
SpaceEx:
Scalable Verification of Hybrid Systems

Goran Frehse1, Colas Le Guernic2, Alexandre Donzé1, Scott Cotton1,
Rajarshi Ray1, Olivier Lebeltel1, Rodolfo Ripado1, Antoine Girard3,

Thao Dang1, Oded Maler1

1 Verimag, CNRS / Université Grenoble 1 Joseph Fourier, 38610 Gières, France
2 New York University CIMS, New York, NY 10012, USA
3 Laboratoire Jean Kuntzmann, Université de Grenoble

goran.frehse@imag.fr

Abstract. We present a scalable reachability algorithm for hybrid sys-
tems with piecewise affine, non-deterministic dynamics. It combines poly-
hedra and support function representations of continuous sets to compute
an overapproximation of the reachable states. The algorithm improves
over previous work by using variable time steps to guarantee a given
local error bound. In addition, we propose an improved approximation
model, which drastically improves the accuracy of the algorithm. The al-
gorithm is implemented as part of SpaceEx, a new verification platform
for hybrid systems, available at spaceex.imag.fr. Experimental results
of full fixed-point computations with hybrid systems with more than 100
variables illustrate the scalability of the approach.

1 Introduction

Hybrid systems are a class of mathematical models of dynamical systems admit-
ting both discrete-event (logical) and continuous (numerical) dynamics. They
consist of a transition system, augmented with real-valued state variables that
evolve according to a particular differential equation in every discrete state
(mode). Conditions on the values of these variables may trigger discrete tran-
sitions (mode switching). Naturally, the verification of hybrid systems requires
ingredients taken from the classical verification of transition systems, augmented
with new special techniques for doing verification-like operations (successor com-
putation) on the continuous dynamics. Early tools [11,1] focused on relatively
simple continuous dynamics in each discrete state, where the derivative of the
continuous variables does not depend on their values. For such “linear” hybrid
automata, the computation of successors in the continuous domain can be real-
ized by linear algebra. Nevertheless, it turned out that switching between such
simple continuous modes one can easily construct undecidability gadgets and
hence the exact verification of hybrid systems turned out to be a dead end.

The second wave of hybrid verification tools [6,3,12] indeed abandoned exact
computations and focused more on computing approximations of the reachable
states for systems admitting less trivial continuous dynamics. Such techniques

2

and tools could handle hybrid systems with continuous dynamics defined by lin-
ear differential equations with inputs. However, the size of systems that could
be handled was modest, typically very few continuous state variables. Another
thread in hybrid verification focuses on systems with a very large discrete state-
space with very few continuous variables. Typically such models are aimed to
verify the code of computerized control systems, with a very modest modeling
of the external environment. The major preoccupation in these efforts is in com-
bining the continuous part with techniques, such as BDD or SAT, for handling
large discrete state-spaces [7,16].

In the last couple of years, an important breakthrough has been achieved
in the reachability computation of the continuous part. A new algorithm based
on a “lazy” representation of the reachable sets, first developed for the spe-
cial case where reachable states are represented by Zonotopes [10] and then
extended and crystalized using the more general representation via support func-
tions [14,13,15], has dramatically increased the scope of linear systems that can
be verified to several hundreds of state variables. Similar scale improvements
have been reported recently on complementary approaches for handling linear
systems [4]. Moreover, significant advances have been made on applying these
linear techniques to nonlinear systems via “hybridization” (approximating a non-
linear system by a piecewise-affine one) [2], which have led to the verification of
non-trivial nonlinear systems with about a dozen of state variables [8].

This paper is concerned with the transfer of such research achievements, typ-
ically obtained as theoretical results accompanied by a thesis-related prototype,
into a robust and user-friendly toolset. It describes SpaceEx, a new extensi-
ble verification platform for hybrid systems, developed with systematic software
engineering [9], implementing many of the above-mentioned developments, and
featuring a web-based graphical user interface. As the reader will see, this trans-
fer is not only about software engineering, modularity and user interface: it
consists in improving and fine-tuning the algorithms to make them applicable
to real-world problems. SpaceEx consists of three components:

– The analysis core is a command line program that takes a model file, a con-
figuration file that specifies the initial states, the scenario and other options,
and then analyzes the system and produces a series of output files.

– The web interface, shown in Fig. 1(a), is a graphical user interface with which
one can comfortably specify initial states and other analysis parameters, run
the analysis core, and visualize the output graphically. The web interface is
browser-based, and accesses the analysis core via a web server, which may
be running remotely or locally on a virtual machine.

– The model editor, shown in Fig. 1(b), is a graphical editor for creating models
of complex hybrid systems out of nested components.

In this paper, we describe an efficient and scalable reachability algorithm,
which builds on the one in [15], adapted specifically for maximum scalability.
We present its extension to variable time steps, and propose an improved ap-
proximation model, which drastically improves the accuracy of the algorithm.

