Multi-Criteria Optimization and its Application to Multi-Processor Embedded Systems

Julien Legriel^{1,2}

¹VERIMAG

²STMicroelectronics Grenoble

Context of the Thesis

- Ph.D CIFRE STMicroelectronics Grenoble Verimag
- Minalogic project ATHOLE
 - low-power multi-processor platform for embedded systems
 - ► partners: ST, CEA Leti, Thales Colombes, CWS, Verimag
- Verimag: high-level optimization methods which can guide mapping and scheduling decisions
- This thesis: development of new multi-criteria optimization techniques

Outline

Introduction

SAT-Based Approximation

Multi-Criteria Stochastic Local Search

Application: Energy Aware Scheduling

Outline

Introduction

SAT-Based Approximation

Multi-Criteria Stochastic Local Search

Application: Energy Aware Scheduling

The Move to Multi-Processor Systems

A necessary transition to sustain Moore's law.

If transistors were people..

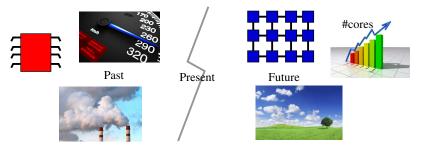
Moore's "law" (1975)

Empirically, the number of transistors integrated on a single chip doubles roughly every two years.

The Move to Multi-Processor Systems

A necessary transition to sustain Moore's law.

- · Hard to increase the performance of single cores further
 - Walls (power, memory, ILP)
 - Design complexity

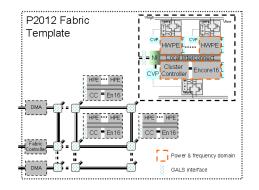


- Burden on the software side (manage parallel applications)
 - mapping and scheduling

The Move to Multi-Processor Systems

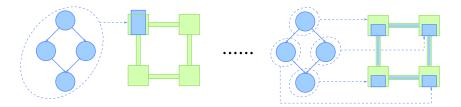
Embedded Multi-Processors.

- Mobility (low power)
- Greedy applications
 - video encoding/decoding
 - augmented reality
- Flexibility needed
- P2012, ST Grenoble
 - multicore-processor to replace hardware accelerators



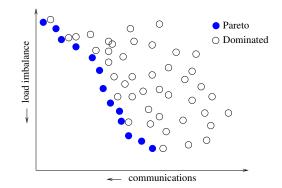
Motivating example : a bi-criteria mapping problem.

- Some problems related to multi-processors can be tackled via combinatorial optimization
 - e.g mapping/scheduling, design space exploration
- · Ex: Mapping wrt load balancing/communications
 - Find a tradeoff between load balancing/communications



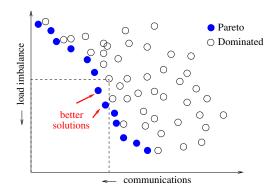
Finding optimal trade-offs.

- Dominated solution, some are better wrt all criteria
- Optimal (*Pareto*) solution, the others are incomparable



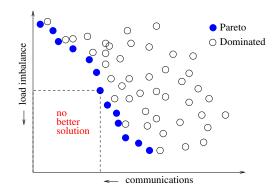
Finding optimal trade-offs.

- Dominated solution, some are better wrt all criteria
- Optimal (*Pareto*) solution, the others are incomparable

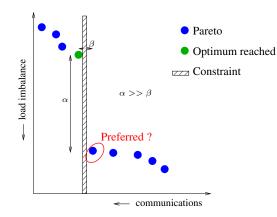


Finding optimal trade-offs.

- Dominated solution, some are better wrt all criteria
- Optimal (*Pareto*) solution, the others are incomparable



Drawbacks of reduction to single criteria.



Traditionnal approaches and our contribution.

- Classical methods
 - Parametrized one-dimensional problem
 - Ex: weighted sum
 - $\lambda \times \textit{load-imbalance} + (1 \lambda) \times \textit{communications}$
- · Genetic algorithms
 - mimic biological evolution
 - Population, mutation & recombination
 - Survival of the fittest

Our contribution consists of two new approaches:

- 1. Pareto front approximation using an SMT solver
- 2. Stochastic local search combined with weighted sum

Outline

Introduction

SAT-Based Approximation

Multi-Criteria Stochastic Local Search

Application: Energy Aware Scheduling

The problem studied

Approximating the Pareto front.

