Automatic Abstraction of Timed Components

Ramzi Ben Salah Marius Bozga Oded Maler

VERIMAG, 2, av. de Vignate, 38610 Gieres, France
Ramzi.Salah@imag.fr Marius.Bozga@imag.fr Oded.Maler @imag.fr

Abstract. We develop a new technique for generatingll-complexity abstrac-
tions of timed automata that provide an approximation of thieied input-output
behavior. This abstraction is obtained by first augmenting the automaton with
additionalinput clocks, computing the “reachable” timed automaton that corre-
sponds to the augmented model and finally “hiding” the internal variabilds a
clocks of the system. As a result we obtain a timed automaton that doelfomot a
any qualitative behavior which is infeasible due to timing constraints, andhwhic
maintains a relaxed form of the timing constraints associated with the feasible b
haviors. We have implemented this technique and applied it to severapeam
from different application domains.

1 Introduction

The basic premise of a component-based design methoddabgtia component (a
hardware IP block, a software module, a network router) @oded during the con-
struction of a system without deep knowledge of its intiniaternal structure but rather
using a more abstract (and conservative) description abiservable input-output be-
havior. This description should be sufficiently detailegtove the correct interaction
of the component with the entire system, and sufficientlylstoaavoid state explo-
sion. In this work we extend this methodology timed systems models that reflect
alsoquantitative performance information. Phenomena such as delays in circuits and
communication networks, as well as execution and respamss tof software are the
natural application domains for such models. Using the nestraction technique pre-
sented in the paper, we cantomatically build a conservative approximation of the
timed input-output behavior of the component such that any performance guarantees
obtained using the abstract model, hold also for the coaecnetdel.

This technique, which has been implemented into a toolsfoams a high-level
description of the timed system#ito a product of timed automata that captures all
the possible behaviors of the system unaéradmissible inputs and choices of delay
parameters. From this automaton which has one state variable and ok ghriable-
for every timed elemeftwe generate an abstract model with fewer states and clocks
which provides arover-approximation of the time-dependent input-output behavior of

! For circuits this description consists of a network of logical gates with bitled delay el-
ements, for embedded software it consists of descriptions of tasi@jroes, durations and
scheduling policies.

2 A timed element is something that measures the time since the occurresmmef®vent and
uses this value to guard a transition.

the system. This simplified model can replace the originafl@hevithin a hierarchi-
cal/compositional reasoning methodology. Our technidlmsva the user to select the
appropriate level of aggressiveness in the abstractian jghthe level of relaxation of
the timing and ordering constraints in the abstract modegchieve a good trade off
between the complexity of the model and its faithfulnesfiéodoncrete behavior of the
system. The major steps in our procedure are:

1. Introduction of additionainput clocks, each of which measures the time elapsed
since the occurrence of a particular input event. When thecetf this event is
propagated through the system, its associated clock isid&@d and can be reused
by future events$.These “dynamic clocks” constitute a novel and non-trivéttire
in the theory and practice of timed automata and their nunsbaiwvays bounded,
depending on the variability of the input and the structurihe system.

2. Full-fledged reachability analysis of the automatonyltesy in a modified automa-
ton from which all behaviors that violate timing constraiate eliminated.

3. Generation of an abstract model bigling all internal clocks and variables and
projecting the timing constraints on the input clocks.

4. Minimization of the automaton by merging states whicheapeivalent (or approximately-

equivalent) with respect to observable input-output balrav

The rest of the paper is organized as follows. Section 2 givese background on
abstraction in general while Section 3 offers a quick sufymed automata and the
computational difficulty inherent in their analysis. Seati4 illustrates our modeling
approach and describes the various stages of our abstramticedure. Preliminary
experimental results are described and discussed in 8écfmlowed by suggestions
for future work.

2 Abstraction in General

In verification and other system design activities we haverofo deal with a system
model .S which is too complex to analyze due to its large or even irdisthte space.
In this case we can try to replacewith a more abstract modél’ with the following
properties: 1) The complexity of’ is smaller than that of, where complexity is
viewed operationally, that isS’ is easier to analyze thasi using some verification
tool; 2) Every observable behavior 6fis also a behavior of’, but not vice versa
(conservative approximation).

