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Abstract. Signal regular expressions can specify sequential properties of real-
valued signals based on threshold conditions, regular operations, and duration
constraints. In this paper we endow them with a quantitative semantics which
indicates how robustly a signal matches or does not match a given expression.
First, we show that this semantics is a safe approximation of a distance between
the signal and the language defined by the expression. Then, we consider the
robust matching problem, that is, computing the quantitative semantics of ev-
ery segment of a given signal relative to an expression. We present an algorithm
that solves this problem for piecewise-constant and piecewise-linear signals and
show that for such signals the robustness map is a piecewise-linear function. The
availability of an indicator describing how robustly a signal segment matches
some regular pattern provides a general framework for quantitative monitoring of
cyber-physical systems.

1 Introduction

Regular expressions (RE) are among the cornerstones of computer science, being one of
several formalism that can express sets of sequences (languages) acceptable by finite-
state automata. In addition to their application in domains such as lexical analysis and
pattern matching, regular expression are used in verification as a specification formal-
ism to express correct or erroneous behaviors of reactive systems. In this context they
are used along with another popular specification formalism, linear-time temporal logic
(LTL) [27] that can express (star-free) regular languages in a different and complemen-
tary style. For both formalisms, the commonly-used semantics consists of discrete-time
sequences often defined over finite small alphabets without a rich structure.

Over the years several extensions related to these two aspects, namely, discrete time
and discrete non-numerical values, have been pursued in various contexts. To model
real-time systems, finite automata have been augmented with continuously-evolving
clocks resulting in timed automata [2] that can generate and accept sets of timed be-
haviors consisting of Boolean signals or time-event sequences, where events and state
transitions are embedded in the dense real-time axis, not forced to occur at pre-specified
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sampling points or clock ticks. On the specification side, temporal logics have been ex-
tended with real-time constructs resulting in logics such as metric temporal logic (MTL)
[22] and its decidable fragment MITL [3]. These logics can express quantitative tim-
ing properties such as bounds on the temporal distance between two events. Likewise,
timed regular expressions have been defined and one of their variants has been proved
to be expressively equivalent to timed automata [6,5].

In terms of alphabets, recent years saw a growing interest in large or infinite alpha-
bets taken from richer domains such as N or R, admitting order and arithmetic oper-
ations. Such languages are accepted by symbolic automata [33] whose transitions are
labeled by predicates such as inequalities. Various questions, such as minimization [10],
closure under various operations and learnability [25] have been studied in this context.
Temporal logics over sequences of numbers [28] and first-order temporal logics in gen-
eral [9], as well as regular expressions over quantitative domains [4] have also been
defined and investigated.

The starting point of this work is signal temporal logic (STL) [23,24], which com-
bines the dense time of MTL with predicates over real-valued variables. As such it can
be used to express properties of continuous and mixed signals resulting from the sim-
ulation (or measurement) of continuous and hybrid systems such as analog circuits or
cyber-physical control systems. Given a simulation trace w and an STL formula ϕ, sim-
ple and efficient algorithms [23], linear in the length of the trace, can check whether w
satisfies ϕ and liberate users from the tedious and error-prone task of evaluating such
traces manually. These algorithms have been implemented in tools such as AMT [26]
and Breach [14] and have been applied to case-studies in domains ranging from control
systems and robotics, via electronic circuits to systems biology.

Satisfaction (or membership) is traditionally a yes/no matter and it cannot distin-
guish between robust and non-robust satisfaction, a meaningful issue in numerical do-
mains. To take a simple example, the requirement that some variable x is always pos-
itive is equally satisfied by safe behaviors being all the time far above zero and more
dangerous and edgy ones that approach zero but do not cross it. To capture this distinc-
tion, quantitative semantics have been proposed for various temporal logics [17,28,15]
including STL along with efficient algorithms to compute it [16]. In a nutshell, with
every STL formula ϕ and signal w, a real-valued robustness measure ρ = ρ(ϕ,w) is
associated, admitting the following two important properties:
1. The robustness ρ is positive if w satisfies ϕ, negative if w violates ϕ;
2. The ϕ-satisfaction of a signal w′, whose maximal pointwise distance from w is

smaller than ρ, is equal to that of w.
The inductive definition of the quantitative semantics of STL is isomorphic to the stan-
dard definition of the qualitative semantics. The semantics of atomic predicates such
as x≥ 0 at a point t is defined as x[t]. Boolean operations (∧,∨,¬) are interpreted in
the algebra (min,max,−), and temporal operators are interpreted as min or max over
time windows according to the disjunctive/conjunctive nature of the operator.

In this paper we define and compute such a quantitative semantics for signal regular
expressions (SRE), which are timed regular expressions that use numerical predicates
as atoms. Our semantics satisfies the same two important properties stated above. For
regular expressions, due to the special nature of concatenation which requires to check



all possible factorizations of a sequence or signal, it is natural to solve the more general
pattern matching problem: given an expression ϕ and a signal w, find the set of all
segmentsw[t, t′) that satisfy (match) ϕ. The set of all segments of a signalw is captured
by the triangle Tw = {(t, t′) ∈ T2 | 0 ≤ t ≤ t′ ≤ |w|}. The segments that satisfy ϕ
define a subset of Tw that we call the match set of ϕ in w and denote by M(ϕ,w).
In [32] it was proven that for every Boolean signal of bounded variability, the match
set is a finite union of zones that can be computed by induction on the structure of
the expression. The analogous problem for the quantitative semantics is to compute the
robust satisfaction degree ρ of ϕ w.r.t. w for every segment (t, t′) ∈ Tw. This is the
problem we solve in this paper.