3

(a) Web interface (b) Model editor

Fig. 1. Graphical user interfaces of the SpaceEx platform

Experimental results demonstrate the scalability of the algorithm and the per-
formance of the tool. Unlike in classical verification there are no established
benchmarks and reference tools for comparing high-dimensional hybrid reach-
ability. We know of no tool that has been reported to treat systems of the
dimensions in this paper. The examples used in this paper as well as the tool
itself are available at http://spaceex.imag.fr.

The paper is structured as follows. Section 2 recalls hybrid automata, the
basic reachability algorithm and data structures used in SpaceEx. Section 3
describes the variable time step algorithm and the new approximation model
used to compute time elapse successor states. The computation of successor
states of discrete transitions is presented in Sect. 4. Experimental results based
on our implementation in SpaceEx are provided in Sect. 5, followed by some
conclusions in Sect. 6. The proofs for this paper are available as an appendix at
http://www-verimag.imag.fr/~frehse/cav2011_appendix.pdf.

2 Reachability of Hybrid Systems

2.1 Hybrid Automata

We model the interaction of discrete events and continuous, time-driven dynam-
ics with a hybrid automaton [1]. A hybrid automaton H = (Loc,Var ,Lab, Inv ,
Flow ,Trans, Init) consists of a labeled graph that encodes the nondeterministic
evolution of a finite set of continuous variables Var over time. In this paper, we
associate each of the n variables with a dimension in Rn. A vertex l ∈ Loc of
the graph is called a location. A state is a pair (l, x) ∈ Loc × Rn. In every state
(l, x), the time-driven evolution of the continuous variables is given by the set
of derivatives Flow(l, x) ⊆ Rn. The edges of the graph are called discrete tran-
sitions. A transition (l, α,Guard ,Asgn, l′) ∈ Trans, with label α ∈ Lab allows
the system to jump from location l to location l′, instantaneously modifying

http://spaceex.imag.fr
http://www-verimag.imag.fr/~frehse/cav2011_appendix.pdf

4

the values of the variables. A state (l, x) can jump to (l′, x′) according to the
guard Guard ⊆ Rn and the assignment Asgn(x) ⊆ Rn, i.e., if x ∈ Guard and
x′ ∈ Asgn(x). The system may only remain in a location l as long as the state is
inside the invariant Inv(l) ⊆ Rn. All behavior originates from the initial states
Init ⊆ Loc×Rn. In this paper, we consider Flow(l) to be a continuous dynamics
of the form

ẋ(t) = Ax(t) + u(t), u(t) ∈ U , (1)

where x(t) ∈ Rn, A is a real-valued n × n matrix and U ⊆ Rn is a closed and
bounded convex set. Transition assignments Asgn are of the form

x′ = Rx+ w, w ∈ W, (2)

where R is a real-valued n × n matrix, and W ⊆ Rn is a closed and bounded
convex set of non-deterministic inputs.

An execution of the automaton is a sequence of discrete jumps and pieces of
continuous trajectories according to its dynamics, and originates in one of the
initial states. A state is reachable if an execution leads to it. We are concerned
with computing the set of states that are reachable.

2.2 High-level Reachability Algorithm

Our reachability algorithm is a classical fixed-point computation that operates
on symbolic states. A symbolic state is a pair (l, Ω), where l is a location and Ω
is a convex continuous set. For a set of symbolic states R, let the discrete post-
operator postd(R) be the set of states reachable by a discrete transition from R,
and the continuous post-operator postc(R) be the set of states reachable from
R by letting an arbitrary amount of time elapse. The set of reachable states is
the fixed-point of the sequence R0 = postc(Init),

Rk+1 := Rk ∪ postc(postd(Rk)). (3)

In the following section we present how we represent convex continuous sets
such that the post operators can be computed efficiently. The post operators
themselves are presented in Sect. 3 and Sect. 4.

2.3 Support Functions and Template Polyhedra

Computing the image of the reachability post-operators for continuous sets is
hard, in particular for the time elapse operator postc. In [15], an efficient algo-
rithm was proposed that uses support functions to represent convex continuous
sets. The support function of a closed and bounded continuous set S ⊆ Rn with
respect to a direction vector ` ∈ Rn is [5]

ρ(`,S) = max
x∈S

` · x.

The support function of a convex set S is an exact representation of the set,
which is illustrated by the fact that S =

⋂
`∈Rn{x | ` ·x ≤ ρ(`,S)}. Representing

a convex set by its support function has the benefit that the majority of the set
operations in our algorithm can be implemented very efficiently:

5

– linear map: For a map M ∈ Rn × Rn, ρ(`,MS) = ρ(M>`,S).
– Minkowski sum: For sets S1, S2, ρ(`,S1 ⊕ S2) = ρ(`,S1) + ρ(`,S2).
– convex hull : For sets S1, S2, ρ(`,CH(S1,S2)) = max(ρ(`,S1), ρ(`,S2)).

However, our algorithm requires two more operations, for which support func-
tions are not efficient: intersection and deciding containment. For these opera-
tions, we use another set representation, template polyhedra, which are polyhedra
with faces whose normal vectors are given a priori. Given a set D = {`1, . . . , `m}
of vectors in Rn called template directions, a template polyhedron PD ⊆ Rn is
a polyhedron for which there exist coefficients b1, . . . , bm ∈ R such that

PD =
{
x ∈ Rn |

∧
`i∈D

`i · x ≤ bi
}
.