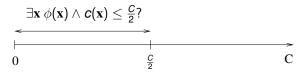
Multi-Criteria Optimization Problem

min $\mathbf{c}(\mathbf{x}) \ s.t \ \phi(\mathbf{x})$

- x a decision vector (discrete and continuous variables)
- c a d-dimensional cost function
- $\phi(\mathbf{x})$ a set of problem specific constraints
- Goal: approximate the Pareto front with bounded distance
- Method: submit queries to a SMT (SAT Modulo Theories) solver

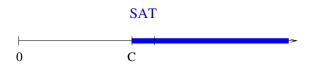
One-dimensional case.

Binary search the cost space with queries like



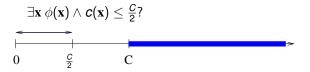
One-dimensional case.

· Binary search the cost space with queries like



One-dimensional case.

Binary search the cost space with queries like

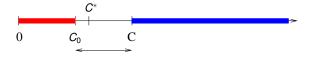


One-dimensional case.

• Binary search the cost space with queries like

One-dimensional case.

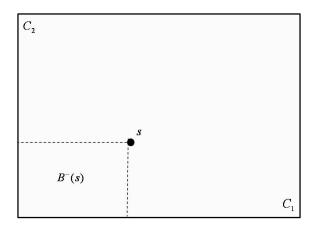
Binary search the cost space with queries like



- The distance of C to the optimum is bounded by $C C_0$
- · Our work extends the idea to multi-criteria

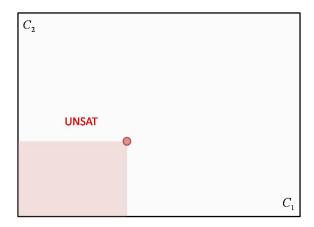
Multi-dimensional case.

Multidimensional query : $\exists \mathbf{x} \phi(\mathbf{x}) \land \mathbf{c}(\mathbf{x}) \leq \mathbf{s}$?



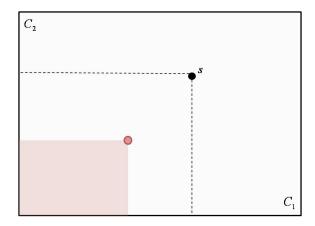
Multi-dimensional case.

Multidimensional query : $\exists \mathbf{x} \phi(\mathbf{x}) \land \mathbf{c}(\mathbf{x}) \leq \mathbf{s}$?



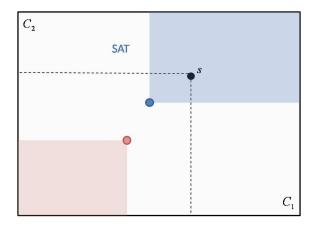
Multi-dimensional case.

Multidimensional query : $\exists \mathbf{x} \ \phi(\mathbf{x}) \land \mathbf{c}(\mathbf{x}) \leq \mathbf{s}$?



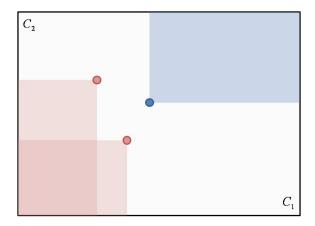
Multi-dimensional case.

Multidimensional query : $\exists \mathbf{x} \phi(\mathbf{x}) \land \mathbf{c}(\mathbf{x}) \leq \mathbf{s}$?



Multi-dimensional case.

Multidimensional query : $\exists \mathbf{x} \phi(\mathbf{x}) \land \mathbf{c}(\mathbf{x}) \leq \mathbf{s}$?



Multi-dimensional case.

Multidimensional query : $\exists \mathbf{x} \ \phi(\mathbf{x}) \land \mathbf{c}(\mathbf{x}) \leq \mathbf{s}$?

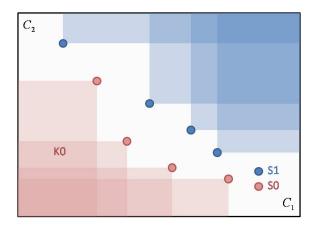
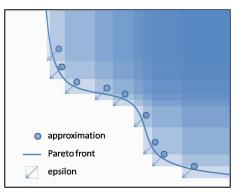


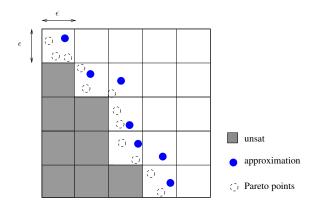
Illustration.