2 Signal Regular Expressions

In this section, we introduce signal regular expressions (SRE), recall their qualitative se-
mantics and introduce a quantitative semantics. Signal regular expressions are an adap-
tation of the timed regular expressions (TRE) of [6,5] designed to deal with real-valued,
rather than Boolean signals. They are built from atomic constraints (e.g., x≥ 2 specifies
a signal segment where x is above 2), standard regular operations, and duration con-
straints. For an expression ϕ and an interval I , the duration constraint 〈ϕ〉I specifies
that the duration of the signal segment that matches ϕ should be within I .

Signals. A signal is a function w : T → Rn where T = [s, s′) is a bounded interval
of R≥0, called the temporal domain. We usually take s = 0. The length of signal w is
given by |w| = s′−s. Byw[t] ∈ Rn, we denote the value ofw at time t ∈ T. Byw[t, t′),
we denote the signal that has the temporal domain [t, t′) ⊆ [s, s′) and agrees with w
on [t, t′). We call such a signal a factor of w. Signal values are accessed by variables
from the set X = {x1, . . . xn}. For a variable x ∈ X we denote by wx : T → R the
projection of w on x. We say that wx is a component of w.

Definition 1 (Syntax of SRE). SREs are formed according to the grammar:

ϕ ::= ∅ | ε | x≥ c | x≤ c | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ · ϕ | ϕ∗ | 〈ϕ〉I

where x ∈ X, c ∈ R, and I is an interval of R with integer bounds.

As standard, we write iterated concatenation of an expression ϕ using power notation:
ϕ0 = ε, and ϕk = ϕk−1 · ϕ for an integer k > 0.

The qualitative semantics of expression ϕ w.r.t. a signal w is given by the function
µ that returns a Boolean value (in {0, 1}), indicating whether w matches ϕ.

Definition 2 (Qualitative Semantics of SRE). The semantics µ(ϕ,w) of expression ϕ
w.r.t a signal w is defined inductively as follows:

µ(∅, w) = 1 ⇔ ⊥
µ(ε, w) = 1 ⇔ |w| = 0

µ(x≥ c, w) = 1 ⇔ |w| > 0 and ∀t ∈ [0, |w|), wx[t] ≥ c
µ(x≤ c, w) = 1 ⇔ |w| > 0 and ∀t ∈ [0, |w|), wx[t] ≤ c



µ(ϕ ∨ ψ,w) = 1 ⇔ µ(ϕ,w) = 1 or µ(ψ,w) = 1

µ(ϕ ∧ ψ,w) = 1 ⇔ µ(ϕ,w) = 1 and µ(ψ,w) = 1

µ(ϕ · ψ,w) = 1 ⇔ ∃uv = w, µ(ϕ, u) = 1 and µ(ψ, v) = 1

µ(ϕ∗, w) = 1 ⇔ ∃k ≥ 0, µ(ϕk, w) = 1

µ(〈ϕ〉I , w) = 1 ⇔ µ(ϕ,w) = 1 and |w| ∈ I

where uv denotes the concatenation of signals u and v.

The set of signals that matches an expression ϕ is called the language of ϕ; L(ϕ) =
{w | µ(ϕ,w) = 1}.

We introduce a quantitative semantics of an expression ϕ w.r.t. a signal w, given
by the function ρ that returns a real value (in R ∪ ±∞) and indicates how robustly w
matches ϕ. We call it the robustness of ϕ w.r.t. w (or the robustness of w w.r.t. ϕ).

Definition 3 (Quantitative Semantics of SRE). The robustness ρ(ϕ,w) of an expres-
sion ϕ w.r.t. a signal w is defined inductively as follows:

ρ(∅, w) = −∞

ρ(ε, w) =

{
+∞, if |w| = 0
−∞, otherwise

ρ(x≥ c, w) =
{
inft∈[0,|w|) wx[t]− c if |w| > 0
−∞ otherwise

ρ(x≤ c, w) =
{
inft∈[0,|w|) c− wx[t] if |w| > 0
−∞ otherwise

ρ(ϕ ∨ ψ,w) = max{ρ(ϕ,w), ρ(ψ,w)}
ρ(ϕ ∧ ψ,w) = min{ρ(ϕ,w), ρ(ψ,w)}
ρ(ϕ · ψ,w) = sup

uv=w
min{ρ(ϕ, u), ρ(ψ, v)}

ρ(ϕ∗, w) = sup
k≥0

ρ(ϕk, w)

ρ(〈ϕ〉I , w) =
{
ρ(ϕ,w), if |w| ∈ I
−∞, otherwise

where sup ∅ = inf R = −∞ and inf ∅ = supR = +∞.

In what follows, we can assume without loss of generality that atomic expressions are
of the form x≥ 0. Given a constraint x≥ c (resp. x≤ c), we can replace it by the con-
straint y≥ 0, where y is a fresh variable, and the projection of w on y is defined as
wy[t] = wx[t] − c (resp. c − wx[t]). This replacement preserves the quantitative and
qualitative semantics, as well as the assumptions that we make later (e.g., the signal
being piecewise-constant or continuous piecewise-linear, etc).

3 Properties of the Quantitative Semantics

In this section, we present two important properties of our semantics. First, we relate
the qualitative and quantitative semantics based on a notion of a distance. Second, we



show that the quantitative semantics of a Kleene star expression ϕ∗ can be computed as
a finite iteration of ϕ.

