose staying condition is the union of those of all states, and which has a transi-
tion toq′ guarded by the union of all transition guards toq′ from the intermediate states.
Applying this rule we obtain the automaton of Figure 7 which is nothing but a demon-
stration of the following equivalence on delay operators:D[1,2](D[1,2](x)) = D[2,4](x).
A similar transformation was presented in [ZMM03] for timedPetri nets.

The situation gets more complicated when the system admits more parallelism and
input events may appear more frequently. We have developed avariety of minimization
algorithms that are similar in spirit to those described in [DT98]. We employ a variety
of progressively more “liberal” criteria that merge stateswhich: 1) Admit exactly the
same sequences of observable transitions and guards; 2) Differ in guards but the guards
are included in each other; 3) Differ in guards and the guard of the new state is the
convex hull of the guards of the original states; 4) Differ in the order ofsome sequence
of events that admit.
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0 ≤ cx ≤ 4

0′0 1′0

cx > 5, x+/{cx}

0 ≤ cx ≤ 4

2 ≤ cx ≤ 4/z+
2 ≤ cx ≤ 4/z−

Fig. 7. Hiding y and minimizing the automaton

We have implemented all the abovementioned features into a new experimental ver-
sion of the verification tool IF [BGM02], including an automatic translation from a cir-
cuit description language to timed automata, generation and maintenance of dynamic
clocks, projection and minimization. The software implementing this technique consists
of more than 15000 lines of C++ code.

5 Experimental Results

To assess our approach we applied it first on some classes of synthetic circuits, the first
of which is a family ofk-long buffers like the one described in the example, with delays
in [3, 5]. We performed the experiments with two versions of the buffer, one where
only the output of gatek is observable, and the other where the output of gatek/2 is
visible as well. Table 1 shows the results of applying our technique while assuming
input variability bounded by40. Columnw shows the maximal number of input events
that may be alive in the buffer, which ranges from1 to 3 depending on the circuit
depth. The first pair of columns shows the number of symbolic states and transition in
the computed reachability graph. The rest of the table showsthe size of the reduced
graph using three minimization criteria:Hidemin indicates merging only in the case
of identical guards,TimedMin merges states when guards are included in each other
while Temporal Min ignores guards and considers equivalence with respect to transition
labels.



Generated HideMin TimedMin Temporal Min
Buff Time w Graph 1 Out 2 Out 1 Out 2 Out 1 Out 2 Out

(mn) S T S T S T S T S T S T S T

2 00:00 1 6 6 4 4 6 6 4 4 6 6 4 4 6 6
3 00:00 1 8 8 4 4 6 6 4 4 6 6 4 4 6 6
4 00:00 1 10 10 4 4 6 6 4 4 6 6 4 4 6 6
5 00:00 1 12 12 4 4 6 6 4 4 6 6 4 4 6 6
6 00:00 1 14 14 4 4 6 6 4 4 6 6 4 4 6 6
7 00:00 1 16 16 4 4 6 6 4 4 6 6 4 4 6 6
8 00:00 2 20 22 6 8 8 10 8 10 8 10 8 10 8 10
9 00:00 2 26 32 6 12 8 14 6 8 8 12 6 8 8 12

10 00:00 2 44 62 8 24 10 26 8 12 10 14 6 8 8 10
11 00:01 2 86 132 10 50 12 52 10 18 12 20 6 8 8 12
12 00:03 2 166 266 12 92 18 98 12 26 16 32 6 8 12 18
13 00:20 2 382 624 16 172 26 188 14 36 18 42 6 8 12 18
14 00:34 2 584 966 22 280 44 322 20 84 30 110 6 8 22 48
15 00:54 2 804 1336 26 398 54 446 24 110 42 150 6 8 30 78
16 03:45 3 2208 3846 67 884 125 1109 52 270 96 445 29 85 68 254
17 09:28 3 4349 8284 333 5596 497 4884 235 2590 363 2591 114 881 221 1587
18 38:45 3 12425 25329 1051 39940 1387 28993 623 15375 879 14080 466 14805 756 12974

Table 1. The result of applying our technique to chains of buffers.

The other class of examples is inspired by recent research onperformance analy-
sis of embedded software, e.g. [WMT05]. We consider systems that generate different
types of tasks with some bounded frequency. Each type of taskhas to go through a
partially-ordered set of treatments. Each type of treatment requires a specific resource
(machine) for some duration with the possibility of resource conflicts between tasks.
These conflicts are resolved by a scheduler applying a simplepolicy. Each task type has
a dedicated bounded buffer. We have applied our technique toan instance of this prob-
lem with2 task types,3 machines, a priority-based scheduler and parameters that allow
3 events to be alive simultaneously in the system. An unoptimized version of IF gener-
ates a reachability graph with 1282 states and 1975 transitions. The version of IF that
we use, with dynamic clocks and various optimization that wedo not bother to detail,
yields a graph with 127 states and 205 transition. After minimization with zone inclu-
sion we obtain the automaton of Figure 8 with 18 states and 33 transitions. Transitions
in the reduced model correspond to arrivals of new tasks and their termination.

6 Discussion

We have developed a new promising technique for automatic generation of abstractions
for open timed systems. Timed automata with dynamic input clocks may turn out to
be the appropriate formalism for characterizing the timed input-output behaviors of
complex systems, whose approximation by nice analytical expressions is too coarse.
Our technique can also be part of a divide-and-conquer methodology where abstract
models of sub-systems are composed together in order to verify a system too large to be
analyzed as a whole. Much more experimentation and fine tuning are needed, however,
in order to assess the applicability of our approach.

Our original ambitious aim was to provide a “fully-open” abstraction without as-
sumingany restriction on the inputs, and letting this restrictions come from each par-
ticular environment with which the abstract model is to be composed. However, we have
learned in the process that unrestricted inputs generate too many simultaneous waves
that lead to explosion. One should be careful, though, not toconfuse what is assumed
and what should be guaranteed.
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Fig. 8. The abstract model of the2-task,3-machines problem. Arrival and termination of tasks are
denoted byGi andFi labels, respectively, whike creation, removal and shifting of clocks bySt,
Rm andSh. Zones appear in a separate file to facilitate readability. A more detailed description
of the input and the output can be found inwww-verimag.imag.fr/∼maler/cav-appendix.html
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