
As Soon as Probable:
Optimal Scheduling under Stochastic Uncertainty

Jean-Francois Kempf, Marius Bozga, and Oded Maler

CNRS-VERIMAG
University of Grenoble

France
@imag.fr

Abstract. In this paper we continue our investigation of stochastic (and hence
dynamic) variants of classical scheduling problems. Such problems can be mod-
eled as duration probabilistic automata (DPA), a well-structured class of acyclic
timed automata where temporal uncertainty is interpreted as a bounded uniform
distribution of task durations [18]. In [12] we have developed a framework for
computing the expected performance of a given scheduling policy. In the present
paper we move from analysis to controller synthesis and develop a dynamic-
programming style procedure for automatically synthesizing (or approximating)
expected time optimal schedulers, using an iterative computation of a stochastic
time-to-go function over the state and clock space of the automaton.

1 Introduction

The allocation over time of reusable resources to competing tasks is a problem of al-
most universal importance, manifested in numerous application domains ranging from
manufacturing (job shop) to program parallelization (task-graph). When the system ad-
mits uncertainty, for example, in task arrival time or duration, one cannot execute a
fixed time-triggered schedule but needs to develop a scheduling policy (or strategy) that
prescribes scheduling decisions at different states that the system may find itself in. The
general problem falls into the scope of controller synthesis for timed systems [5] and its
extensions toward time-optimality [4] and cost-optimality [14]. The reader is referred
to [1] for a general framework for modeling and solving dynamic scheduling problems
based on a restricted class of timed automata and to [17] for a more general exposition
of control in the presence of adversaries.

The above mentioned work treats temporal uncertainty in the set-theoretic and worst-
case tradition. A duration of a task can be any number in a given interval (no probability
assigned) and the strategy is evaluated according to the worst performance induced by
an instance of the external environment. Duration probabilistic automata (DPA) have
been introduced in [18] to express stochastic scheduling problems and evaluate the
expected performance of schedulers by methods similar to techniques used for gener-
alized semi-Markov processes (GSMP) [10, 11, 7] such as [6, 2]. This approach refines
the successor operator used in the verification of timed automata [9, 15] from a zone
transformer into a density transformer and can compute, for example, the time distri-
bution of reaching the final state and hence the expected termination time under a given

scheduler. In [12] we developed an alternative clock-free procedure for evaluating the
performance of schedulers by computing volumes of zones in the duration space.

In the present paper we move to the synthesis problem where we seek an optimal
scheduling policy which decides in what global situations to start an enabled step of a
process and under what conditions to wait and let other processes use the resource first.
To this end we define a stochastic time-to-go function which assigns to any state of the
schedule (global state of the automaton and the values of active clocks) the density of
the time to total termination starting from this state and following the optimal strategy.
These functions are piecewise-continuous and we show how they can be computed
backwards from the final state.

The rest of the paper is organized as follows. Section 2 provides preliminary defi-
nitions. Section 3 introduces single processes, shows how to model them by automata
and solve the (degenerate) optimal scheduling problem by backward value iteration.
In Section 4 we introduce several processes running in parallel and admitting resource
conflicts. We model them as products of automata and define schedulers that, in each
state, resolve the non-determinism associated with the decision whether to start a step.
In Section 5 we define the basic iterative step for computing the value (optimal ex-
pected time-to-go) in a state of the automaton based on the value of its successors. The
value/policy iteration algorithm using these operators defines the optimal strategy. In
Section 6 we study the computational aspects of the algorithm. First we characterize
the class of time densities obtained by applying the passive race-analysis part of the
iteration. Then we prove a non-laziness property of optimal schedulers for this class
of problems, which facilitates the approximate solution of the optimization part of the
iteration. A discussion of future work closes the paper.

2 Preliminaries

Definition 1 (Bounded Support Time Density). A time density is a function ψ :
R+ → R+ satisfying ∫ ∞

0

ψ[t]dt = 1.

A time density is of bounded support when ψ(t) 6= 0 iff t ∈ I for some interval I =
[a, b]. A partial time density satisfies the weaker condition:

∫
ψ[t]dt < 1. A bounded-

support time density is uniform if ψ[t] = 1/(b− a) inside its support [a, b].

We use a non-standard notation for distributions:

ψ[≤ t] =

∫ t

0

ψ[t′]dt′ ψ[> t] = 1− ψ[≤ t]

with ψ[≤ t] indicating the probability of a duration which is at most t. We use c to
denote the “deterministic” (Dirac) density which gives the constant c with probability
1. The expected value of a time density ψ is E(ψ) =

∫
ψ[t] · tdt.

We will use time densities to specify durations of tasks (process steps) as well as the
remaining time to termination given some state of the system. To this end we need the
following operators on densities: 1) Convolution, to characterize the duration of two or

more tasks composed sequentially, and 2) Shift, to reflect the change in the remaining
time given that the process has already spent some amount of time x.

Definition 2 (Convolution and Shift). Let ψ , ψ1 and ψ2 be uniform densities sup-
ported by I = [a, b], I1 = [a1, b1] and I2 = [a2, b2], respectively.