3.1 Robustness Estimate

We now introduce a metric on the signal space and then derive two notions of distance
between signals and expressions.

Definition 4 (Signal Distance). The (uniform norm) distance between signals v and
w, denoted d(v, w), is defined by d(v, w) = supt∈T maxx∈X |vx[t]− wx[t]| if v and w
have the same temporal domain T, otherwise d(v, w) = +∞.

Definition 5 (Expression Distance). The distance from signal w to expression ϕ, de-
noted d(ϕ,w), is defined by d(ϕ,w) = infv∈L(ϕ) d(v, w). The co-distance from signal
w to expression ϕ, denoted d(ϕ,w), is defined by d(ϕ,w) = infv/∈L(ϕ) d(v, w).

Such (Hausdorff) distances indicate by how much w needs to be changed to satisfy or
violate ϕ, respectively. The quantitative semantics of SRE has the following character-
istics: on a given signal its sign indicates membership in the language of the expression,
and its magnitude estimates the distance to language boundary.

Theorem 1 (Soundness). Let ϕ be an expression, and w a signal. If ρ(ϕ,w) > 0 then
w ∈ L(ϕ). Symmetrically if ρ(ϕ,w) < 0 then w /∈ L(ϕ).

Theorem 2 (Correctness). Let ϕ be an expression, and v, w two signals. If w ∈ L(ϕ)
and d(v, w) < ρ(ϕ,w) then v ∈ L(ϕ). Symmetrically if w /∈ L(ϕ) and d(v, w) <
−ρ(ϕ,w) then v /∈ L(ϕ).

These two characteristics are in fact corollaries of the following statement:

Lemma 1 (Distance Bounds). Let ϕ be an expression and w a signal. Then, we have
−d(ϕ,w) ≤ ρ(ϕ,w) ≤ d(ϕ,w).

Due to space constraints, we cannot give the full proof here. It proceeds by induction
on the expression structure, using lattice properties of min, max, inf and sup.

Theorems 1 and 2 derive from Lemma 1 as follows. Assume ρ(ϕ,w) > 0. We have
d(ϕ,w) > 0 and thus w ∈ L(ϕ) by definition of d(ϕ,w); the statement of Theorem 1
is proved. If d(v, w) < ρ(ϕ,w), then d(ϕ, v) ≥ d(ϕ,w) − d(v, w) > 0 and again
v ∈ L(ϕ); the statement of Theorem 2 is proved. Symmetrical reasoning applies to the
case ρ(ϕ,w) < 0; when ρ(ϕ,w) = 0 both statements hold vacuously true.

3.2 Star Boundedness

We now prove that for every signal w (from a broad class of well-behaved signals) there
exists some index m such that ρ(ϕ∗, w) = ρ(

∨m
n=0 ϕ

n, w). Intuitively, this is because
for practical signals, there is a limit to how many non-redundant factors it can be par-
titioned into. In particular, if a factor v is sufficiently short, ρ(ϕ2, v) ≤ ρ(ϕ, v), and v
does not need to be partitioned further during the computation of ρ(ϕ∗, w). A similar



result was obtained in [32] for the qualitative semantics of SRE, but for the quantita-
tive case the proof is much more complicated since we do not assume the signals to be
piecewise-constant.

Let us formalize what is a sufficiently short signal. For a pair of signals f and g over
temporal domain T, we write f ≤ g when f [t] ≤ g[t] for every t ∈ T. A real signal f
is increasing (decreasing) if f [t] ≤ f [t′] (respectively f [t] ≥ f [t′]) for all t < t′ ∈ T.
A signal that is increasing or decreasing is called monotone.

Definition 6 (Unitary Signal). A signal w is unitary when |w| < 1, for every x ∈ X ,
wx is monotone, and for every x, y ∈ X, wx ≤ wy or wy ≤ wx .

Intuitively, a unitary signal is sufficiently short and need not be partitioned further dur-
ing the computation of ρ(ϕ∗, w). More formally, we have the following.

Lemma 2 (Square). For a unitary signal u and an expression ϕ, ρ(ϕ2, u) ≤ ρ(ϕ, u).

Let us delay the proof of Lemma 2, and instead state and prove (using Lemma 2) an
important result of this section.

Definition 7 (Well-behaved signal). A signal w is well-behaved if there exists k ∈ N
such that w can be factored into w = u1u2 . . . uk where every ui for i ∈ {1, . . . , k} is
unitary. The smallest such k is denoted κ(w).

Theorem 3 (Star is Bounded). For a well-behaved signal w with κ(w) = k we have
ρ(ϕ∗, w) = ρ(

∨2k+1
n=0 ϕn, w).

Proof. Assume, in search of a contradiction, that ρ(ϕn+1, w) > ρ(ϕn, w) for some
n > 2k + 1. This means that there exists a decomposition w = u1u2 . . . un+1 such
that for every 1 ≤ i ≤ n+1, ρ(ϕ, ui) > ρ(ϕn, w). However κ(w) = k, so by pi-
geon hole principle there exists j such that the factor u′ = ujuj+1 is unitary. From
Lemma 2, ρ(ϕ, u′) ≥ ρ(ϕ2, u′) ≥ min{ρ(ϕ, uj), ρ(ϕ, uj+1)} and thus ρ(ϕ, u′) >
ρ(ϕn, w). We obtain the decomposition w = u1 . . . uj−1u