A template polyhedron can be represented by its coefficients bi, which is partic-
ularly useful when working with sets of template polyhedra. In order to go from
a support function representation of a set S to a template polyhedron, we use its
template hull THD(S), which is the template polyhedron defined by coefficients
bi = ρ(`i,S). The support function of a polyhedron can be computed efficiently
for a given direction ` using linear programming. In this paper, we consider:

– 2n box directions: xi = ±1, xk = 0 for k 6= i;
– 2n2 octagonal directions: xi = ±1, xj = ±1, xk = 0 for k 6= i and k 6= j;
– m uniform directions (as evenly as possible distributed over the unit sphere).

However, the algorithm supports a more general choice of directions, which re-
mains to be investigated.

The use of both support functions and template hulls is justified by the fact
that they are efficient for different operations, and both set representations are
present in our implementation. Support functions are an exact and complete
representation of convex sets – implemented as function objects, they can com-
pute values for any direction. With template hulls, the directions D are fixed
once and for all at the time of construction, and information for other directions
is lost. By switching representations only when necessary (data-dependently) we
remain as precise as possible.

3 Variable Time-Step Flowpipe Computation

We consider the affine continuous dynamics in (1), ẋ(t) = Ax(t) + u(t), u(t) ∈
U , where x(0) ∈ X0, and U ⊆ Rn is a set of nondeterministic inputs. Let
Reacht1,t2(X) denote the reachable states starting from the set X with input
set U in the time interval [t1, t2],

Reacht1,t2(X) = {x(τ) | t1 ≤ τ ≤ t2, x(0) ∈ X , x(t) satisfies (1)}. (4)

We compute a flowpipe, a sequence of continuous sets Ω0, . . . , ΩN−1 that covers
the reachable states up to time T (N depends on the chosen time steps).

6

Before we present the actual algorithm, we discuss how we take into account
the invariant of the corresponding location of the hybrid automaton. In our
implementation, we test at the k-th step whether Ωk is entirely outside of the
invariant, and stop the sequence once this is the case. Then we intersect the
invariant with the computed Ωk (see Sect. 4 for a discussion of the intersection
operation). Note that this procedure may produce an overapproximation, as the
invariant may block some of the trajectories starting in X0 without blocking
them all. We include the invariant face normals automatically in the template
directions, so the result is usually of satisfactory precision. A variation of our
algorithm with proper handling of invariants is presented in [14].

We now describe the variable time step algorithm. Given arbitrary time steps
δ0, δ1, . . ., we construct the sequence Ωk that covers the set of reachable states.
As we will show, each set Ωk covers the reachable states in the time interval
[tk, tk+1], where tk =

∑k−1
i=0 δi. The algorithm is based on two functions Ω[0,δ]

and Ψδ, called approximation models. They overapproximate the reachable states
over a time interval [0, δ] as a function of δ,X0, and U :

Reach0,δ(X0) ⊆ Ω[0,δ](X0,U), Reachδ,δ({0}) ⊆ Ψδ(U). (5)

Each Ωk is constructed by computing Ω[0,δk], which covers Reach0,δk(X0), and
then shifting this set forward in time so that it covers Reachtk,tk+δk(X0). This
is possible due to the following well-known property:

Lemma 1. Reachtk,tk+δk(X) = eAtkReach0,δk(X)⊕ Reachtk,tk({0}).

It therefore suffices to apply the linear map eAtk (a constant matrix) to Ω[0,δk],
and to then add Reachtk,tk({0}), which captures the influence of the inputs U
up to time tk. We overapproximate this summand with a sequence Ψk defined
below:

Reachtk,tk({0}) ⊆ Ψk.

Given approximation models Ω[0,δ] and Ψδ, we compute the sequence Ωk as
follows, with Ψ0 = {0}:

Ψk+1 = Ψk ⊕ eAtkΨδk(U),
Ωk = eAtkΩ[0,δk](X0,U)⊕ Ψk

(6)

Now we formally state the main result of this section: Given the approximation
models, which we will define in the next section, the sequence Ωk covers the
reachable set.

Proposition 1. Given a sequence of time steps δ0, . . . , δN−1 with
∑N−1
i=0 δi = T ,

the sequence Ωk defined by (6) satisfies

Reach0,T (X0) ⊆
N−1⋃
k=0

Ωk. (7)

7

(a)

eAδX0

X0
(c)

(b)

-0.4 -0.2 0.0 0.2 0.4 0.6
0.8

0.9

1.0

1.1

1.2

x

y

Fig. 2. Different approximation models for a segment of a circular trajectory, computed
by SpaceEx: (a) using a first-order approximation of the ODE [15], (b) using a first-
order approximation of the error of the linear interpolation between the states at time
t = 0 and at t = δ [13], (c) the new model, which intersects a first-order approximation
of the interpolation error going forward in time from t = 0 with one that goes backward
from t = δ.