- An ε-approximation of a point does not worsen any criterion value more than ε
- A ε-approximation of a Pareto front includes an approximation for every point of the front



Grid Method.

• Approximation reached in $\left(\frac{1}{\epsilon}\right)^d$ queries



A characterization using distance.

Definition (Directed Distance)

- $\rho(s, s') = \max^{+} \{s'_i s_i : i = 1..d\}$
- $\rho(S, S') = \max_{s \in S} \min_{s' \in S'} \rho(s, s')$

A characterization using distance.

Definition (Directed Distance)

- $\rho(s, s') = \max^{+} \{s'_i s_i : i = 1..d\}$ $\rho(s, s') \le \epsilon \Rightarrow s' \sim_{\epsilon} s$
- $\rho(S, S') = \max_{s \in S} \min_{s' \in S'} \rho(s, s')$

A characterization using distance.

Definition (Directed Distance)

• $\rho(s, s') = \max^+ \{s'_i - s_i : i = 1..d\}$ $\rho(s, s') \le \epsilon \Rightarrow s' \sim_{\epsilon} s$

•
$$\rho(S, S') = \max_{s \in S} \min_{s' \in S'} \rho(s, s')$$

Definition (ϵ -approximation)

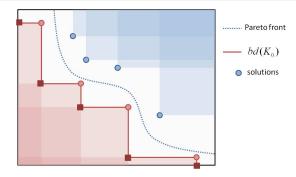
A set S is an ϵ -approximation of a Pareto front P if $\rho(P, S) \leq \epsilon$

The unsat information

Bounding the approximation quality.

Property

Any set S_1 of solutions which satisfies $\rho(bd(K_0), S_1) \leq \epsilon$ is an ϵ -approximation of the Pareto set P



Knee Points

The most unexplored corners of the cost space.

Definition (Knee Point)

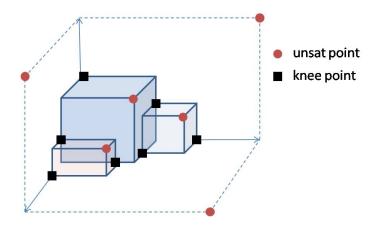
 $g \in bd(K_0)$ is a knee point if by subtracting any positive number of any of its component we obtain a point in the interior of K_0

Property

Let G be the set of knee points of K_0 . Then $\rho(bd(K_0), S_1) = \rho(G, S_1)$

Knee Points

Illustration.



Algorithm Sketch

Algorithm (Approximate Pareto Surface)

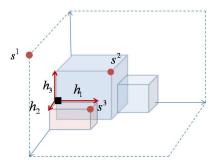
initialize		
repeat		
select(s)		
query(s) %	is ther	e a solution with $cost \leq s?$
if sat		
update-sat(s)	%	update the distance
else		
update-unsat(s)) %	generate new knee points
until $\rho(G, S_1) < \epsilon$		

Generating Knees Incrementally

Movement vector.

Geometrically a knee g is generated by d unsat points $[s^1 \dots s^d]$ as :

$$\forall i \ g_i = \min_j s_i^j$$



Definition (Movement Vector)

The movement vector of $g \in G$ is h with $\forall i \ h_i = \min_{j \neq i} s_i^j$

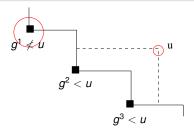
Generating Knees Incrementally

General rule.

Property (Knee Generation)

Let $g \in G$ and u a newly obtained unsat point, then :

1. g is kept iff $g \not< u$



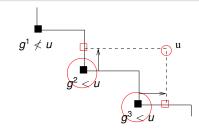
Generating Knees Incrementally

General rule.