′uj+2 . . . un+1 with n fac-
tors, s.t. robustness of ϕ on every factor is greater than ρ(ϕn, w), which contradicts
the definition of ρ(ϕn, w). Thus, it has to be that ρ(ϕn+1, w) ≤ ρ(ϕn, w) for every
n > 2k+1. According to the semantics of Kleene star, ρ(ϕ∗, w) = supn≥0 ρ(ϕ

n, w) =

max2k+1
n=0 ρ(ϕn, w) = ρ(

∨2k+1
n=0 ϕn, w). ut

Due to space constraints, we cannot give the proof of Lemma 2 in full, but we guide the
reader through its most important steps. Let us write ϕ ≈w ψ when ρ(ϕ, v) = ρ(ψ, v)
for every factor v of w; and ϕ 4w ψ when ρ(ϕ, v) ≤ ρ(ψ, v) for every factor v of w. It
turns out, given a unitary signal w, we can always rewrite an expression ϕ into another
expression γ, s.t. γ ≈w ϕ and for which we can prove γ2 4w γ. Let us give an example
of such a rewriting.

Example 1. Consider the unitary signal w defined on [s1, s2) in Figure 1 and the ex-
pression ϕ = 〈x≥ 0 ·z≥ 0〉(0,2)∨y≥ 0. Let v be an arbitrary factor w[r1, r2). Observe
that ρ(x≥ 0 · z≥ 0, v) = supr′∈(r1,r2) min{inf [r1,r′) wx, inf [r′,r2) wz} = inf [r1,r′) wx
(since wx is increasing and everywhere below wz). That is x≥ 0 · y≥ 0 ≈w x≥ 0.
Then, notice that the duration constraint has no influence on signals of length less



than one. Finally, since wy is pointwise below wx, x≥ 0 ∨ y≥ 0 ≈w x≥ 0. Thus,
ϕ = 〈x≥ 0 · z≥ 0〉(0,2) ∨ y ≥ 0 ≈w x≥ 0.

t

w

wy
wx

wz

s1 s2r1 r2

Fig. 1. A unitary signal w defined on
[s1, s2).

Example 2. Consider the same unitary signal, the
expression ϕ = x≥ 0 ·z≥ 0 ·y≥ 0 and let v be an
arbitrary factor w[r1, r2). Observe that ρ(ϕ, v) =
supr′,r′′∈(r1,r2) min{inf [r1,r′) wx, inf [r′,r′′) wz,
inf [r′′,r2) wy}. To maximize the minimum, we
want to move the time point r′′ infinitely close to
r2 and obtain ρ(ϕ, v) = min{infv wx, supv wy}
(since wz is everywhere above wx and wy ,
the corresponding term is discarded). Simi-
larly, we can show that ρ(x≥ 0 · y≥ 0, v) =
min{infv wx, supv wy} and thus ϕ ≈w x≥ 0 ·
y≥ 0.

In general, the robustness of an expression
over a unitary signal and over its every factor is
given by some min-max expression. We prefer to

state this in a more algebraic way and say that for a given unitary signal, every expres-
sion can be rewritten to an equivalent quadratic expression.

Definition 8 (Monomial, Polynomial). A monomial expression (of degree n) is of the
form ε·α1 ·α2 · · ·αn, where every αi is and atomic expression. A polynomial expression
(of degree n) is of the form ∅ ∨

∨m
j=1 βj where each βj is a monomial expression (of

degree at most n). A polynomial expression of degree at most 2 is called quadratic.

Quadratic expressions are sufficient to represent the robustness of an arbitrary expres-
sions over unitary signals. They are also necessary, as illustrated in Example 2, in the
sense that atomic expressions cannot replace arbitrary expressions.

Proposition 1 (Quadratic Expressions). For every expression ϕ and unitary signal
u, there exists a quadratic expression γ such that ϕ ≈u γ.

The proof proceeds by structural induction, rewriting the expressions using Kleene al-
gebra and lattice equivalences. Lemmas 3 and 4 state the key property of polynomial
expressions relative to unitary signals. By proving them, we prove Lemma 2

Lemma 3 (Product of Monomials). Let u be a unitary signal. For every pair of mono-
mials β1, β2 there exists a monomial β3 of degree at most 2 such that the following is
true: β1 · β2 ≈u β3 4u β1 ∨ β2

Proof idea. To find β3, we want to find an atomic expression y ≥ 0 appearing in β1 · β2
such that y is minimal. Then if y is increasing, all factors in β1 ·β2 at the right of y ≥ 0
can be ignored, and only the leftmost factor x ≥ 0 is needed. We let β3 = x ≥ 0 ·y ≥ 0,
and check that monotonicity and ordering entail the equation of Lemma 3; the case
where y is decreasing is symmetrical. �

Lemma 4 (Squaring Polynomials). For every unitary signal u and polynomial expres-
sion γ we have γ2 4u γ.



Proof idea. For every pair of monomials β1, β2 appearing in γ, (via Lemma 3) we have
β1 ·β2 4u β1∨β2. Distributing unions over concatenation we see that every monomial
in γ2 is dominated according to 4u by a monomial in γ. �

4 The Robust Matching Problem

Given an expression ϕ and a signal w, robust matching is the problem of computing the
quantitative semantics of ϕ for every segment w[t, t′) of w.

Definition 9 (Robustness Map). For an expression ϕ and a signal w, the robustness
map is the function (t, t′) 7→ ρ(ϕ,w[t, t′)) that maps every t, t′ (s.t. 0 ≤ t ≤ t′ ≤ |w|)
to the robustness of ϕ w.r.t w on [t, t′).

It is convenient to represent the robustness map indirectly, using the following notion
of robustness support.