Representing the sets Ψk and Ωk by their support function, the operators used in
(6) – linear map and Minkowski sum – can be computed efficiently as discussed
in Sect. 2.3.

In the next section, we present the new approximation model which we use
to compute Ωk as in (6). In Sect 3.2, we provide direction-wise error bounds on
this computation, and discuss how to adapt the time steps in order to guarantee
given error bounds.

3.1 Approximation Model

The approximation quality of the sequence Ωk evidently hinges on the quality
of the approximation model. In [15], an approximation model was proposed that
uses the norms of A, X0 and U to bound the error of a first-order approximation
of the solution of the state equations, see Fig. 2 for an illustration. If this allows
one to establish an asymptotically optimal error over a given time interval, it
is sometimes overly conservative in practice. In this section, we propose a new
model, which is a strict improvement over the method in [15] if the norm used
is the infinity norm. For other norms, it is possible to find cases for which the
resulting sets are incomparable, but we have yet to find a pratical case where
our approximation is worse. Similar to a model proposed in [13], it is based on
a first-order approximation of the interpolation error between the reachable set
at time 0 and at time δ. On top of that, it combines an approximation that goes
forward in time with one that goes backward in time in order to further improve
the accuracy.

Before presenting the model, we introduce the following notations. The sym-
metric interval hull of a set S, denoted �(S), is �(S) = [−|x1|; |x1|] × . . . ×
[−|xd|; |xd|] where for all i, |xi| = sup{|xi| | x ∈ S}. Let M = (mi,j) be a matrix,

8

and v = (vi) a vector. We define as |M | and |v| the absolute values of M and v
respectively, i.e., |M | = (|mi,j |) and |v| = (|vi|). These absolute values allow us
to bound matrix-vector operations (component wise) without taking their norm.
The approximation model uses the following transformation matrices:

Φ1(A, δ) =

∞∑
i=0

δi+1

(i+ 1)!
Ai, Φ2(A, δ) =

∞∑
i=0

δi+2

(i+ 2)!
Ai. (8)

If A is invertible, Φ1 and Φ2 can be computed as Φ1(A, δ) = A−1
(
eδA − I

)
,

Φ2(A, δ) = A−2
(
eδA − I − δA

)
. Otherwise, they can be computed as submatri-

ces of the block matrixeAδ Φ1(A, δ) Φ2(A, δ)
0 I Iδ
0 0 I

 = exp

Aδ Iδ 0
0 0 Iδ
0 0 0

.
We can now use these operators to obtain a precise over-approximation of
Reach0,δ(X0) and Reachδ,δ({0}). We start with a first-order approximation of
the latter :

Lemma 2. Let Ψδ(U) be the set defined by

Ψδ(U) = δU ⊕ EΨ (U , δ), (9)

EΨ (U , δ) = �
(
Φ2(|A|, δ) � (AU)

)
. (10)

Then, Reachδ,δ(0) ⊆ Ψδ(U).

We now have discretized the differential equation, but we still have to over-
approximate Reach0,δ(X0) with a function Ω[0,δ](X0,U). Our starting point is a
linear interpolation between Reach0,0 and Reachδ,δ using a parameter λ = t/δ
representing normalized time. For each point in time t, Reacht,t = Reachλδ,λδ
is a convex set, for which we construct an over-approximation Ωλ. Our over-
approximation for the time interval [0, δ] is then the convex hull of all Ωλ over
λ ∈ [0, 1]. Using a forward, respectively backward, interpolation leads to an er-
ror term proportional to λ, respectively 1−λ. Intersecting both approximations
gives the following result:

Lemma 3. Let λ ∈ [0, 1], and let Ωλ(X0,U , δ) be the convex set defined by:

Ωλ(X0,U , δ) = (1− λ)X0 ⊕ λeδAX0 ⊕ λδU
⊕
(
λE+

Ω (X0, δ) ∩ (1− λ)E−Ω (X0, δ)
)
⊕ λ2EΨ (U , δ), with

E+
Ω (X0, δ) = �

(
Φ2(|A|, δ) �

(
A2X0

))
,

E−Ω (X0, δ) = �
(
Φ2(|A|, δ) �

(
A2eδAX0

))
,

EΨ (U , δ) = � (Φ2(|A|, δ) � (AU)) .

Then Reachλδ,λδ(X0) ⊆ Ωλ(X0,U , δ). If we define Ω[0,δ](X0,U) as:

Ω[0,δ](X0,U) = CH
(⋃
λ∈[0,1]

Ωλ(X0,U , δ)
)
, (11)

then Reach0,δ(X0) ⊆ Ω[0,δ](X0,U).