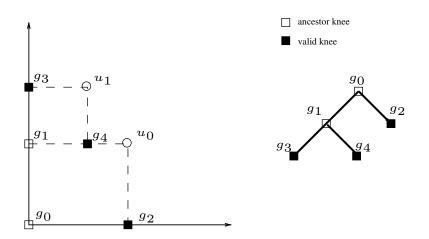
Property (Knee Generation)

Let $g \in G$ and u a newly obtained unsat point, then :

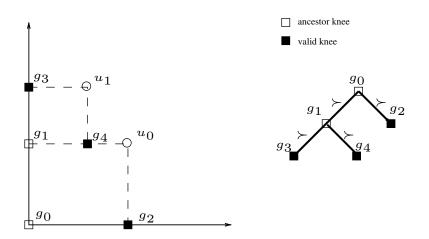
- 1. g is kept iff $g \not< u$
- 2. if g < u and $g = [s^1 \dots s^d]$ then $\forall i \ s.t \ u_i < h_i$ generate $g' = [s^1 \dots u_{j^0} \dots s^d]$



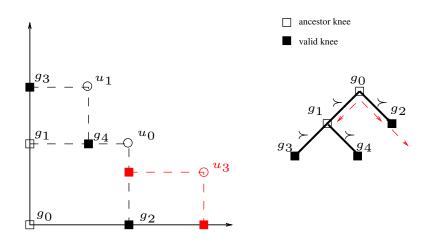
Making efficient updates.



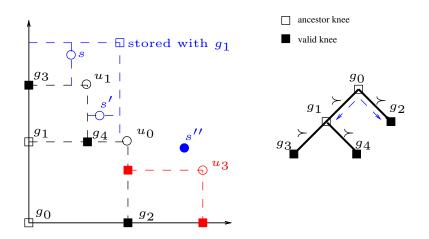
Making efficient updates.



Making efficient updates.

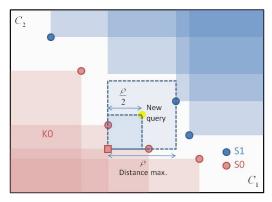


Making efficient updates.



Query Selection

- At each tree update the maximum distance is reevaluated
- Ask $g_{max} + \frac{\mathbf{r}_{max}}{2}$ where g_{max} reaches maximum distance
- tradeoff between SAT and UNSAT answers



Synthetic Experiments

Result tab.

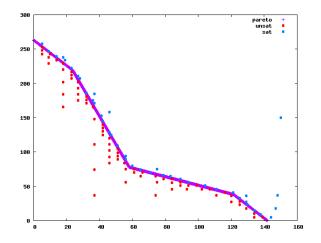
- Generate pseudo-randomly a non-convex discrete Pareto set (10,000 points)
- Launch the algorithm using an oracle specifically designed for the generated set

d	no tests	ϵ	$(1/\epsilon)^d$	min no queries	avg no queries	max no queries
2	40	0.050	400	5	11	27
		0.025	1600	6	36	111
		0.001	1000000	21	788	2494
3	40	0.050	8000	5	124	607
		0.025	64000	6	813	3811
	20	0.002	125000000	9	30554	208078
4	40	0.050	160000	5	1091	5970
		0.025	2560000	10	11560	46906

Table: The average number of queries for surfaces of various dimensions and values of ϵ .

Synthetic Experiments

Illustration.



Outline

Introduction

SAT-Based Approximation

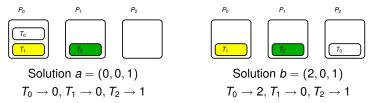
Multi-Criteria Stochastic Local Search

Application: Energy Aware Scheduling

Neighborhood

Capturing the concept of locality.

- Two solutions are *neighbors* if their decision vectors only differ by a small perturbation (or move)
- Typical moves: change/swap one component
- Example (mapping)



• The neighborhood of a decision vector is the set of its neighbors

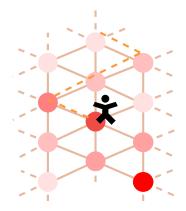
SLS Algorithm

A walk on the neigborhood graph.

The neighborhood induces an undirected graph structure on the decision space

A SLS algorithm

- Perform a walk on the graph
- Choose a neighbor with a stochastic search strategy
- Try to escape local optima (eg tabu search, simulated annealing)



Non local moves.

- New walk starting at a different solution
- Starting point chosen from a constant probability distribution over the decision space (non local move)
- Stochastic algorithm \Rightarrow different path
- · Often efficient in combating problems with the cost landscape

Definition (Restart Strategy)

A restart strategy *S* is an infinite sequence of positive integers t_1, t_2, t_3, \ldots indicating when to restart.

Illustration.