Definition 10 (Robustness Support). For a signal w and an expression ϕ, the robust-
ness support is the setR(ϕ,w) = {(t, t′, r) | r < ρ(ϕ,w[t, t′))}
The robustness map can be extracted from the robustness support by taking its pointwise
supremum: ρ(ϕ,w[t, t′)) = sup{r | (t, t′, r) ∈ R(ϕ,w)}.

In what follows, we consider two classes of signals, continuous piecewise-linear and
piecewise-constant. We show that for these signals, the robustness support can be rep-
resented as a finite union of polyhedra or zones respectively. As a result, the robustness
map for these signals is respectively piecewise-linear or piecewise-constant.

Definition 11 (Zone). A zone is a polyhedron formed by intersection of constraints
of the form x ./ c or x − y ./ c where x and y are variables, c is a constant, and
./ ∈ {<,≤,=,≥, >}.
Zones are often used in verification of timed systems. They admit efficient representa-
tion and computation via difference bound matrices [13].

Connection to Qualitative Matching. The match set M(ϕ,w) of an expression ϕ
w.r.t. a signal w is the set of pairs (t, t′) such that the factor w[t, t′) matches ϕ. That,
is, (t, t′) ∈M(ϕ,w) iff w[t, t′) ∈ L(ϕ). For a signal of bounded variability (i.e., when
the truth value of every atomic proposition has finitely many switching points), this set
was shown [32] to be computable and representable by a finite union of zones.

4.1 Finite Representation of Signals

Signals are typically represented by finitely many sampling points and interpolated be-
tween them. When computing robustness, we are interested in simple interpolation
schemes that produce piecewise-constant or continuous piecewise-linear signals (our
theoretical results are applicable to a larger class of signals). Formally, we can define

Definition 12 (Piecewise-Constant Signal). A signal w : T → Rn is piecewise-
constant if there exists a partition of T into a finite ordered sequence of left-closed
right-open intervals (J1, . . . , Jn), s.t. for every i = 1 . . . n, the value of w on Ji is
constant.



Definition 13 (Piecewise-Linear Signal). A signal w : T → Rn is piecewise-linear
if there exists a partition of T into a finite sequence of left-closed right-open intervals
(Ji)1≤i≤n, and there exist sequences of vectors (ai)1≤i≤n and (bi)1≤i≤n such that
w[t] = ait+ bi for every t ∈ Ji, for every 1 ≤ i ≤ n.

For both classes of signals, we call the endpoints of the intervals, inf Ji and sup Ji, the
switching points. When computing the robustness, we are only interested in piecewise-
linear signals that are also continuous, i.e., where ak(sup Jk)+bk = ak+1(sup Jk+1)+
bk+1 for every two adjacent segments Jk, Jk+1.

The notion of a piecewise-constant or a piecewise-linear function can be extended
to higher dimensions. In particular, for T2 → R, we can define:

Definition 14 (Piecewise-Constant and Piecewise-Linear Functions). We say that a
function f : T2 → R is piecewise-constant if there exists a finite set of convex polyhedra
{Pi}1≤i≤n over t, t′, s.t. dom(f) =

⋃n
i=1 Pi, and on every Pi, f is constant. If on every

Pi, f is linear in t, t′, we say that f is piecewise-linear.

Theorem 4 (Piecewise-Linear Decomposition). For an expression ϕ and piecewise-
constant signal w, the robustness map (t, t′) 7→ ρ(ϕ,w[t, t′)) is piecewise-constant.
For a continuous piecewise-linear signal w, the robustness map is piecewise-linear.

Section 5 gives a constructive proof of this.
As a final remark, we note that if we sample and interpolate an analog signal, for

which we know the bound on its derivative, we can infer the bound on the pointwise
distance between this analog signal and its piecewise representation. This number will
also be the bound on the difference between the robustness of the original signal and
the robustness of its piecewise representation.

5 Algorithms

In this section we present robust matching algorithms for piecewise-constant and con-
tinuous piecewise-linear signals. More specifically, our algorithms compute a polyhe-
dral representation of the robustness support. For a signal w and an expression ϕ, by
induction on the structure of ϕ, we compute a set Sϕ of convex polyhedra (over t, t′,
and r) , whose union is R(ϕ,w). In particular, for a piecewise-constant signal, Sϕ is
a set of zones. We use the robustness support as an implicit representation of the ro-
bustness map: given a pair (t, t′), we take the maximum value of r over all (t, t′, r) in
the polyhedra in Sϕ. First, we show how to compute Sϕ for the atomic propositions
(x ≥ c, x ≤ c). Then, for the other operations, the robustness support is characterized
by induction on the structure of the expression using basic operations on sets of convex
polyhedra.

Atomic Propositions. Recall that we only need an algorithm to compute the robust-
ness support for the basic atomic proposition x≥ 0. For a proposition such as x≥ c,
we introduce an auxiliary signal component y defined as wy[t] = wx[t] − c and then
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Fig. 2. A piecewise-constant
signal component and a step
of the algorithm for the ex-
pression x ≥ 0
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Fig. 3. A constant segment
and its robustness for x ≥ 0.

f1 f2

J1 J2
t

wx

f1[t]

f2[t
′]

t

t′

Fig. 4. A signal component
consisting of two segments
and its robustness for x ≥ 0.

compute the support for y ≥ 0. For the expression x ≥ 0, robustness support can be
characterized as follows

R(x ≥ 0, w) = {(t, t′, r) | r < ρ(x ≥ 0, w, [t, t′))} = {(t, t′, r) | r < inf
t′′∈(t,t′)

wx[t
′′]}

That is, Sx≥0 should be a set of polyhedra, where for every t and t′, the value of r is
bounded from above by the infimum of wx on the interval (t, t′). For both piecewise-
constant and continuous piecewise-linear signals we can compute it by induction on the
signal structure, although in slightly different ways.