– The convolution ψ1∗ψ2 is a densityψ′ supported by I ′ = I1⊕I2 = [a1+a2, b1+b2]
and defined as

ψ′[t] =

∫ t

0

ψ1[t′]ψ2[t− t′]dt′

– The residual density (shift) of ψ relative to a real number 0 ≤ x < b is ψ′ = ψ/x

such that ψ′[t] = ψ[x+ t] · γa,b(x) where

γa,b(x) =

{
1 if 0 < x ≤ a

b−a
b−x if a < x < b

When x < a, ψ/x is a simple shift of ψ. When x > a we already know that the
actual duration is at least x (restricted to the sub-interval [x, b]) and hence we need to
normalize. Note also that (ψ ∗ c)[t] = (c ∗ ψ)[t] = ψ[t − c] and that 0 is the identity
element for convolution. We write ψ′ = ψ/x more explicitly as

ψ′[t] =

0 when x+ t ≤ a
1

b−a when x ≤ a, a < x+ t ≤ b
1

b−x when a < x, x+ t ≤ b
0 when b < x+ t

One can verify that the shift satisfies: ψ/x[t−x] = γa,b(x)·ψ[t] and (ψ/x)
/y

= ψ/(x+y).
Note that the expressive weakness (and computational advantage) of the exponential
distribution is due to ψ/x = ψ. A subset of a hyper-rectangle is called a zone if it is ex-
pressible as a conjunction of orthogonal and difference constraints, namely constraints
of the form xi ≤ c, xi − xi′ ≤ c, etc.

3 Processes in Isolation

Processes in our model are inspired by the jobs in the job-shop problem. Each process
consists of an ordered sequence of steps, indexed by K = {1, . . . , k}, such that a step
can start executing only after its predecessor has terminated.1

Definition 3 (Process). A sequential stochastic process is a pair P = (I, Ψ) where
I = {Ij}j∈K is a sequence of duration intervals and Ψ = {ψj}j∈K is a matching
sequence of densities with ψj being the uniform density over Ij = [aj , bj], indicating
the duration of step j.

Probabilistically speaking, step durations can be viewed as a finite sequence of inde-
pendent uniform random variables {yj}j∈K that we denote as points y = (y1, . . . , yk)
ranging over a duration space D = I1 × · · · × Ik ⊆ Rk with density ψ(y1, . . . , yk) =
ψ1(y1) · · ·ψk(yk). A state-based representation of a process is given by simple DPA.

1 See [1] for a straightforward generalization to partial-order precedence constraints.

Definition 4 (SDPA). A simple duration probabilistic automaton (SDPA) of k steps
is a tuple A = (Σ,Q, {x}, Y,∆) where Σ = Σs] Σe is the alphabet of start and
end actions with Σs = {s1, . . . , sk} and Σe = {e1, . . . , ek}. The state space is an
ordered set Q = {q1, q1, q2, . . . , qk, qk+1} with qj states considered idle and qj states
are active, x is a clock variable and Y = {y1, . . . , yk} is a set of auxiliary random
variables. The transition relation ∆ consists of tuples of the form (q, g, r, q′) with q and
q′ being the source and target of the transition, g is a guard, a precondition (external
or internal) for the transition and r is an action (internal or external) accompanying
the transition. The transitions are of two types:

1. Start transitions: for every idle state qj , j < k+1 there is one transition of the form
(qj , sj , {x}, qj). The transition, triggered by a scheduler command sj , activates
clock x and sets it to zero;

2. End transitions: for every active state qj , there is a transition, conditioned by the
clock value, of the form (qj , x = yj , ej , qj+1). This transition renders clock x
inactive and outputs an ej event.

x1 := 0
s1

q1 q1
e1 · · · xk := 0

sk

qk qk qk+1

ek
x1 = y1 xk = yk

y1 := ψ1()
· · ·

yk := ψk()

Fig. 1. A simple DPA.

For each step j we draw a duration yj according to ψj . Upon a scheduler command
sj the automaton moves from a waiting state qj to active state qj in which clock x
advances with derivative 1. The end transition is taken when x = yj , that is, yj time
after the corresponding start transition. An extended state of the automaton is a pair
(q, x) consisting of a discrete state and a clock value which represents the time elapsed
since the last start transition. The extended state-space of the SDPA is thus

S = {(qj ,⊥) : j ≤ k + 1} ∪ {(qj , x) : j ≤ k ∧ x ≤ bj}

where ⊥ indicates the inactivity of the clock in waiting/idle states.
Note the difference between transition labels sj and ej : the start transitions are

controllable and are issued by the scheduler that we want to optimally synthesize while
the end transitions are generated by the uncontrolled external (to the scheduler) envi-
ronment represented by random variable yj . Without a scheduler, the SDPA is under-
determined and can issue a start transition any time. The derivation of an optimal sched-
uler is done via the computation of a time-to-go function that we first illustrate on the
degenerate case of one process in isolation. In this case each state has only one succes-
sor and any waiting between steps unnecessarily increases the time to termination.

Definition 5 (Local Stochastic Time to Go). The local stochastic time-to-go function
associates with every state (q, x) a time density µ(q, x) with µ(q, x)[t] indicating the

probability to terminate within t time given that we start from (q, x) and apply the
optimal strategy.