9

Ω[0,δ](X0,U), as defined above, might seem hard to represent. In fact, its support
function is not much harder to compute than the one of X0 and U . Let

ω(X0,U , δ, λ) = (1− λ)ρ(`,X0) + λρ((eδA)>`,X0) + λδρ(`,U)

+ ρ
(
`, λE+

Ω ∩ (1− λ)E−Ω
)

+ λ2ρ(`, EΨ). (12)

Since the signs of λ, (1− λ), and λ2 do not change on [0, 1], we have:

ρ(`,Ω[0,δ](X0,U)) = max
λ∈[0,1]

ω(X0,U , δ, λ). (13)

The support function of λE+
Ω ∩ (1− λ)E−Ω can easily be expressed as a piecewise

linear function of λ. For any λ, this set is a centrally symmetric box and its
support function is:

ρ(`, λE+
Ω ∩ (1− λ)E−Ω) =

d∑
i=1

min(λe+
i , (1− λ)e−i)|li|,

where e+ and e− are such that ρ(`, E+
Ω) = e+ · |l| and ρ(`, E−Ω) = e− · |l|. Thus

we only have to maximize a piecewise quadratic function in one variable on [0, 1]
after the evaluation of the support function of the sets involved.

3.2 Time Step Adaptation with Error Bounds

Time steps are generally hard to choose, and their value is rarely chosen in
itself, but according to an expected precision. In order to efficiently choose our
variable time step, we must be able to evaluate the error introduced by time
discretization. In our error calculation, we do not bound the error introduced
at each step, but the overall error introduced since the beginning of the current
continuous evolution. We must take into account the accumulation of errors,
not done carefully we might exhaust our error tolerance before the end of the
computation and become unable to advance in time without exceeding it.

Our choice of error bound ε(`) is the difference between the computed support
function and the support function of the reachable set at time t. For each set
Ωk we define

εΩk(`) = ρ (`,Ωk)− ρ
(
`,Reachtk,tk+1

(X0)
)

(14)

The total approximation error is then

ε(`) = max
k∈0,...,N−1

εΩk(`).

Note that Reachtk,tk+1
(X0) is generally not a convex set, and by overapproximat-

ing it with the convex set Ωk we incur an additional error that is not captured
by εΩk(`). The bound ε(`) allows us to decide whether or not the reachable set
satisfies a linear constraint ` · x ≤ b (e.g., whether the states surpass a certain
threshold) with an uncertainty margin of ε(`).

10

To compute εΩk(`), we must take into account the error for Ψδ(U) defined as
in Lemma 2 and Ω[0,δ](X0,U) defined as in Lemma 3. Let

εΨδ(U)(`) = ρ (`, Ψδ(U))− ρ (`,Reachδ,δ({0})) , (15)

εΩ[0,δ](X0,U)(`) = ρ(l, Ω[0,δ](X0,U))− ρ(l,Reach0,δ(X0)). (16)

Lemma 4. For any ` in Rn:

εΨδ(U)(`) ≤ ρ(`, EΨ (U , δ)) + ρ (`,−AΦ2(A, δ)U) (17)

εΩ[0,δ](X0,U)(`) ≤ max
λ∈[0,1]

{
ρ
(
l,
(
λE+

Ω (X0, δ) ∩ (1− λ)E−Ω (X0, δ)
))

+λ2ρ(l, EΨ (U , δ)) + λρ (`,−AΦ2(A, δ)U)
}
. (18)

Computing the support function of Ωk as defined by (6) and applying the
above lemmas as well as Lemma 1, we obtain εΩk(`) as follows.

εΨk+1
(`) = εΨk(`) + εΨδk (U)(e

Atk>`),

εΩk(`) = εΩ[0,δk](X0,U)(e
Atk>`) + εΨk(`).

(19)

Given the above error bounds, one can adapt the time steps during the com-
putation of the sequence such that ε(`) is kept arbitrarily small. The problem
lies in the error εΨk(`), which accumulates with k, so that an a-posteriori re-
finement would require the whole squence to be recomputed. We therefore use
the following simple heuristic to compute the sequence of ρ(`,Ωk) for a given
template direction ` such that ε(`) ≤ ε̂ for a given error bound ε̂ ∈ R>0. Instead
of computing ρ(`,Ωk) directly, we first compute the whole sequence ρ(`, Ψk),

then the sequence ρ(eAtk
>
`,Ω[0,δk](X0,U)), and only then combine them to get

the sequence ρ(`,Ωk). This separation allows us to choose a separate time step
for each sequence, adapting the error as necessary. Additionally, by computing
the sequences one after another, the last one can pick up the slack in the error
bound of the first sequence.

In the following we suppose that ε̂ is distributed a-priori on both sequences,
so that we have ε̂Ω and ε̂Ψ in R>0 with ε̂ = ε̂Ω + ε̂Ψ . This distribution can be
established, e.g., by a prior coarse-grained run with a large error bound, or by a
run with large fixed time steps. Because the error of Ψk accumulates with k, it is
chosen (somewhat arbitrarily) to remain below a linearly increasing bound. The
error of eAtkΩ[0,δk](X0,U) does not depend on previous computation steps, so it
can be adapted on the fly to meet the required bound. We proceed as follows:

1. Compute ρ(`, Ψk(U)) such that εΨk(`) ≤ tΨk
T ε̂Ψ . At each step k, we must find

a δΨk , ideally the biggest, such that:

εΨk(`) + εΨ
δΨ
k

(U)(e
AtΨk
>
`) ≤ tΨk + δΨk

T
ε̂Ψ

11

Finding δΨk is possible because εΨδ(U)(e
At>`) = O(δ2). First, we fix an initial

time step δΨ−1. Then, at each step k, we start a dichotomic search from δΨk−1

along the δ for which sets and matrices involved in the computation of Ψδ(U)
have already been evaluated, trying new values only when necessary.