Analyzing S’ is computationally easier than the verification$tbut due to over
approximation, it may happen that the verificationSéimay fail althoughS is correct.
The navigation in the space of possible abstractionS of order to find one which
is sufficiently simple to avoid explosion yet sufficientlytdided to prove the property
in question, is a major research topic, especially for itdhsitate systems such as those

8 We restrict ourselves to systems withaayclic structure, systems in which every cycle in the
transition graph has at least one transition labelled with an input event.syatdms do not
generate “autonomous” cycles and hence every input event geserdwave” of reactions
that propagate through the system within a finite time.

used to model software. The current paper is concerned ditptang this methodology
to timed systems defined using théimed automaton formalism, but before moving to
those, let us contemplate briefly on the nature of abstmactio

A discrete componerft, such as a digital circuit or a reactive program, is a device
that maintains some relationship between the sequencepofsiiit observes and the
sequence of outputs it emits. Mathematically speakingyitlie viewed astansducer,
an input-output transition systetfh= (X, Y, Z, 4, y) that reads inputs ranging ovaf,
makes transitions in its state spa¢eaccording to the transition relatieanand outputs
elements ofZ according to the output function. If we view S as a “white box” and
observe also the sequence of states visited while prodtiogngutput (see Figure 1-(a)),
we can viewsS as realizing some sequential functirirom X* to Y* x Z* However,
we do not really care about the internal state$ pit is only the input-output function
(or relation) fromX™* to Z* which determines whethes interacts correctly with its
environment and meets its specification. So the most natimgllification is to hide”
and consider the sequential functipn X* — Z* as the essence 6f

However, contrary to what one may prematurely think, hidingnd projecting onto
the output does not imply that we gain anything in complerijther lose anything in
accuracy. The reason is that every sequential functiontéamerent state space struc-
ture (minimal realization, Myhill-Nerode congruence relafipregardless of whether
the states themselves are observable. In other wordsghittiernal states from outside
observation does not change the state space nor the warfsitiction, which remains
of the formy’ = 4(y,z). The only thing it does is to “remove” the states from the
output function (see Figure 1-(a)).

S s’ : S s’
A AR e R e RSl

z1/y1, 2 @ ®y/z1 @ x 4/'23 xy/z1 /23
L
x2/y2, 22 @ w2/22 @ RN

EDYED) /z4
@ ‘ T)

Fig. 1. (a) Hiding internal states from the outside does not necessarily reduggexity; (b) An
abstractions’ of S obtained by merging; andy. into y2.

Real abstractions, do reduce complexity and lose infoonaby simplifying the
transition relation. The most common way to do so is to defimeeguivalence re-
lation ~ on Y and replaceS = (X,Y,Z,4,v) with S = (X,Y’, Z,0’,~") where
Y’ =Y/ ~, the set of partition blocks of. In other words we merge together states
that are~-equivalent (see Figure 1-(b)). A transition, z, z, y5) exists inS’ if a tran-
sition (y1, z, z, y2) exists forsome y; € y; andys € 5. Such an abstraction may lose
information and generate more behaviors then are reallsilpiesn S. For example, the
behaviorz, /z z4 is possible inS” while in S we have eithet /2123 Or x5/ 2524.

Our goal is to export these ideas to timed automata by hidingesclocks variables,
but the explanation is much more complicated because irdta¢omata, like in any

other automata with auxiliary variables, the visible tiios graph does not convey all
the information on the system dynamics but rather a prajedif it.

3 Timed Models

Timed extensions of discrete transition systems, suchhedtiautomata or Petri nets,
allow one to reason about systems inextremely important level of abstraction. At
this level, the process of switching between two discrettestis refined into two tran-
sitions,initiation andconclusion, separated by some real-valudglay, which is often
not known exactly but bounded. Among the numerous phenothabaan benefit from
this style of modeling we mention the execution time of a kloEcode in a real-time
program, communication delays in a network, and the timakies for a digital elec-
tronic gate (or a more complex block) to stabilize to a nevueakfter its input has
changed. In this paper we demonstrate our approach usinglsbased on networks
of Boolean gates due to their notational economy and bedaiseasy to generate
large examples in a uniform way, but the techniques developa be adapted to other
description levels and application domains.