This function admits the following inductive definition:

µ(qk+1,⊥) = 0 (1)

µ(qj ,⊥) = µ(qj , 0) (2)

µ(qj , x)[t] =

∫ t

0

ψj/x[t′] · µ(qj+1, 0)[t− t′]dt′ (3)

Line (1) indicates the final state while (2) comes from the fact that in the absence of
conflicts the optimal scheduler need not wait and should start each step immediately
when enabled. Equation (3) computes the probability for termination at t based on the
probabilities of terminating the current step in some t′ and of the remaining time-to-go
being t− t′. It can be be summarized in a functional language as

µ(qj , x) = ψj/x ∗ µ(qj+1,⊥) = ψj/x ∗ µ(qj+1, 0) (4)

The successive application of (4) yields, not surprisingly, µ(q1, 0) = ψ1 ∗ · · · ∗ ψk.

Definition 6 (Local Expected Time to Go). The expected time-to-go function is V :
Q×X → R+ defined as

V (q, x) =

∫
µ(q, x)[t] · tdt = E(µ(q, x)).

This measure satisfies V (qj , x) = E(ψj/x) + V (qj+1, 0) where the first term is the
expected termination time of step j starting from x. For the initial state this yields

V (q1, 0) = E(ψ1 ∗ · · · ∗ ψk) = E(ψ1) + · · ·+ E(ψk) =

k∑
j=1

(aj + bj)/2.

4 Conflicts and Schedulers

We extend the model to n processes, indexed by N = {1..n}, that may run in parallel
except for steps which are mutually conflicting due to the use of the same resource. For
simplicity of notation we assume all processes to have the same number k of steps.

Definition 7 (Process System). A process system is a triple (P,M, h) where

P = P 1|| · · · ||Pn = {(Ii, Ψ i)}i∈N

is a set of processes, M is a set of resources, and h : N ×K →M is a function which
assigns to each step the resource that it uses.

We use notations P i
j to refer to step j of process i and ψi

j and I ij = [aij , b
i
j] for the

respective densities and their support intervals. Likewise we denote the corresponding
controllable and uncontrollable actions by sij and eij , respectively. Without loss of gen-
erality we assume there is one instance of each resource type, hence any two steps P i

j

and P i′

j′ such that h(i, j) = h(i′, j′) are in conflict and cannot execute simultaneously.
Each process is modeled as an SDPA Ai = (Σi, Qi, {xi}, Y i, ∆i) and the global sys-
tem is obtained as a product of those restricted to conflict-free states. We write global
states as q = (q1, . . . , qn) and exclude states where for some i and i′, qi = qij , qi

′
= qi

′

j′

and steps P i
j and P i′

j′ are conflicting. We say that action sij (respectively, eij) is enabled
in q if qi = qij (resp. qi = qij). Since only one transition per process is possible in a
global state, we will sometime drop the j-index and refer to those as si and ei.

Definition 8 (Duration Probabilistic Automata). A duration probabilistic automaton
(DPA) is a composition A = A1 ◦ · · · ◦ An = (Σ,Q,X, Y,∆) of n SDPA with the
action alphabet being Σ =

⋃
iΣ

i. The discrete state space is Q ⊆ Q1 × · · ·Qn

(with forbidden states excluded). The set of clocks is X = {x1, . . . , xn}, the extended
state-space is S ⊆ S1 × · · ·Sn and the auxiliary variables are Y =

⋃
i Y

i ranging
over the joint duration space D = D1 × · · · × Dn. The transition relation ∆ is built
using interleaving, that is, a transition (q, g, r, q′) from q = (q1, . . . , qi, . . . , qn) to
q′ = (q1, . . . , q′

i
, . . . , qn) exist in ∆ if a transition from (qi, g, r, , q′

i
) exists in ∆i,

provided that q′ is not forbidden.

The DPA thus defined (see Fig. 2-a) is not probabilistically correct as it admits non-
determinism of a non probabilistic nature: in a given state the automaton may choose
between several start transitions or decide to wait for an end transition (the termination
of an active step). A scheduler selects one action in any state and then the only non-
determinism that remains is due to the probabilistic task durations. A discussion on
different types of schedulers can be found in [12].

Definition 9 (Scheduler). A scheduler for a DPA A is a function Ω : S → Σs ∪ {w}
such that for every s ∈ Σs, Ω(q, x) = s only if s is enabled in q and Ω(q, x) = w
(wait) only if q admits at least one active component.

Composing the scheduler with the DPA (see Fig. 2-b) renders it input-deterministic in
the sense that any point y ∈ D induces a unique2 run of the automaton.

Definition 10 (Steps, Runs and Successors). The steps of a controlled DPA A ◦ Ω,
induced by a point y ∈ D are of the following types:

– Start steps: (q, x)
sij−→ (q′, x′) iff qi = qij and Ω(q, x) = sij;

– End steps: (q, x)
eij−→ (q′, x′) iff qi = qij and xi = yij;

– Time steps: (q, x)
t−→ (q, x+ t) iff ∀i (qi = qij ⇒ xi + t < yij).

2 We define a priority order among the ei-actions so that in the (measure zero) situation where
two actions are taken simultaneously we impose the order to guarantee a unique run and avoid
artifacts introduced by the interleaving semantics.