Piecewise-Constant Signals. Assume we are given a signal w and a finite sequence
of intervals (J1, . . . , Jn), s.t., on every Ji the signal is constant. Also assume that on
an interval Jk, wx reaches its global minimum bk. Then, we immediately know that for
every interval (t, t′) that intersects with Jk, the robustness value is given by bk. Based
on this observation, we build the following recursive algorithm.
1. Given a sequence (J1, . . . , Jn), find an interval Jk, where component wx achieves

its minimum value bk.
2. Add to Sx≥0 the zone (inf J1 ≤ t < sup Jk ∧ inf Jk < t′ ≤ sup Jn ∧ t < t′ ∧ r <
bk). It corresponds to the shaded area in Fig. 2.

3. If k > 1, apply the procedure recursively to the sequence (J1, . . . , Jk−1).
4. If k < n, apply the procedure recursively to the sequence (Jk+1, . . . , Jn).

In Fig. 2, we give an example of one step of this procedure.
The procedure produces one zone for every constant segment of the signal (every

recursive call produces one zone and removes one segment from consideration). Also,
every constraint on r is of the form r < c. This is important for Theorem 4.
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Fig. 5. A signal component with more than
two segments and a step of the algorithm
for the expression x ≥ 0.

Continuous Piecewise-Linear Signals.
To simplify the presentation, we make
two assumptions. First, we define the
value of the signal at the right endpoint:
w[supT] = limt→supT w[t]. Second, we
assume that wx reaches the minimum on
both endpoints: wx[0] = wx[supT] =
minwx (recursively, this will be pre-
served). We can always extend a signal
to ensure this property, which saves us
from extra case analysis. To get the idea
of the algorithm, consider Fig. 5, which
shows the general form of a signal with
n ≥ 3 segments. Let xmin be the min-
imal value of the signal on segments 2
to n − 1, that is, excluding the first and
the last segments, and let tmin be the cor-
responding time point. This information
is sufficient for computing the robustness
value for certain segments.
(1) In all segments that contain tmin and
where the values in the first and last seg-
ments is above xmin, the robustness value
is the constant xmin. This holds in the

rectangle defined by t ∈ [t1, tmin] and t′ ∈ [tmin, tn] where t1 and tn satisfy
f1[t1] = fn[tn] = xmin.
(2) When t ≤ t1 and t′ ≤ tn, the robustness value is given by f1[t] and likewise when
t > t1 and t′ > tn, the value is given by fn[t′].
(3) When t ≤ t1 and t′ > tn the value is given by either f1[t] or fn[t′] depending on a
linear inequality based on their respective slopes.
(4) Other segments not covered by the above and where the minimal value is larger than
xmin, are subject to two recursive calls over the intervals [t1, tmin] and [tmin, tn].

More formally, Let w be a signal, x be a variable, and J be a time interval. We
consider three cases, displayed in Fig. 3, 4, and 5.
Case 1: Whenwx has one segment, because of our assumption, it is constant:wx[t] = b,
for t ∈ J , as shown in Fig. 3. Then for t < t′ ∈ J , the robustness value is b. That is, we
add to Sx≥0 the zone (t, t′ ∈ J, t < t′ ∧ r < b).
Case 2: When wx consists of two segments, it always has a wedge-like shape as in
Fig. 4. In this case we again can immediately produce the result. More formally, let J
be split into J1, J2, s.t. wx[t] = a1t + b1 = f1[t] when t ∈ J1, a2t + b2 = f2[t] when
t ∈ J2, and (sincewx is continuous) f1[sup J1] = f2[inf J2]. Then, for t < t′ ∈ J1∪J2,
robustness is given by min{ f1[t], f2[t′] }. Thus, we add to Sx≥0 the polyhedron (t, t′ ∈
J1 ∪ J2, t < t′ ∧ r < a1t+ b1 ∧ r < a2t

′ + b2).
Case 3: Now assume that wx consists of three or more segments, i.e., J can be split into
a sequence of adjacent intervals J1, . . . , Jn, s.t., for t ∈ Ji, wx[t] = fi[t] = ait + bi.



We show an example in Fig 5. In this case, let us find x′min = mint∈J2...Jn−1
wx[t] and

some tmin, s.t. wx[tmin] = x′min (tmin can always be found at a switching point). Then
we find the time points t1 ∈ [inf J1, sup J1] and tn ∈ [inf Jn, sup Jn], s.t. f1[t1] =
fn[tn] = x′min. Now we consider the following sub-cases, based on where t and t′ lie
w.r.t the time points inf J1, t1, tmin, tn, and sup Jn.
1. When t ∈ [t1, tmin] and t′ ∈ [tmin, tn], we know that the robustness value should

be x′min. Thus, we add to Sx≥0 the polyhedron (t ∈ [t1, tmin]∧ t′ ∈ [tmin, tn]∧r <
x′min ∧ t < t′);

2. When t ≤ t1 and t′ ≥ tn, the robustness value is given by min{wx[t1], wx[tn]}.
More formally, when t1 > inf J1 and tn < sup Jn (either both will be true or,
if x′min = wx[inf J1] = wx[sup Jn], both will be false), we add to Sx≥0 two
polyhedra: (t ∈ [inf J1, t1] ∧ t < t′ ∧ a1t + b1 ≤ a2t

′ + b2 ∧ r ≤ a1t + b1) and
(t′ ∈ [tn, sup Jn] ∧ t < t′ ∧ a2t′ + b2 ≤ a1t + b1 ∧ r ≤ ant

′ + bn). This also
accounts for the cases where t ≤ t1, but t′ < tn (robustness is wx[t]) and where
t > t1 and t′ ≥ tn (robustness is wx[t′]).