Timed automata modeluration of actions using auxiliarglock variables. To ex-
press a timing constraint between two transitions (sucheasnitiation and termination
of a process) a clock is reset to zero while taking the firgiditéoon, and its value is
tested to satisfy the constraint as a pre-condition (“glet the second transition.
Between transitions, when the automaton stays in a stateaihe of all active clocks
progress in the same pace, representing at each momennthelipsed since the oc-
currence of their respective events.

At each moment along the real-time axis, the state of thenaation is character-
ized by a configuratior{g, v) with ¢ being a discrete state anda vector of clock
valuations ranging over some bounded subs&'bfAlbeit the infinite state space, the
basic verification questions for timed automata are deéedpkD94]. Existing deci-
sion techniques suffer, however, from the usual stateesiqnh problem, aggravated by
the clock-explosion problem: during reachability anadysie need to store “symbolic
states” of the form(q, P) whereq is a discrete state anB is a set of clock valua-
tions. These sets are expressed by a conjunction of camstiiforms likex < d or
x —y < d, and constitute a special class of convex polyhedra thatalv¢imed poly-
hedra. In a state where clocks are active, timed polyhedra can/beimensional and
admit up to two constraints for each pair of variables. Cqgosaetly the analysis of a
system consisting of timed components may generate in the worst ¢x$& -n!) sym-
bolic states, each with ai(n?) representation size. Although a lot of effort has been in-
vested during the last decade in finding more efficient waystdyze timed automata,
scalability toward the size requirements of circuit analyss not been achieved. In
this work we start exploringompositional reasoning via abstraction as an alternative
road toward scaling-up timed automata technology.

4 Timed Abstraction

Timed automata are quite intuitive but their formal deforitcan be rather irritating out-
side formal verification circles. To address potential ss#rthe proposed technology
we avoid formalization and illustrate our technique usirigraning example.

4.1 Modding

Figure 2 shows @imed Boolean circuit and one of its possible behaviors. The circuit
has an input signat which may switch arbitrarily, but with bounded variabilithat
is, it has to wait at leadt time units between subsequent switchings. Changesaire
propagated through lai-bounded delay element whose outpuyy follows the value ofr
within somet € [1, 2] time units and is fed into a similar delay element with output
Mathematically speaking the relation between signals taaiad by the circuit can be
expressed by theelay inclusionsy € Dy o(x) and z € Dy 2(y)

Following the principles laid out in [MP95] we model the inand the components
using the automatal,, A, and.A, of Figure 3. We label transitions kiyput events,
guards, clock resets and output events, for instance, a transition labeled by, ¢, <
2/{c.},y~ can be taken upon the rising of provided that, < 2, and its effect is
to resetc, and lowery. The input automatod, guarantees bounded variability by
guarding its transitions with the conditie > 5 and by resetting clock, to zero at
every transition.

The modeling ofdelay elements by timed automata is a crucial ingredient of our
methodology. The automatad,, starts at a stable stafewhere its value coincides
with the value of its inputz. Upon a change i it moves to arexcited state 0’ while
resetting its clock,. The “stabilize” transition frond’ to 1 through whichy “catches
up” with 2, may happen wheag, € [1, 2], that is, inside the time windoy + 1, ¢ + 2]
with ¢ being the time when has changetiNote that the “excite” transition fror to
0’ is always triggered by an external input but is not visibtanirthe outside, while the
stabilization transition fron®’ to 1 is generated autonomously without an input event
(unless one considers the passage of time as such) andhketisithe outside world.
Composing the three automata we get the global automdtohFigure 4. Note also
that each clock isctive only in global states in which its corresponding gate istexti

There are different approaches for treating the case whehanges its value again
before propagating to y. For the purpose of this work, we assume that the automaton
returns from)’ to 0 (a “regret” transition) and thus it “forgets” the whole epile. Other
approaches may treat this phenomenon as an error (“glitoh’hodel it in a manner
more faithful to the physical realization of logical gatEgher way, this guarantees that
the number of events that may be “alive” in the systems is Hednregardless of the
input frequency. In other domains this effect can be achidyeadmission controllers
or bounded buffers.