The run associated with y is a sequence of steps starting at (q11 , . . . , q
n
1) and ending in

(q1k+1, . . . , q
n
k+1).

The t-i-successor of a state (q, x) denoted by σi(t, q, x), is the state (q′, x′) reached
from (q, x) after a time step of duration t followed by a a transition of P i .

The duration of a run is the sum of the time steps and it coincides with the termination
time of the last process, known as makespan in the scheduling literature.

5 Expected Time Optimal Schedulers

In [12] we developed a method to compute the expected termination time under a given
scheduler by computing volumes in the duration space. We now show how to opti-
mally synthesize such schedulers from an uncontrolled DPA description. To this end
we extend the formulation of stochastic time-to-go from a single process (3) to multiple
processes (7).

We define a partial order relation on global states based on the order on the local
states with q � q′ if for every i, qi � qi

′
. For extended states we let (q, x) � (q′, x′) if

either q ≺ q′ or (q = q′ ∧ x ≤ x′). The forward cone of a state q is the set of all states
q′ such that q ≺ q′. The immediate successors of a state q are the states reachable from
it by one transition. A partial scheduler is a scheduler defined only on a subset of Q.
To optimize the decision of the scheduler in a state we need to compare the effect of the
possible actions on the time-to-go.

Definition 11 (Local Stochastic Time-to-Go). LetA be a DPA with a partial strategy
whose domain includes the forward cone of a state q. With every i, x and every s ∈
Σs ∪ {w} enabled in q, the time density µi(q, x, s) : R+ → [0, 1] characterizes the
stochastic time-to-go for process P i if the controller issues action s at state (q, x) and
continues from there according to the partial strategy.

Note that for any successor q′ of q the optimal action has already been selected and we
denote its associated time-to-go by µi(q′, x′). Once µi(q, x, s) has been computed for
every i, the following measures, all associated with action s, can be derived from it.

Definition 12 (Global Stochastic Time-to-Go). With every state (q, x) and action s
enabled in it, we define

– The stochastic time-to-go for total termination (makespan) which is the expected
duration of the last task: µ(q, x, s) = max{µ1(q, x, s), . . . , µn(q, x, s)};

– The expected total termination time: V (q, x, s) =

∫
t · µ(q, x, s)[t]dt

The computation of µ for a state q, based on the stochastic time-to-go of its successors,
is one of the major contributions of the paper. The hard part is the computation of
the time-to-go associated with waiting in a state where several processes are active.
In this race situation the automaton may leave q via different transitions and µ should
be computed based on the probabilities of these transitions (and their timing) and the
time-to-go from the respective successor states.

e11

s12

e12

e13

s22
q21

q11

q̄12

q12

q13

q14

q̄22 q22 q23 q24

q12 q
2
2

e22 e21e21

s22

s22

s12 s12

(a)

e11

s12

e12

e13

e22 e21
e21 s22

q21

q11

q̄12

q12

q13

q14

q̄22 q22 q23 q24

q12 q
2
2

(b)

Fig. 2. (a) The DPA for two parallel processes admitting a resource conflict and their respective
second steps, with the conflict state (q12 , q22) removed. The dashed arrows indicate start transitions
which should be under the control of a scheduler while the dotted arrows indicate post-conflict
start transitions; (b) The automaton resulting from composition with a FIFO scheduler which
starts a step as soon as it is enabled.

With each state (q, x) we associate a family {ρi(q, x)}i∈N of partial time densities
with the intended meaning that ρi(q, x)[t] is (the density of) the probability that the
first process to terminate its current step is P i and that this occurs within t time. This
is relative to the fact that the time elapsed since the initiation of each active step is
captured by the respective clock value in x.3

Definition 13 (Race Winner). Let q be a state where n processes are active, each in
a step admitting a time density ψi. With every clock valuation x = (x1, . . . , xn) ≤
(b1, . . . , bn) and every i we associate the partial density:

ρi(q, x)[t] = ψi
/xi [t] ·

∏
i′ 6=i

ψi′

/xi′ [> t]

This is the probability that P i terminates in t time and every other process P i′ termi-
nates within some t′ > t.

Definition 14 (Computing Stochastic Time-to-go). For every i, the function µi is de-
fined inductively as

µi((. . . qik+1 . . .), x) = 0 (5)

µi(q, x, si
′
) = µi(σi′(0, q, x))) (6)

µi(q, x,w)[t] =

n∑
i′=1

∫ t

0

ρi
′
(q, x)[t′] · µi(σi′(t′, q, x))[t− t′]dt′ (7)

For any global state where P i is in its final state, µi is zero (5). Each enabled start action
si

′
leads immediately to the successor state and the cost-to-go is inherited from there

(6). For waiting we make a convolution between the probability of P i′ winning the race
and the value of µi in the post-transition state and sum up over all the active processes
(7). The basic iterative step in computing the value function and strategy is summarized
in Algorithm 1. A dynamic programming algorithm starting from the final state and
applying the above procedure will produce the expected-time optimal strategy. Since
we are dealing with acyclic systems, the question of convergence to a fixed point is not
raised and the only challenge is to show that the defined operators are computable.