3. If tmin > t1, we apply the procedure recursively to the interval J = [t1, tmin] (there
may be a degenerate case where tmin = t1 = sup J1);

4. If tmin < tn, we apply the procedure recursively to the interval J = [tmin, tn]
(there may be a degenerate case where tmin = tn = inf Jn).

One can show that this procedure produces a number of polyhedra linear in the number
of segments of the signal. The total number of recursive calls of the second and third
kind is bounded by the number of switching points, since every call consumes the inte-
rior point of a wedge or a point of local minimum and this point cannot appear in either
role in the other recursive calls. Additionally, we make a number of recursive calls of
the first kind bounded by the number of segments. Also, observe that in the resulting
polyhedra, r is always unbounded from below.

Other Expressions. Robustness support can be characterized by induction on the ex-
pression structure using basic set operations. The rules below can be derived from this
inductive characterization.

Empty word. For the expression ε, one can show that R(ε, w) = {(t, t′, r) | t = t′},
which is represented using the singleton zone: Sε = {(t = t′)}.

Falsehood. In this case, robustness support is empty, thus S∅ = ∅.

Disjunction For the disjunction ϕ ∨ ψ, we have R(ϕ ∨ ψ,w) = R(ϕ,w) ∪R(ψ,w),
thus we take the union of the sets of polyhedra, Sϕ∨ψ = Sϕ ∪ Sψ .

Conjunction For the conjunction ϕ∧ψ,R(ϕ∧ψ,w) = R(ϕ,w)∩R(ψ,w), thus we
take the pairwise intersection: Sϕ∧ψ =

⋃
Pϕ∈Sϕ
Pψ∈Sψ

{Pϕ ∩ Pψ}

Concatenation. Notice that we identify polyhedra (or zones) with conjunctions of
constraints. Thus, for two polyhedraP andQ, the formulaP∧Q denotes the polyhedron
that is the intersection of P and Q. For a polyhedron P with 4 dimensions t, t′, t′′ and
r, the formula ∃t′′. P [t, t′, t′′, r] denotes the polyhedron that is the projection of P on
t, t′, r. For concatenation, one can show thatR(ϕ ·ψ,w) = {(t, t′, r) | ∃t′′. (t, t′′, r) ∈



R(ϕ,w)∧(t′′, t′, r) ∈ R(ψ,w)}. Thus, Sϕ·ψ is the set of polyhedra {∃t′′. Pϕ[t, t′′, r]∧
Pψ[t

′′, t′, r] | Pϕ ∈ Sϕ, Pψ ∈ Sψ}.

Kleene star. From Theorem 3 it follows that for every signal w and expression ϕ, there
exists k ≥ 0, s.t. (i) R(ϕk, w) ⊇ R(ϕk+1, w); and (ii) R(ϕ∗, w) =

⋃k
i=0R(ϕi, w).

By definition of the Kleene star, R(ϕ∗, w) =
⋃
k≥0R(ϕk, w), hence Sϕ∗ =

⋃k
i=0 Sϕi

where k is the smallest index, s.t. R(ϕk, w) ⊇ R(ϕk+1, w). A sufficient stopping
condition thus is to check whether the set of polyhedra Sϕk geometrically covers the
set of polyhedra Sϕk+1 (it can be implemented, e.g., by checking intersection with the
complement). In [32], it was shown that for the pattern matching problem, a sufficient
stopping condition can be formulated using pairwise inclusion rather than geometric
coverage. Whether this is also true in the case of robust pattern matching relative to
arbitrary polyhedra, is yet to be shown.

Duration Restriction. For the duration restriction 〈ϕ〉I , one can show R(〈ϕ〉I , w) =
R(ϕ,w) ∩ {(t, t′, r) | t′ − t ∈ I}. Thus, we restrict every element of Sϕ as follows:
S〈ϕ〉I = {P ∧ (t′ − t ∈ I) | P ∈ Sϕ}.

Proof (of Theorem 4). We can now prove Theorem 4. For a piecewise-constant signal
w and an expression ϕ, Sϕ is a set of zones over t, t′, r, s.t. every constraint on r is of
the form r < c. This holds for the base cases and is preserved by intersection and
projection operations performed for the inductive cases. When a zone Z, bounds r
from above by c (possibly ∞), the pointwise supremum function (t, t′) 7→ sup{r |
(t, t′, r) ∈ Z} is piecewise-constant. The robustness map (t, t′) 7→ ρ(ϕ,w, [t, t′)) is a
pointwise maximum of finitely many piecewise-constant functions, and is piecewise-
constant. Similarly, for a continuous piecewise-linear signal, Sϕ is a set of polyhedra,
where r is unbounded from below. For every such polyhedron P , the function (t, t′) 7→
sup{r | (t, t′, r) ∈ P} is piecewise-linear. The robustness map is a pointwise maximum
of finitely many piecewise-linear functions and is piecewise-linear. ut
Possible Optimizations A practical issue of computing robustness support in this
bottom-up way is that we have to compute and store the robustness value for every seg-
ment of the signal and every sub-expression, regardless of how small this value is and
whether it will be used when matching the higher-level expressions. One workaround is
to approximate robustness by replacing the values that are below some threshold with
−∞ (discarding the corresponding polyhedra). Another optimization is to rewrite the
original expression and propagate time restriction operations to the sub-expressions.
This will allow to earlier discard the polyhedra that would anyway be discarded by the
time restriction later in the computation.