4 The fact that the automatanust leave statd)’ whenc, reaches2 can be expressed either
using staying conditions (“invariants”) associated with states, or “dealared “urgencies”
associated with transitions, [SY96]. Using the latter terminology, stabilizaténsitions are
delayable.

The semantics of this automaton consists of allyz signals it can generate, that is,
the signals carried by all runs of the automaton. These rtmsexjuences of configu-
rations separated by transitions or by time-passage peride behavior whererises
at6, y follows after1 time unit andz follows 1.9 times units aftey, is captured by the
following run wherel denotes inactive clocks:

(i) () o () == (0i0) & () o () e (27) = (3027

z,cz 0, L 0, L 0, L 0, L [o/, 1.9 1, L

The circuit behavior carried by this run can be represenitéérein a state-based man-
ner (as a signal) or in an event-based manner (as a time-ssguénce, see [ACMO02])

as follows: ,
0\6 /1\1 /1\19 /1
(u) (0) <1) (1) 6.zt . 1.9t . 1021
0 0 0 1

We use the terngualitative behavior to denote the sequence of signal values without
reference to timing. For this example the qualitative bévaig 27421 and can be
viewed as an equivalence class of all signals of the farnx™ -t - y* - t3- 2T - ¢4 for
anyty,te,t3,t4 > 0.

If we ignore timing constraints, remove all references tockt from transition
guards and leave only the rising and falling labels, we olaaimed automaton which
is practically equivalent to an untimed automaton. Thislbariewed as a very aggres-
sive form of abstraction whose set of qualitative behavisrthe set of all sequences
of labels carried byll paths in the transition graph, for exampiey* 2 2=y~ 2~ or
xTyTz~y~. However, taking timing into account one can see that giliervariability
constraint one, the second behavior is impossible because steieis never reached
with a combination of clock values that satisfies the guard 5 A ¢, < 2.

zt @
[5, 00) [t.2] 1, 2] i s
z hn -
P 2=

Fig. 2. A simple timed circuit and a typical behavior.

4.2 Reachability Analysis

The analysis of the timed automaton itself, rather thanrtimed abstraction, is typ-
ically performed by constructing threachability graph, also known as themulation
graph [HNSY94], which gives a (somewhat non-intuitive) represdion of that part
of the timed automaton which is reachable from some initiatiesor set of states. To
illustrate the idea let us compute the reachability graph4astarting from an initial
configuration(0’00, ¢, = 0). In this state we can let time progress indefinitely and can
reach all clock valuations satisfying > 0. This is represented as a “symbolic state”
(000, ¢, > 0). The next step is to intersect this set with the transitioardd,, > 5

to obtain all the configurations from which the transitiohdéed byz™ can be taken,
represented by the symbolic stg#0, c,, > 5). Finally, by applying to this set the
resetting ofc, andc,, we obtain the symbolic statg¢0’0, ¢, = ¢, = 0).

o ey}

o) (o]

3

T,y <2/
ca>5/| |cu >5/ |¢y€1,2]/ ey €[1,2]/
{Cz}var {CI}’x7 y7 :l?_/{C } y+
y
1 i | 1
ey <2/ q
Az Ay

y*/ ez}
LL‘ y e <2/ Y
c. €[1,2]) e e[1,2]/
Y S
v yt,e. <2/ @
A

Fig. 3. Modeling the circuit of Figure 2 with timed automata.

o > 5,07 [{ea, 0y}

000 | | 10°0
cx > 5,27 ,¢y <2/{ce}
Cy € [172]7 Cy € [152]/
c: <2/y” y", {e:}
Cg >5,Cz <2,$_/{Cm}

010 |« | 110/
cx > 5,27, ¢, <2/{ca,cy

c: €[1,2],¢y < 2/2F

/ / ‘
001" |«

011 |

c: €[1,2],¢y < 2/27

ce > 5,c. < 2,2 e,

ce >5,¢y < 2,27 [{ce}

¢y € [1,2]/ ¢y €[1,2]/
yiv{CZ} y+

ce > 5,0y < 2,27 /{ca}

cr > 5,0t [{es ey}

Fig. 4. The global automatorl = A, o A, o A, for the circuit.