6 Computing Optimal Strategies

Algorithm 1 splits into three parts, the third being merely book-keeping. In the first we
essentially compute the outcome of waiting (by race analysis) and of starting. As we

3 Note that the dependence on the time already elapsed is in sharp contrast with the memoryless
exponential distribution where this time does not matter for the future. For those distributions
the time-to-go is associated only with the discrete state and is much easier to compute, see [1]
for the derivation of optimal schedulers for timed automata with exponential durations.

Algorithm 1: Value Iteration

Input: A global state q such that Ω(q′, x) and µi(q′, x) have been
computed for each of its successors q′ and every i

Output: Ω(q, x), and µi(q, x)

% COMPUTE:
forall s ∈ Σs ∪ {w} enabled in q
for i = 1..n

compute µi(q, x, s) according to (6-7)
end
compute µ(q, x, s) (max of random variables)
compute V (q, x, s) (expected makespan)

end
% OPTIMIZE:

forall x ∈ Zq
V (q, x) = mins(V (q, x, s))
s∗ = argmins V (q, x, s)
Ω(q, x) = s∗

end
% UPDATE:

for i = 1..n

µi(q, x) = µi(q, x, s∗)
end

shall see, starting from a specific class of time densities, this computation can be done in
a symbolic/analytic way, resulting in closed-form expressions over x and t for the values
of µi, µ and V associated with each action. The second part involves optimization:
to classify extended states according to the action that optimizes V in them. For this
part we prove a monotonicity property which facilitates the task of approximating the
boundaries between the optimality domains of the various actions.

Each of the functions we have defined is in fact an infinite family of functions
parameterized by a state q and clock valuation x ranging over the rectangle Zq . They
can be characterized as follows.

Definition 15 (Zone-Polynomial Time Densities). A function µ : Z → (R+ → [0, 1])
over a rectangular clock space Z is zone-polynomial if it can be written as

µ(x1, . . . , xn)[t] =

f1(x1, . . . , xn)[t]) if Z1(x1, . . . , xn) and l1 ≤ t ≤ u1
f2(x1, . . . , xn)[t]) if Z2(x1, . . . , xn) and l2 ≤ t ≤ u2
. . .
fL(x1, . . . , xn)[t]) if ZL(x1, . . . , xn) and lL ≤ t ≤ uL

where

– For every r, Zr(x1, ..., xn) is a zone included in the rectangle Z, which moreover
satisfies either Zr ⊆ [xi ≤ ai] or Zr ⊆ [ai ≤ xi], for every i = 1..n.

– For every r, the bounds lr, ur of the t interval are either nonnegative integers c or
terms of the form c−xi, with i = 1..n, c ∈ Z+. Moreover, the interval [lr, ur] must
be consistent with the underlying zone, that is, Zr ⊆ [lr, ur].

– For every r, fr(x1, ..., xn)[t] =
∑
k

Pk(x
1,...,xn)

Qr(x1,...,xn) t
k where Pk are arbitrary polyno-

mials and Qr is a characteristic polynomial associated with zone Zr defined as∏
i

(bi −max{xi, ai}). Note that for each zone, the max is attained uniformly as

either ai or xi.

Theorem 1 (Closure of Zone-Polynomial Densities). Zone-polynomial time densities
are closed under (6) and (7).

Sketch of Proof: Operation 6 is a simple substitution. Closure under summation is also
evident - you just need to refine the partitions associated with the summed functions and
make them compatible and then apply the operation in each partition block. The only
intricate operation is the quasi-convolution part of (7). The function µi(σi′(t′, q, x))[t−
t′] is not a zone polynomial time density. Due to the time progress by t′ enforced by the
substitution σi′ it might happen that polynomials of the form (bi−(xi−t′)) appear in the
denominators. But, in all feasible cases, they will be simplified through multiplication
by ρi

′
(q, x)[t′] which contains the same polynomials as factors (within ψi

/xi [≥ t′], see
Def. 13). Hence, integration of t′ is always trivially completed as t′ occurs only on
numerator polynomials and/or powers of the form t′k and (t − t′)k. Moreover, after
integration, the remaining constraints on t and x can also be rewritten to match the
required form of zone-polynomial time densities.

Next we move to the optimization part of the iteration. Consider a state q where
process P i has to decide whether or not to start a step while other processes are ac-
tive in their respective steps. The optimal strategy Ω in this state partitions the clock
space of the other processes into Ω−1(si) and Ω−1(w), extended states where wait-
ing or starting are preferred. The boundary corresponds to the set of solutions of the
piecewise-polynomial equation V (q, x, s) = V (q, x,w). Our approach is to approxi-
mate the optimal strategy based on sampling: we cut the clock space Zq into an ε-grid
and for each grid point x we compare V (q, x, s) and V (q, x,w) and select the optimal
value (Fig. 3-(a)). Once the optimal action has been computed for all grid points we
complete the strategy for the rest of the clock-space by selecting in each ε-cube the ac-
tion which is optimal for its leftmost corner (Fig. 3-(b)). To estimate the deviation from
the optimal strategy we first bound the derivative of V with respect to any of the clocks.

Lemma 1 (Derivative of V). Let V be the value function associated with a problem.