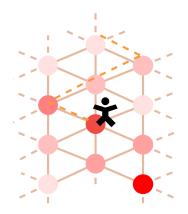


Illustration.

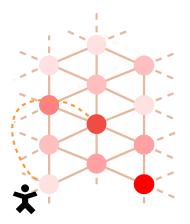
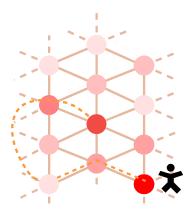


Illustration.



Constant Restart Strategy

Definition (Constant Strategy)

A strategy is constant if it is of the form t, t, t, ...

Dominance (Luby and al. 1993)

For any algorithm and problem instance there is a constant strategy which provides minimal expected time to the optimum.

- *T*: time probability distribution for the algorithm to find the optimum
- $c = f(T) \Rightarrow$ unknown

Luby Strategy

Definition.

- We assume no information on T
 - Any constant is equally likely to be the best
- Luby strategy \mathcal{L} fairly multiplexes the different 2^n constants:

 $112112411211248\cdots$

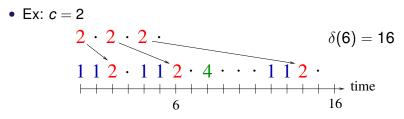
 $8 \cdot 1 = 4 \cdot 2 = 2 \cdot 4 = 1 \cdot 8$

We say that constant strategies are simulated by the Luby strategy

Luby Strategy

Delay.

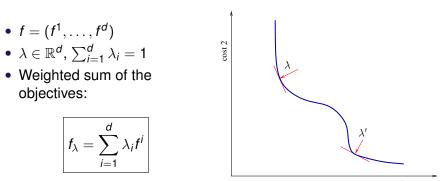
Strategy \mathcal{L} simulates any constant strategy c with some time delay



• 16 units of \mathcal{L} for simulating 6 units of strategy 2 ($\delta(6) = 16$)

In general strategy \mathcal{L} simulates any constant strategy with delay $\delta(t) \leq t(\lfloor \log t \rfloor + 1)$ (optimal).

A popular approach to tackle multi-objective optimization problems is to reduce them to several single-objective ones



Multi-Criteria Restart Strategy

Definition (Multi-Criteria Strategy)

A multi-criteria search strategy is an infinite sequence of pairs

 $\mathcal{S} = (\lambda(1), t(1)), (\lambda(2), t(2)), \dots$

where for every *i*, t_i is a positive integer and λ_i is a weight vector.

- Meaning: optimize $f_{\lambda(1)}$ for t(1) steps, then $f_{\lambda(2)}$ for t(2) ...
- Strategy for simulating every constant strategy (λ, c), (λ, c)...?
- No, weight vectors are sampled from an uncountable set
 - infinite delay

When λ and λ' are close to each other, the effort spent in optimizing f_{λ} is almost in the *same direction* as optimizing $f_{\lambda'}$

Definition (ϵ -Approximation)

A strategy *S* ϵ -approximates a strategy *S'* if for every *i*, t(i) = t'(i) and $|\lambda(i) - \lambda'(i)| < \epsilon$.

Strategy simulating an *ϵ*-approximation of any constant strategy (λ, c), (λ, c)...?

theoretically yes

Strategy $\mathcal{L}_{D_{\epsilon}}$

Let $\lambda_1 \dots \lambda_{m_{\epsilon}}$ be an ϵ -net

$$\mathcal{L}_{\mathcal{D}_{e}}: \quad \frac{(\lambda_{1}, 1), (\lambda_{2}, 1) \dots (\lambda_{m_{e}}, 1)}{(\lambda_{1}, 1), (\lambda_{2}, 1) \dots (\lambda_{m_{e}}, 1)} \\ (\lambda_{1}, 2), (\lambda_{2}, 2) \dots (\lambda_{m_{e}}, 2) \\ (\lambda_{1}, 1), (\lambda_{2}, 1) \dots (\lambda_{m_{e}}, 1)$$

 $\mathcal{L}_{D_{\epsilon}}$ simulates an ϵ -approximation of any constant strategy $(\lambda, c), (\lambda, c) \dots$ with delay $\delta(t) \leq tm_{\epsilon}(\lfloor \log t \rfloor + 1)$ (optimal)

Drawbacks:

- Computing and storing an ϵ -net is complicated (dim \geq 2)
- Which ϵ value to choose?