The process is then repeated from the new symbolic stateeviliee passage is
limited by 2 which is the upper bound on the rising gf hence the symbolic state
is (10'0,¢, = ¢, < 2). The transition back t®'00 cannot be taken due to empty
intersection with the guard, > 5 and this transition is eliminated. The intersection
with the guardt,, € [1,2] gives(100,1 < ¢, = ¢, < 2) and the result of the transition
after resetting., is (1'10’, ¢, < 2A ¢, = 0). In this state time can progress untjl= 2
resulting in the symbolic statd’10’,1 < ¢, — ¢, < 2 A ¢, < 2) and so on and so
forth until we obtain the reachability graph of Figure 5. Totecedure is guaranteed to
terminate due to the finite number of bounded timed polyhpalb®4, HNSY94].

We interpret the reachability graph as a timed automatoms follows: for each
symbolic stateq, P) we define a copy of statewhose staying condition (and its out-
going transition guards) are restricted to their intelisastwith P. Transitions whose
guards become empty in the process, as well as states ttmhbamreachable, are
removed. On the other hand it may happen that the reaclyatpitiph contains two or
more symbolic state§;, P) and (¢, P’) that correspond to alternative pathsgtcand
hence the state will be split in the resulting timed automakor example state’00
as an initial state can have all clock valuations with> 0, but when reached again
through the path:™y™2T2~y~ 27, the value ofc, must always excee?l Such state
splitting will occur very often in systems such as circuitsese there are many “dia-
monds”, that is, two competing events ande, that may happen in botty < e; and
eo < ey orders and converge to the same statié these events reset clocks andcs,
respectively, the reachability graph will contain two syotib states, (g, ¢; < c¢2) and
(q7 C2 < Cl)-

It is not hard to see that the new timed automattiradmits exactly the same set
of behaviors as the original automatgh together with an additional evident property
that any configurations that satisfies the staying conddfanstate is indeed reachable.
Every finite or infinite path (a qualitative behavior) in thartsition graph ofd’ is an
untimed abstraction offeasible behavior of .4, a behavior that satisfies the timing con-
straints. If our goal is to verify some untimed property of ystem, we can remove
the clocks fromA’ (after having used them to eliminate infeasible paths) gipmlya
standard untimed verification algorithms. However if we tMancompose the system
with other components it might not be a good idea to get ridllofiming information.
The untimed abstraction does not constrain in any way the between:™, y™ and
=T, which can be arbitrarily small or large, and will make itfiifilt (if not impossible)
to prove the correctness of the interaction of the circuthvis environment. An ab-
straction which maintainsome of the timing constraints but which has less states and
clocks, would be very useful in this context.

4.3 Abstraction by Clock Projection

We want the abstract model to approximate tilneed input-output relationship main-
tained by the system. Clock. measures the time since the last change in the external
input = while clocksc, andc, measure time elapsed since the occurrendetefnal
events, the excitation of the two gates, events that are of no istdécethe general pub-

lic. We can thus “hide” these clocks and project the guardssaaying conditions on

Cx > 5,x+/{cz,cy}‘ Ce =Cy <2

A u’o’o

1<ey=ce <2/ |y, {e:}

+
‘y a{cZ} QSCI

0<cy Ce =Cy <2
1<e,—e. <26, <2 110 o |G > B Hemed()

1<e,<2,1< ¢y —c, <2/27F

Fig. 5. The reachability graph of the automaton in Figure 4, interpreted as a tinehaton.A’.

clock ¢, to obtain the automator” of Figure 6. Note that a projection of a polyhe-
dron P into a lower dimensional polyhedra®’ makes some of the constraints which
are implicit (redundant) irP, explicit in P’. For example the polyhedron defined by
1<e¢, <2A1<¢, —c, <2isprojectedont@ < ¢, < 4.

) : L :
* 1< e@<2/yt | 1<ie <2/y”

2< ¢, <4/27F

Fig. 6. The automatomd”” obtained fromA’ by hiding clocksc, andc.. The dotted boxes group
together states that differ only by the value if the internal varigble

Wheny is not observable outside the system, the set af albehaviors ofd” is
exactly that of4 and A’ and no information is lost. Unfortunately, in the generae;a
the projection of clocks does lose information. Consider $ame circuit but withy
visible to the external world. In this cas€’ is an over approximation because it allows
a behavior likes - z+ -1 - y* - 3 - 2T, wherey “chooses” to change in the earliest time
t € [1, 2] afterxz while z is allowed to chooses the largest elemengid] = [1+1, 2+2]
while in A and A’ its choices were restricted to the interyak- 1,¢ + 2]. This is the
type of accuracy we are ready to sacrifice for the purposemptexity reduction.