Then for every (q, x) and for every i
∂V

∂xi
(q, x) ≥ −1

Sketch of Proof: Consider first the local value function of a process in isolation. In any
state q, the clock space splits into two parts. When x < a, the derivative is naturally
−1. When x > a the rate of progress is slower (because progress is combined with
accumulation of optimism-contradicting information) and the magnitude of the deriva-

x3

s

x2

x3

x2

w

Fig. 3. Approximating the optimal action for P 1 in the clock space of P 2||P 3: (a) Computing
the optimal action for all grid points with the dark circle indicating Ω−1(w); (b) Approximating
the optimal strategy with the dark cubes indicating Ω′−1(w).

tive is smaller.4 When running together, the progress of each process is bounded by its
progress in isolation or by the progress of another process that blocks it. The progress
of the expected termination of the last process (makespan) is bounded by the progress
of each of the processes.

Lemma 2 (Approximation). Let x′ be a point in the clock space and let x < x′ be its
nearest grid point on the left and hence d(x, x′) < ε. Assume without loss of generality
that the optimal strategy Ω satisfies Ω(q, x) = s and Ω(q, x′) = w. Consider an
approximate strategy Ω′ such that Ω′(q, x′) = s, then the respective value functions of
the strategies satisfy V ′(q, x′)− V (q, x′) ≤ ε.

Proof: According to what we know about the optimal strategy we have

V (q, x′,w) < V (q, x′, s) < V (q, x, s) < V (q, x,w)

and from Lemma 1, V (q, x, s)−V (q, x′,w) ≤ ε and so is V (q, x′, s)−V (q, x′,w) =
V ′(q, x′)− V (q, x′).

Before we state the consequent main result, we prove an important property of opti-
mal strategies which can reduce the number of grid points for which the optimal strategy
should be computed. This “non-laziness” property, formulated in the deterministic set-
ting in [1], simply captures the intuition that preventing an enabled process from taking
a resource is not useful unless some other process benefits from the resource during the
waiting period.5 The proof in a non-deterministic setting is more involved.

4 The derivative of V represents the progress toward the average duration, minus the growth of
the average itself when x > a.

5 Or, in scheduling under uncertainty, if some information gathered during the period has in-
creased the expected time-to-go associated with waiting, which is impossible in our setting.
Non-lazy schedules are also known as active schedules.

Definition 16 (Laziness). A scheduling policy Ω is lazy at (q, x) if Ω(q, x + t) = si

for some i and Ω(q, x+ t′) = w for every t′ ∈ [0, t). A schedule is non-lazy if no such
(q, x) exists.6

Theorem 2 (Non Lazy Optimal Schedulers). The optimal value V can be obtained
by a non-lazy scheduler.

To prove the theorem we need a lemma whose proof can be found in the appendix.

Lemma 3 (Value of Progress). Let q be a state and let x and x′ be two clock valuations
which are identical except for x′i = xi + δ. Then the value of (q, x′) is at least as good
as the value of (q, x), that is, V (q, x′) ≤ V (q, x).

The lemma can be wrongly interpreted as saying that always a more advanced state has
a better value. This is true in general only for progress that does not induce a possibility
of blocking other processes: advancing the clock of an already-active step or starting a
step on a resource that has no other future users. Starting a step on a resource that has
other users in its horizon is a type of progress which is outside the scope of the lemma.
Proof of Theorem 2: Imagine a strategy Ω which is lazy at (q, x) and takes its earliest
start at (q, x+ t), as illustrated in Fig. 4-(a). Following an alternative strategy that starts
at x, we will find ourselves after t time in a state where one clock is more advanced
(Fig. 4-(b)) and hence satisfying the condition of Lemma 3. If we keep all instances
of laziness partially ordered according to � and apply the above modification starting
from the minimal elements of the state space, we gradually push the earliest laziness
toward later states until it is completely eliminated.

(b)
x x+ t

(a)
x x+ t

Fig. 4. Proof of theorem: the state reached after starting at x + t (a) is less advanced than after
starting at x (b).

To illustrate the limited scope of the lemma and theorem consider a task whose
duration is characterized by a discrete probability with probability p for a and 1− p for
b. In this case, the value function associated with waiting is

V (x) =

{
p(a− x) + (1− p)(b− x) when x < a
0(a− x) + 1(b− x) when x > a

Here at x = a there is a jump in V from (1− p)(b− a) to (b− a) which is, intuitively,
due to the accumulation of information: after a time, the non-occurrence of an end event

6 This definition of laziness can be extended from a one-dimensional interval [x, x + t] to any
pair of clock valuations x and x′ such that x′ is reachable from x by a time step.

tells us that the duration is certainly b. Such a situation contradicts the lemma, because
for x < a < x′ we may have V (x′) > V (x). This jump in the expected time-to-go
for waiting can also justify laziness: when x < a the expected value of waiting can be
better than for starting, but after x = a the relation between these values may change.

Corollary 1 (Forward-Backward Closure). Let (q, x) be an extended state such that
V (q, x,w) < V (q, x, s) and hence the optimal scheduler satisfies Ω(q, x) = w. Then
Ω(q, x′) = w for any x′ = x+t. Likewise if V (q, x,w) > V (q, x, s) thenΩ(q, x′) = s
for all x′ = x− t.