2. Compute ρ(eAt
Ω
k
>
`,Ω[0,δΩk](X0,U)) such that

εΩ
[0,δΩ

k
]
(X0,U)(e

AtΩk
>
`) + εΨi(k)(`) = εΩk(`) ≤ ε̂

where i(k) is such that tΨi(k)−1 < tΩk ≤ tΨi(k). This can be done with a di-

chotomic search over the sequence of tΨk already computed for ρ(`, Ψk(U)).
If there is a k such that δΨi(k) must be further refined, then for the newly

introduced indices kj , we have i(kj) = i(k).

To combine the above two sequences into ρ(`,Ωk), we use the sequence of time
steps δΩk . If this introduces new times tΩk in the sequence of tΨk , we can compute
the missing values for ρ(`, Ψk(U)) by starting from tΨi(k)−1. This does not trigger

the recomputation of ρ(`, Ψk(U)) for other time points since the sequence εΨk(`)
is increasing.

4 Computing Transition Successors

Each flow-pipe that is created by the time elapse step is passed to the compu-
tation of transition successors. States that take the transition must satisfy the
guard, are then mapped according to the assignment and the result must satisfy
the invariant of the target location. Consider a transition T with guard G, assign-
ment Asgn, and whose target location has the invariant I+. Let PostAsgn(X)
be the set of states that result from mapping a continuous set X according to
Asgn. Then for a set of states X , the set of successor states is given by

postd(T,X) = PostAsgn(X ∩ G) ∩ I+.

We now discuss how the operations for this image computation, intersection and
assignment, can be carried out efficiently. Then we present a method to decrease
the number of convex sets produced by the successor computation so that an
exponential blowup in the number of sets can be avoided.

Intersection Since intersection with support functions is hard, we compute in-
tersection on the template hull, say PD = THD(X). If X is a set of convex sets,
the intersection is performed separately on each convex set. If G is a polyhe-
dron in constraint form whose constraint normals are template directions, then
this operation can be carried out very efficiently by taking the minimum of the
template coefficients:

PD ∩ G =
{
x ∈ Rn |

∧
`i∈D

`i · x ≤ min(bXi , b
G
i)
}
.

12

Assignment Recall that according to (2) transition assignments are of the form
x′ = Rx+w,w ∈ W, whereW ⊆ Rn is a convex set of non-deterministic inputs.
In the general case, the assignment operator is therefore

PostAsgn(X) = RX ⊕W,

and can be computed efficiently using support functions. If the assignment is
invertible and deterministic, i.e., R is invertible andW = {w0} for some constant
vector w0, the exact image can be computed efficiently on the polyhedron.

Clustering Each flow-pipe consists of a possibly large number of convex sets
that cover the actual trajectories. When we compute the successor states for a
transition, each of these convex sets spawns its own flow-pipe in the next time
elapse computation. This may multiply the number of sets with each iteration,
leading to an explosion in the number of sets and slowing the analysis down
to a stall. To avoid this effect and speed up the analysis, we apply what we
call clustering. Given a hull operator, clustering reduces the number of sets by
replacing groups of these sets with a single convex set, their hull. We use the
following clustering algorithm for a given hull operator HULL. Let the width of
P1, . . . ,Pz with respect to a direction ` ∈ D be

δP1,...,Pz (`) = max
i=1..z

ρ(`,Pi)− min
i=1..z

ρ(`,Pi). (20)

Given P1, . . . ,Pz and a clustering factor of 0 ≤ c ≤ 1, the clustering algorithm
produces a set of polyhedra Q1, . . . , Qr, r ≤ z, as follows:

1. Let i = 1, r = 1, Qr := Pi.
2. While i ≤ z and ∀` ∈ D : δQr,Pi(`) ≤ cδP1,...,Pz (`),
Qr := HULL(Qr,Pi), i := i+ 1.

3. If i ≤ z, let r := r + 1, Qr := Pi. Otherwise, stop.

We consider two hull operators: template hull, which is fast but very overap-
proximative, and convex hull, which is precise but slower. It can be advatageous
to combine both, as illustrated by the following example:

Example 1. Consider the 8-variable filtered oscillator from Sect. 5.1. At the first
discrete state change alone, 57 convex sets can take the transition. Without
clustering, the computation is not feasible, as these sets would spawn 57 new
flowpipes, and similarly for their successors. Template hull clustering with cTH =
0.3 produces three sets and results in a total runtime of 11.5s. With cTH = 1
it produces a single set and takes 3.36s, but with a large overapproximation.
Convex hull clustering by itself with cCH = 1 is very precise but takes 8.19s.
Combining both with cTH = 0.3, cCH = 1 takes 3.64s without noticeable loss in
accuracy.