The outcome of our abstraction technique is a timed autamater the inputs and
outputs of the system, where output transition guards wavolocks that measure the
time elapsed since the occurrence of input events. In thaque example we used
input clock ¢, which was reset agvery change inz. This construction was correct
because theariability constraint prevented the arrival of ar-event while the circuit is
still busy “digesting” the previous event. When this conisitrés relaxed, anc-labeled
transition may be taken in a state where one or more gatetedxuy the previous-
transition have not yet stabilized. In our example, if werggthe variability constraint
frome, > 5toc, > 3, x may change at staté10’ wherey has already stabilized but
z is still excited by the previous change. If we reggtve lose the time of that previous
event, and when we project transitions guardscgnve do not express the temporal
distance between the rising ofand itstriggering event.®

To guarantee correct abstraction each input event shasgdi teproper clock which
will stay active as long as the “wave” of reactions it trigggrhas not propagated
through the system. Within our modeling methodology, thenber of input events
that may be active simultaneously in an acyclic system is\dled and hence a finite
number of clocks will suffice to retain the information nezay for relating the timing
of input and output events. To implement these input clockswedify the timed au-
tomaton model to include a pool dfnamic clocks which are activated by input events
and killed when the effect of these events propagates toutpib The attachment of
these clocks to input events is not fixed and the same clogk@aexample, denote at
some point the time elapsed since the oldgsevent still in the system, and at some
other point, the time since the most receptevent. Technically speaking, we replace
the input generator by one which creates a new clock at exaamgition, and keeps track
of the input events that are still alive in the system and theks that represent them.
It is worth mentioning that such dynamic clocks are usefubtimer, more theoretical,
contexts [MPNO5].

4.4 Minimization

By hiding internal clocks we obtain an abstract model whasalver of clocks need not
be equal to the number of timed elements but rather depentteeamaximal number
of input events that may be “alive” simultaneously in thetegs The number of such
events depends, of course, on the size of the system as welkdBer properties such as
the number of inputs, their variability as well as structymaperties such as width vs.
depth (sequentiality vs. parallelism). Under reasonabsi@ptions concerning these
parameters, the reduction in the number of clocks is sigmific

The final step in our procedure aims at reducing the numbeisofete states by
merging states that are equivalent or approximately etprivén terms of the observ-
able behaviors they admit. Candidates for merging aressthés differ from each other
only by values of internal variables and of clocks, for extargtates such as0’0 and
110" in automaton4” of Figure 6, after hiding;. A commonly-used minimization rule
(also for untimed systems) is the following.

5 In our previous work [BBM03] we have applied this abstraction techntqueystems whose
inputs changesnly once at time zero, so that one additional clock was sufficient to project on.

Let ¢ be a source state for several paths, each consisting of arssgjof unobserv-
able transitions, except the last transition which chamyesobservable variable and
goes to stat@’. In this case; and all the intermediate states can be collapsed into one
state whose staying condition is the union of those of atestaand which has a transi-
tion toq’ guarded by the union of all transition guardg;tédrom the intermediate states.
Applying this rule we obtain the automaton of Figure 7 whisimothing but a demon-
stration of the following equivalence on delay operatd?s: o (D191 (z)) = Dp2,41(x).

A similar transformation was presented in [ZMMO03] for tim@dtri nets.

The situation gets more complicated when the system adnoite parallelism and
input events may appear more frequently. We have developadety of minimization
algorithms that are similar in spirit to those describedDi 98]. We employ a variety
of progressively more “liberal” criteria that merge statdsich: 1) Admit exactly the
same sequences of observable transitions and guards;f@) iDifuards but the guards
are included in each other; 3) Differ in guards and the gudirth® new state is the
convex hull of the guards of the original states; 4) Differ in the ordesoifne sequence
of events that admit.