This property can be used to reduce the number of grid points for which the strategy
should be computed: Ω(q, x) = w implies Ω(q, x′) = w for any grid point of the form
x′ = x+mε and likewise if Ω(q, x) = s, starting is also optimal for any x′ = x−mε.
Using an adaptation of the multi-dimensional binary search algorithm of [16], originally
devised to approximate Pareto fronts for multi-criteria optimization problems, one can
complete the marking of grid points with less than (1/ε)n evaluations of the strategies.

Theorem 3 (Main Result). Let Ω be the expected-time optimal scheduler whose value
at the initial state is V . For any ε, one can compute a scheduler Ω′ whose value V ′

satisfies V ′ − V ≤ ε.

Proof: Apply Algorithm 1 while going backwards from the final state. In the optimiza-
tion part use sampling with grid size ε/nk. The division by nk is needed to tackle the
(theoretical) possibility of approximation error accumulation along paths.

7 Discussion

To the best of our knowledge, this work presents the first automatic derivation of op-
timal controllers/schedulers for “non-Markovian” continuous-time processes. We have
laid down the conceptual and technical foundation for treating clock-dependent time
densities and value functions and investigated the properties of optimal schedulers. We
list below some ongoing and future work directions:

1. The algorithm as described here works individually on each global state, which
is a recipe for quick state explosion. A more sophisticated algorithm that works
on the whole decision subspace associated with an action s and taking advantage
of forward/backward closure, will be much more efficient. Although the stronger
property of upward-downward closure does not follow, unfortunately, from non-
laziness, the multi-dimensional binary search algorithm of [16] could provide good
approximations whose error analysis will require a more refined characterization of
the partition induced by the optimal strategy.

2. Implementation and experimentation: we currently have a prototype implementa-
tion building upon the infra-structure developed in [12] for computing integrals
over zones. Once completed, we intend to compare cost/quality tradeoffs of our al-
gorithm with statistical methods such as [8, 13] that evaluate and synthesize sched-
ulers based on sampling the duration space. Such experiments will determine whether
symbolic techniques can be part of tools for design-space exploration [13].

3. Extending the result to cyclic systems will require a definition of the value associ-
ated with infinite runs and some new techniques for proving convergence to a fixed
point in the spirit of [3]. Introducing stochasticity in task arrival will enrich queuing
theory with the expressive advantage of automata.

4. One can think of alternative measures for evaluating the performance of the sched-
uler. For example, rather than considering the expected makespan (max over all
processes) we can optimize the average termination time of all tasks, or even em-
ploy a multi-dimensional vector of termination times in the multi-criteria spirit.

Acknowledgement: The project benefitted from the support of the French ANR project
EQINOCS and numerous useful comments given by E. Asarin.

References
1. Y. Abdeddaı̈m, E. Asarin, and O. Maler. Scheduling with timed automata. Theoretical

Computer Science, 354(2):272–300, 2006.
2. R. Alur and M. Bernadsky. Bounded model checking for GSMP models of stochastic real-

time systems. In HSCC, pages 19–33, 2006.
3. E. Asarin and A. Degorre. Volume and entropy of regular timed languages: Analytic ap-

proach. In FORMATS, 2009.
4. E. Asarin and O. Maler. As soon as possible: Time optimal control for timed automata. In

HSCC, pages 19–30, 1999.
5. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed automata. In

Proc. IFAC Symposium on System Structure and Control, pages 469–474, 1998.
6. L. Carnevali, L. Grassi, and E. Vicario. State-density functions over DBM domains in the

analysis of non-Markovian models. IEEE Trans. Software Eng., 35(2):178–194, 2009.
7. C.G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer, 2008.
8. A. David, K. Larsen, A. Legay, M. Mikučionis, and Z. Wang. Time for statistical model

checking of real-time systems. In CAV, pages 349–355, 2011.
9. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hybrid Systems,

pages 208–219, 1995.
10. R. German. Non-markovian analysis. In E. Brinksma, H. Hermanns, and J.-P. Katoen,

editors, Euro Summer School on Trends in Computer Science, pages 156–182, 2000.
11. P.W. Glynn. A GSMP formalism for discrete event systems. Proceedings of the IEEE,

77(1):14–23, 1989.
12. J.-F. Kempf, M. Bozga, and O. Maler. Performance evaluation of schedulers in a probabilistic

setting. In FORMATS, pages 1–15, 2011.
13. Jean-Francois Kempf. On Computer-Aided Design-Space Exploration for Multi-Cores. PhD

thesis, University of Grenoble, October 2012.
14. K.G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson, and J. Romijn.

As cheap as possible: Efficient cost-optimal reachability for priced timed automata. In CAV,
2001.

15. K.G Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. International Journal on
Software Tools for Technology Transfer (STTT), 1(1):134–152, 1997.

16. J. Legriel, C. Le Guernic, S. Cotton, and O. Maler. Approximating the Pareto front of multi-
criteria optimization problems. In TACAS, 2010.

17. O. Maler. On optimal and reasonable control in the presence of adversaries. Annual Reviews
in Control, 31(1):1–15, 2007.

18. O. Maler, K.G. Larsen, and B.H. Krogh. On zone-based analysis of duration probabilistic
automata. In INFINITY, pages 33–46, 2010.