5 Experimental Results

To demonstrate the scalability of our algorithm and the performance of the
tool SpaceEx, we present the following experiments. The first system is a simple

13

Table 1. Performance results for the filtered oscillator benchmark, varying the number
of variables in the system. The time step is δ = 0.05, applying template hull clustering
with cTH = 0.3 followed by convex hull clustering with cCH = 1. Indicated are the
runtime, memory and iterations required to compute a fixed-point, and the largest
error for any of the directions in any of the time steps

Variables Time [s] Mem. [MB] Iter. Error

Box constraints

18 2,0 9,3 9 0,010
34 9,1 20,2 13 0,010
66 77,3 50,3 23 0,013

130 1185,6 194,3 39 0,030
198 7822,5 511,0 57 0,074

Variables Time [s] Mem. [MB] Iter. Error

Octagonal constraints

2 0,7 11,8 6 0.009
4 1,4 11,8 6 0.025
6 4,7 13,3 6 0.025

10 33,0 23,0 7 0.025
18 538,4 67,9 10 0.025

parameterized system which we use to empirically measure the complexity of our
algorithm. The second system is a multivariable continuous control system with
complex, tightly coupled dynamics. It illustrates the faithfulness and accuracy
of the continuous part of the algorithm. For lack of space we do not present the
model equations, but instead refer the reader to the SpaceEx model files, which
are available at http://spaceex.imag.fr.

5.1 Filtered Oscillator Benchmark

To measure the performance of our approach, we use a simple parameterized
switched oscillator system. The complexity of the system is increased by adding
a series of first-order filters to the output x of the oscillator. The filters smooth
x, producing a signal z whose amplitude diminishes as the number of filters
increases. Note that the dynamics are rather simple, as the filter variables are
only weakly coupled with one another. The oscillator is an affine system with
variables x, y that switches between two equilibria in order to maintain a stable
oscillation, which together with k filters yields a parameterized system with
k + 2 continuous variables and two locations. One location has the invariant
x ≥ −1.4y, the other x ≤ −1.4y, and the guards consist of the boundaries of the
invariants.

To empirically measure how the complexity depends on the n variables of the
system and the m template directions, we run experiments varying just n, just
m, and both. Fixed n: The average time for a successor computation (discrete
followed by continuous) for the 6-variable system over m uniform directions,
m = 8—256, shows an root mean sqare (RMS) tendency of O(m1.7). Fixed m:
The average time for a successor computation with 200 uniform directions with
n = 6–16 shows an RMS tendency of O(n). Table 1 shows the complete runtime
of a fixed-point computation for box and uniform directions for the system with
up to 198 variables. The RMS tendency is O(n2.7) for box directions and O(n4.7)
for octagonal directions, which confirms the results for fixed n and fixed m.

http://spaceex.imag.fr

14

(a) δt = 0.05 for both (b) forw: δt = 0.005, interpfb: δt = 0.05

Fig. 3. The reachable states of the 28-variable controlled helicopter system in the
plane (x2, x3) (corresponding to roll attitude and roll rate), computed with octagonal
constraints. We compare the new error scheme (interfb), shown in dark blue, with that
of [13] (a) and of [15] (b), shown in bright red.

Table 2. Error models comparison with fixed step. The error model introduced
in this paper (interpfb) clearly outperforms that proposed in [15] (forward) and the
one proposed in [13] (interp). Memory is indicated in MBs.

forward interp interpfb

δt Mem. Time [s] Error Mem. Time [s] Error Mem. Time [s] Error

0.05 9.44 1.48 9.67e+22 9.61 1.60 16.1 9.59 1.65 2.95

0.01 10.5 7.09 3.85e+5 10.5 7.60 0.191 10.5 8.16 0.178

5e-3 10.3 14.1 2.47e+3 10.2 15.2 4.37e-2 12.6 15.8 2.82e-2

1e-3 23.1 71.1 12.4 18.4 76.7 1.59e-3 18.5 78.7 1.07e-3

5e-4 27.9 142 2.56 27.9 155 3.89e-4 28.2 157 2.66e-4

5.2 Helicopter Controller

To measure the performance of our algorithm for complex dynamics, we an-
alyze the helicopter controller from [17]. We analyze the controlled plant, a
28-dimensional continuous linear time-invariant (LTI) system. The plant is a
small disturbance model of a helicopter, given as an 8-dimensional LTI system.
The controller we examine is an H∞ mixed-sensitivity design for rejecting at-
mospheric turbulence, given as a 20-dimensional LTI system. Figure 3 shows the
increased accuracy of our new approximation model with respect to previous
models. Tables 2 and 3 show the performance results with fixed time steps and
with variable time steps, each for the different error models.

In [17], two different controllers are designed for the helicopter, one of which
is specifically tuned for disturbance rejection. Letting the rotor collective be a
nondeterministic input in the interval [−1, 1], we compute the reachable states
in 5s for one controller and in 14s for the other, as shown in Fig. 4.