0<cy <4
cx > 5,21 /{ea}

2< cp <4/27 2 < ey <4/zF

cg > 5,z /{ca}

0<cg <4

Fig. 7. Hiding y and minimizing the automaton

We have implemented all the abovementioned features intwaerperimental ver-
sion of the verification tool IF [BGMO02], including an autotitatranslation from a cir-
cuit description language to timed automata, generatiaghnaaintenance of dynamic
clocks, projection and minimization. The software implenirgg this technique consists
of more than 15000 lines of C++ code.

5 Experimental Results

To assess our approach we applied it first on some classentbesiy circuits, the first
of which is a family ofk-long buffers like the one described in the example, witkagel

in [3,5]. We performed the experiments with two versions of the buffee where
only the output of gaté is observable, and the other where the output of gateis
visible as well. Table 1 shows the results of applying ouhtégue while assuming
input variability bounded by0. Columnw shows the maximal number of input events
that may be alive in the buffer, which ranges frdnto 3 depending on the circuit
depth. The first pair of columns shows the number of symbddites and transition in
the computed reachability graph. The rest of the table shbesize of the reduced
graph using three minimization criteritidemin indicates merging only in the case
of identical guardsTimedMin merges states when guards are included in each other
while Temporal Minignores guards and considers equivalence with respeetrsition
labels.

Generated HideMin TimedMin Temporal Min
Buff | Time|w Graph I0ut [20ut I0ut [20ut 10ut [20ut
(mn) ST T ST T [S[TTJ[S[T[S[T] S[TIJS]T
2[00:00[1 6 6 4 4 6 6| 4 G 6| 4 ARG 6
3/00:00 1 8 8 4 4 6 6| 4 4| 6 6| 4 4 6 6
4{00:00 1 10 10 4 4 6 6| 4 4| 6 6| 4 4 6 6
5/00:00 1 12 12 4 4 6 6| 4 4| 6 6| 4 4 6 6
6/00:00 1 14 14 4 4 6 6| 4 4| 6 6| 4 4 6 6
7/00:00 1 16 16 4 4 6 6| 4 4| 6 6] 4 4| 6 6
8/00:00(2 20 22 6 8 8 10[8 10[8 10[8 10f 8 10
9/00:00[2 26 32 6 12 8 14 6 8| 8 12 6 8| 8 12
10{00:00| 2 44 62 8 24| 10, 26| 8 12| 10| 14| 6 8| 8 10
11{00:01| 2 86| 132 10| 50 12 52(10 18| 12 20| 6 8| 8 12
12(00:03) 2| 166 266| 12 92| 18 98| 12 26| 16| 32| 6 8| 12 18
13({00:20| 2| 382 624 16 172| 26| 188| 14 36| 18| 42| 6 8| 12 18
14{00:34| 2| 584 966| 22| 280| 44| 322| 20 84| 30| 110/ 6 8| 22 48|
15(00:54{ 2| 804| 1336(26| 398| 54| 446 24| 110| 42| 150 6 8[30 78|
16{03:45| 3| 2208 3846/ 67 884 125 1109] 52| 270 96| 445| 29| 85| 68| 254
17(09:28 3| 4349 8284 333| 5596\ 497| 4884|235| 2590/363| 2591|114| 881|221 1587
18(38:45| 3| 12425 25329 1051| 39940 1387| 28993 623| 15375 879(14080 466| 14805 756| 12974

Table 1. The result of applying our technique to chains of buffers.

The other class of examples is inspired by recent researgedarmance analy-
sis of embedded software, e.g. [WMTO05]. We consider systhatsgenerate different
types of tasks with some bounded frequency. Each type ofttasko go through a
partially-ordered set of treatments. Each type of treatmeguires a specific resource
(machine) for some duration with the possibility of res@uoonflicts between tasks.
These conflicts are resolved by a scheduler applying a sipghiey. Each task type has
a dedicated bounded buffer. We have applied our techniqae tostance of this prob-
lem with 2 task types3 machines, a priority-based scheduler and parameterslihat a
3 events to be alive simultaneously in the system. An unog8ohiversion of IF gener-
ates a reachability graph with 1282 states and 1975 transitiThe version of IF that
we use, with dynamic clocks and various optimization thatdeenot bother to detail,
yields a graph with 127 states and 205 transition. After mimation with zone inclu-
sion we obtain the automaton of Figure 8 with 18 states andaBitions. Transitions
in the reduced model correspond to arrivals of new taskslagidtermination.