6 Experiments

In this section, we evaluate our matching algorithms on a problem of finding ringing
patterns in a signal. Ringing is a damped oscillation of an output of a system as a
response to a sudden change in the input. In Figure 6 (left), we give an example of
a ringing behavior of a linear system with respect to a square wave input. We define



Fig. 6. A ringing signal w (left) and its robustness map (right).

ringing using the following expression:

〈x ≤ 0.2〉≤0.05 · 〈0.1 ≤ x ≤ 0.9〉≤0.05 · 〈0.7 ≤ x ≤ 1.3〉[0.3, 1] · 〈0.9 ≤ x ≤ 1.1〉[3, 6]

This is a concatenation of constraints that describe (from left to right) low value, rising
edge, ringing, and stable high value periods, using thresholds on the value and duration.
We discretize the input signal and feed it to our matching tool Montre [31], which was
extended to support robust matching of piecewise-constant signals. In Figure 6 (right),
we show the robustness map produced by Montre, where darker colors correspond to
time segments with higher robustness values. In particular, thin dark bands correspond
to the segments that start on the rising edge of the signal and end at high signal value.
These segments also satisfy the expression qualitatively. The surrounding lighter areas
correspond to the segments that do not satisfy the expression qualitatively, but are close
to satisfaction. These are the segments that start before the rising edge of the signal, or
during or after the second ringing oscillation.

To evaluate the practical complexity of robust matching, we generate longer input
signals, consisting of multiple square waves with ringing. In Table 1, we give execu-
tion times and numbers of output zones for different lengths of the input (measured
in the number of discrete samples). We observe that for this example the runtime of
the algorithm is linear in the length of the input, which is expected when the duration
constraints in the expression are much shorter than the input itself. Additionally (not
shown in Table 1) we measured the overhead of performing matching on piecewise-
linear interpolation of a signal compared to piecewise-constant, which is due to using
polyhedra instead of zones. To represent and manipulate polyhedra, we use Parma Poly-
hedra Library (PPL) [7]. Our experiments with PPL suggest that individual operations
on polyhedra (corresponding to SRE operators) are 30 to 40 times slower than those on

Table 1. Experimental Results

Input length 10K 20K 40K

Execution Time (sec) 3.88 7.80 15.5
Number of output zones 156K 315K 631K



zones. The implementation of zones is optimized for the particular form of constraints,
while for polyhedra, PPL implements the double-description method [8], where a poly-
hedron is represented by a system of constraints and a system of generators.

7 Conclusion

This work can be seen as part of the trend of extending formal language theory and
its related formalisms towards the quantitative; somewhat in the spirit of [29,30] (for
metric time) and [18,19]. Our first contribution is to introduce a quantitative semantics
for SRE which indicates how robustly a signal matches or does not match a given ex-
pression. This semantics, which is a safe approximation of the uniform norm distance
between the signal and the expression, can also be applied in discrete time to character-
ize the robustness of the membership of a sequence of numbers in a regular language
over a numerical alphabet. We then define the problem of robust pattern matching,
i.e., determining the robustness of every segment of the input signal. This problem
arises naturally when computing the robustness of a signal for an expression contain-
ing concatenation. Moreover, this additional information can be very useful in novel
applications of such specification formalisms, for example [21,11,1]. Unlike classical
verification, where we want to verify properties of the whole behavior, in monitoring of
real systems or in data mining, we would like to detect the occurrence of patterns at var-
ious parts of the signal. We developed algorithms to solve this robust matching problem
for two classes of signals: piecewise-constant and continuous piecewise-linear, which
are both common in digital signal processing based on sampled signals. We observe
that robust pattern matching can be seen as constructing a 3-dimensional surface, and
show that this surface is piecewise-linear for piecewise-linear signals. Practically, we
represent the volume under this surface as a set of zones or convex polyhedra.

Future Work. We consider the following directions for future work. First, we observe
that our definition of robustness represents purely spatial distance and thus does not
address time robustness (see discussion in [15]). This issue is best demonstrated with
the duration operator. Consider an expression 〈ϕ〉[2,3] and a signal that matches ϕ but
with duration 2 − δ, for a small δ. With our current semantics, its robustness is −∞,
regardless of how small δ is. An alternative more continuous semantics of the time
restriction operator will bring our semantics closer to other (non-pointwise) metrics
that allow stretching and shrinking of behaviors [12,20].

Also, as mentioned in the end of Section 5, unlike the very efficient qualitative
matching [32], our quantitative matching algorithm is costly. One reason is the use of
arbitrary convex polyhedra for piecewise-linear signals. Another is the fact that we need
to cover the whole triangle 0 ≤ t ≤ t′ ≤ |w| by polyhedra or zones, while for the qual-
itative semantics, the match set is very sparse. In addition to the ad-hoc optimizations
mentioned in the end of Section 5, we foresee two more rigorous ways to address this
problem. First, we can use an approximate semantics that quantizes the robustness val-
ues into a finite set of ranges. Second, if we are only interested in the robustness with
respect to the whole signal, we may be able to replace the current bottom-up algorithm
by a more sophisticated top-down scheme that will compute robustness only with re-
spect to a subset of the sub-expressions and time segments.
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