Appendix: Proof of Lemma 1

Lemma 1 (Value of Progress) Let q be a state and let x and x′ be two clock valuations
which are identical except for x′i = xi + δ. Then the value of (q, x′) is at least as good
as the value of (q, x), that is, V (q, x′) ≤ V (q, x).

Sketch of Proof: We prove it by induction on the number of transitions remaining
between q and the final state.
Base case: When there is only one end transition pending and one active clock working
toward a duration characterized by a time density ψ, the value is defined as

V (q, x) =

∫ b

max(x,a)

ψ/x(y)(y − x)dy =

{
(a+ b)/2− x when x ≤ a
(b− x)/2 when x ≥ a

and the derivative dV/dx is negative (−1 and then −1/2). Hence V (q, x′) < V (q, x).
Inductive case: suppose the lemma holds for all states beyond q. We will show that each
action taken in (q, x′) can lead to a state at least as advanced as the state reached via
the same action from (q, x). For an immediate start transition this is evident. Suppose
we take action w at both (q, x′) and (q, x). Then there are three possibilities: if the
race winner at (q, x′) is some P i′ , i′ 6= i, taking an ei

′
transition to q′, then the same

P i′ will win the race from (q, x) within the same time, landing in q′ with value of
xi less advanced by δ and the inductive hypothesis holds, see Figure 5-(a) and the
corresponding runs ξx and ξx′ , depicted below projected on the two relevant clocks:

ξx′ : (xi + δ, xi
′
)

t−→ (xi + δ + t, xi
′
+ t)

ei
′

−→ (xi + δ + t,⊥)

ξx : (xi, xi
′
)

t−→ (xi ++t, xi
′
+ t)

ei
′

−→ (xi + t,⊥).

Suppose, on the contrary, that P i, the process whose clock is more advanced in x′ than
in x, wins the race from (q, x′) within t time. If P i is also the winner from (q, x), the
ei transition will be taken by ξx after t+ δ time. By waiting at q′ for δ time, run ξx′ can
reach the same state as ξx, see Figure 5-(b) and the corresponding runs:

ξx′ : (xi + δ, xi
′
)

t−→ (xi + δ + t, xi
′
+ t)

ei−→ (⊥, xi
′
+ t)

δ−→ (⊥, xi
′
+ t+ δ)

ξx : (xi, xi
′
)
t+δ−→ (xi + δ + t, xi

′
+ δ + t)

ei−→ (⊥, xi
′
+ t+ δ).

Finally, suppose the race winner from (q, x) is P i′ within some t+ δ′ time, δ′ < δ,
leading to state q′′. This splits into two sub-cases. If at q′′ the run ξx does not start a
new step, then, by waiting at q′ for δ − δ′ time, ξx′ can reach within t + δ′ the same
extended state that ξx has reached in more time t+ δ:

ξx′ : (xi + δ, xi
′
)

t−→ ei−→ (⊥, xi
′
+ t)

δ′−→ (⊥, xi
′
+ t+ δ′)

ei
′

−→ (⊥,⊥)

ξx : (xi, xi
′
)
t+δ′−→ ei

′

−→ (xi + δ′ + t,⊥) δ−δ
′

−→ (xi + δ + t,⊥) ei−→ (⊥,⊥).

xi

xi
′

x x′

ei
′

xi

xi
′

x x′

t

t + δ
δei

(a) (b)

xi
′

xi

xi
′

x x′

t

t + δ′

δ′

ei

ei
′ ei

′

ei

δ − δ′

δ − δ′ A

B

(c)

Fig. 5. Proof of lemma: (a) P i′ wins from both x and x′; (b) P i wins from both. (c) P i wins from
x′ and P i′ wins from x. Here either ξx′ reaches point A in less time than does ξx, or both reach
point B at the same time.

If, on the other hand, during the interval of duration δ− δ′ in which ξx catches up with
the progress of ξx′ in P i, ξx makes an si

′
transition to start a next step of P i′ , so can

ξx′ and they will reach the same state:

ξx′ : (xi + δ, xi
′
)

t−→ ei−→ (⊥, xi
′
+ t)

δ′−→ (⊥, xi
′
+ t+ δ′)

ei
′

−→ si
′

−→ (⊥, 0) δ−δ
′

−→ (⊥, δ − δ′)

ξx : (xi, xi
′
)
t+δ′−→ ei

′

−→ si
′

−→ (xi + δ′ + t, 0)
δ−δ′−→ (xi + δ + t, δ − δ′) ei−→ (⊥, δ − δ′).

These two cases are illustrated in Figure 5-(c).
The bottom line of this case analysis is that for every action taken in (q, x) and

(q, x′) and for every y, there exist durations ty and t′y such that 0 ≤ t′y ≤ ty , a state py
such that q ≺ py and clock valuations zy and z′y such that zy ≤ z′y in the value of one
clock (as in the premise of the lemma) and

(q, x)
ty−→ (py, zy) and (q, x′)

t′y−→ (py, z
′
y).

The cost to go from (q, x) can be written as

V (q, x) =

∫
ψ(y) · (ty + V (py, zy))dy

and since for every y, we have t′y ≤ ty and, moreover, following the inductive hypoth-
esis V (py, z

′
y) ≤ V (py, zy), we can conclude that V (q, x′) ≤ V (q, x).