15

(a) Roll stabilization (b) Pitch stabilization

Fig. 4. Comparison of two disturbance rejection models. Reachable sets with
nondeterministic inputs for the helicopter example for the two disturbance rejection
models compared in [17] (T = 20, method interfb and error tolerance of 0.1 for both).
This confirms that the better disturbance rejection model proposed (in blue) actually
stabilizes the system faster. However, in [17], this analysis was based only on several
simulations.

Table 3. Variable step performance. The variable step implementation outper-
forms a fixed step scheme even in the ideal case, i.e., with the best error model and
assuming we know in advance the optimal time step δt to satisfy the error bound. This
is always true for the number of steps taken and the slightly higher computational time
for some case is explained by frequent changes in choice of the time step.

Ideal fixed step (interpfb) var step (interp) var step (interpfb)

Err. req. nb steps δt used Time [s] nb steps Time [s] nb steps time

1 1500 0.02 11.68 1475 12.0 974 8.359

0.1 3418 8.78e-3 26.6 4334 33.9 2943 31.2

0.01 11539 2.6e-3 90.3 14070 108 9785 77.9

1e-3 44978 6.67e-4 351 39152 301 27855 234

1e-4 101352 2.96e-4 902 85953 688 64315 811

6 Conclusions

The reachability of hybrid systems is recognized as be a hard problem, and re-
search efforts to find a scalable approach have been going on for more than two
decades. In this paper, we presented a variable time-step extension of a scalable
time-elapse algorithm and proposed an improved, highly accurate approxima-
tion model for it. Together with techniques to efficiently compute transition
successors that avoid the well-known problem of an explosion in the number of
sets that the algorithm needs to propagate, we have implemented the algorithm
in a new tool called SpaceEx. In our experiments, SpaceEx can handle hybrid
systems with affine dynamics and nondeterministic inputs with more than 100
variables. Further research is needed to automatically find suitable template di-

16

rections to increase the accuracy of the approach. SpaceEx and the examples
from this paper are available at http://spaceex.imag.fr.

Acknowledgments This research was supported in part by the European Com-
mission under grant INFSO-ICT-224249 and the U.S. National Science Founda-
tion under grant number CCF-0926181.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3–34, 1995.

2. E. Asarin, T. Dang, and A. Girard. Hybridization methods for the analysis of
nonlinear systems. Acta Inf., 43(7):451–476, 2007.

3. E. Asarin, T. Dang, O. Maler, and O. Bournez. Approximate reachability analysis
of piecewise-linear dynamical systems. In HSCC’00, LNCS. Springer, 2000.

4. E. Asarin, T. Dang, O. Maler, and R. Testylier. Using redundant constraints for
refinement. In Proc. ATVA’10. Springer, 2010.

5. D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex Analysis and Optimization.
Athena Scientific, 2003.

6. A. Chutinan and B. H. Krogh. Verification of polyhedral-invariant hybrid au-
tomata using polygonal flow pipe approximations. In HSCC’99, LNCS, pages
76–90. Springer, 1999.

7. W. Damm, S. Disch, H. Hungar, S. Jacobs, J. Pang, F. Pigorsch, C. Scholl, U. Wald-
mann, and B. Wirtz. Exact state set representations in the verification of linear
hybrid systems with large discrete state space. In ATVA, 2007.

8. T. Dang, C. Le Guernic, and O. Maler. Computing reachable states for nonlinear
biological models. In Proc. CMSB’09, pages 126–141. Springer, 2009.

9. G. Frehse and R. Ray. Design principles for an extendable verification tool for
hybrid systems. In ADHS09, 2009.

10. A. Girard, C. Le Guernic, and O. Maler. Efficient computation of reachable sets
of linear time-invariant systems with inputs. In HSCC’06. Springer, 2006.

11. T. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid
systems. Software Tools for Technology Transfer, 1:110 – 122, 1997.

12. A. Kurzhanski and P. Varaiya. Reachability analysis for uncertain systems—the
ellipsoidal technique. Dynamics of Continuous, Discrete and Impulsive Systems
Series B: Applications and Algorithms, 9(3b):347–367, 2002.

13. C. Le Guernic. Reachability analysis of hybrid systems with linear continuous
dynamics. PhD thesis, Université Grenoble 1 - Joseph Fourier, 2009.

14. C. Le Guernic and A. Girard. Reachability analysis of hybrid systems using support
functions. In A. Bouajjani and O. Maler, editors, CAV, volume 5643 of Lecture
Notes in Computer Science, pages 540–554. Springer, 2009.

15. C. Le Guernic and A. Girard. Reachability analysis of linear systems using support
functions. Nonlinear Analysis: Hybrid Systems, 4(2):250 – 262, 2010.

16. C. Scholl, S. Disch, F. Pigorsch, and S. Kupferschmid. Computing optimized repre-
sentations for non-convex polyhedra by detection and removal of redundant linear
constraints. In TACAS, 2009.

17. S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and
Design. John Wiley & Sons, 2005.

http://spaceex.imag.fr

	SpaceEx: Scalable Verification of Hybrid Systems