6 Discussion

We have developed a new promising technique for automatiergéion of abstractions
for open timed systems. Timed automata with dynamic inpotkd may turn out to

be the appropriate formalism for characterizing the timmput-output behaviors of
complex systems, whose approximation by nice analyticptessions is too coarse.
Our technique can also be part of a divide-and-conquer rmdetbgy where abstract
models of sub-systems are composed together in order fy @esystem too large to be
analyzed as a whole. Much more experimentation and fined.ari@ needed, however,
in order to assess the applicability of our approach.

Our original ambitious aim was to provide a “fully-open” #fastion without as-
sumingany restriction on the inputs, and letting this restrictions come from eaah p
ticular environment with which the abstract model is to beaposed. However, we have
learned in the process that unrestricted inputs generatemsmy simultaneous waves
that lead to explosion. One should be careful, though, nobtduse what is assumed
and what should be guaranteed.

/

{
,,,,,,,MJJ,,,,,77
7

/ Fl+ / Fl+ | GIN G1+ Gl1+
RmM{GBL0O} / Rm{GBLO} | SYGBL1} |SHGBL1.1} SHGBL1)
[4/ 210 | z13 | z14 217

|
'

| G1+ F1+
| stGB1.0} | Rm{GB1.0O} \
210 711

14+
RM{GB1.0}
29 |

/
!

| —
| [0 - & :
| — F1+ / Fl+ / Fl+
‘ Sty gé} 0) - — RmM{GB1.0} “ RmM{GB1.0} “ RmM{GB1.0} F2+ RmM{GB1.0}
| \ {ZlO g _— T SWGBL0<<GBL1) | sh{GBLO<<GB11} | SH(GB1.0<<GBL1} 720 Sh{GB1.0<<GB1.1}
_— 2 | pal / 5 77
o H——
\\\ T

Fig. 8. The abstract model of tietask,3-machines problem. Arrival and termination of tasks are
denoted byG; and F; labels, respectively, whike creation, removal and shifting of clockS#hy
Rm andSh. Zones appear in a separate file to facilitate readability. A more detailedptest

of the input and the output can be foundawmw-verimag.imag.fr/~maler/cav-appendix.html

References

[AD94] R. Alur and D.L. Dill, A Theory of Timed AutomataTheoretical Computer Science
126, 183-235, 1994.

[ACMO02] E. Asarin, P. Caspiand O. Maler, Timed Regular Expressibime Journal of the ACM
49, 172-206, 2002.

[BBMO3] R.Ben Salah, M. Bozga and O. Maler, On Timing Analysis of @amational Circuits,
FORMATS 03, 204-219, LNCS 2003.

[BGMO02] M. Bozga, S. Graf and L. Mounier, IF-2.0: A Validation Ermirment for Component-
Based Real-Time SystemSAV’ 02, LNCS 2404, Springer, 2002.

[DT98] C.Daws and S. Tripakis, Model Checking of Real-Time RehiitaProperties using
AbstractionsTACAS 98, LNCS 1384, 1998.

[HNSY94] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, SymbdWodel-checking for
Real-time Systemdnformation and Computation 111, 193-244, 1994.

[MP95] O. Maler and A. Pnueli, Timing Analysis of Asynchronous Circuising Timed Au-
tomata,CHARME' 95, 189-205, LNCS 987, Springer, 1995.

[MPNO5] O. Maler, D. Nickovic and A. Pnueli, Real Time Temporal Ladiast, Present, Fu-
ture, FORMATS 05, 2-16, LNCS 3829, Springer, 2005.

[SY96] J. Sifakis and S. Yovine, Compositional Specification of Timest&ys STACS 96,
347-359, LNCS 1046, Springer, 1996.

[WMTO5] E. Wandeler, A. Maxiaguine, L. Thiele: Quantitative Charaicegion of Event
Streams in Analysis of Hard Real-Time Applicatiomgal-Time Systems 29, 205-
225, 2005.

[ZMMO3] H. Zheng, E. Mercer, and C.J. Myers, Modular verificatiointimed circuits using
automatic abstractiohEEE Trans. on CAD 22, 2003.