Stochastic Strategy \mathcal{L}^r

- $\mathcal{L}_{D_{\epsilon}}$ is bound to a particular ϵ value
- \mathcal{L}^r : strategy \mathcal{L} with $\lambda(i)$'s sampled uniformly at random

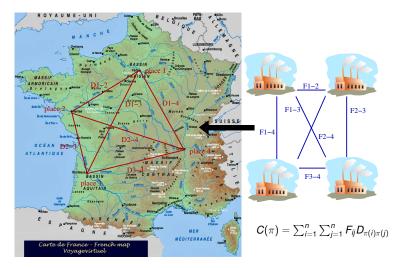
 $\mathcal{L}^{r} = rand(\lambda) \otimes \mathcal{L} = (\lambda(1), 1), (\lambda(2), 1), (\lambda(3), 2), (\lambda(4), 1) \dots$

• Intuitively, \mathcal{L}^{r} probabilistically behave as $\mathcal{L}_{D_{\epsilon}}$ for any ϵ and (λ, c)

Fairness

The expected time spent on simulating an ϵ -approximation of a constant strategy (λ , c) is the same for any (λ , c)

Quadratic Assignment Problem



Experiments

Setting.

Algorithm (Greedy Randomized Local Search)

```
initialize

repeat n times

if rnd() ≥ p

optimal_move()

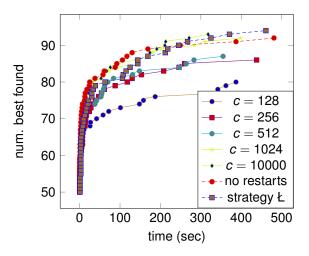
else

rnd_move()
```

- · Standard QAP move: swap the locations of two facilities
- 2D and 3D experiments on QAPLib and mQAPLib

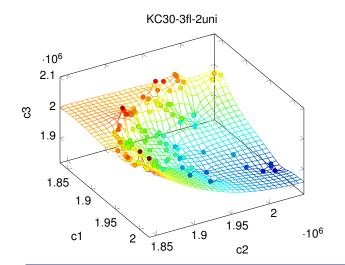
Experiments

Single-Criteria Results.



Experiments

3-dimensional Example.



Outline

Introduction

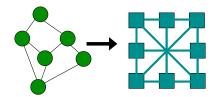
SAT-Based Approximation

Multi-Criteria Stochastic Local Search

Application: Energy Aware Scheduling

Bi-Criteria Multi-Processor Scheduling

- Architecture (Processors, Communication network)
- Application (task-graph)
- Static scheduling without preemption
- Two objectives to minimize
 - 1. Energy
 - 2. Schedule duration



SAT-based Scheduling

- Architecture with processors of configurable speeds
- Each speed is associated to a static energy cost
 - The sum of processor costs is the total platform cost

Processor speeds

Task assignments

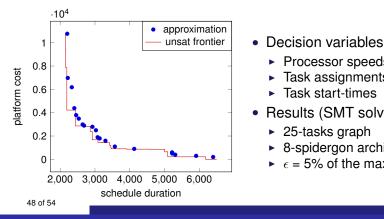
Results (SMT solver Z3)

8-spidergon architecture

• $\epsilon = 5\%$ of the max value

Task start-times

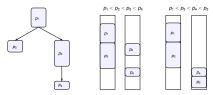
25-tasks graph



Scheduling with Local Search

Experimental setting.

- Processors running at fixed (but different) speeds
- Dynamic energy cost (task + communication)
- Schedule is a permutation of tasks
 - Representing priorities on processors

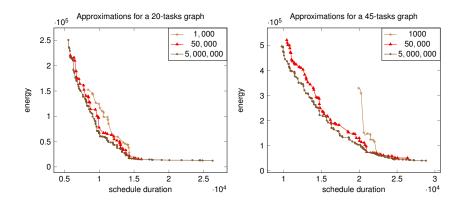


Incremental algorithm to recompute makespan at each move

# task	10	15	20	25	30	35	40	45
step time (ms)	0.18	0.39	0.55	0.77	0.8	1.1	1.35	1.38

Scheduling with Local Search

Results.



Conclusions

- SAT-based multi-criteria optimization (TACAS 10)
 - Novel approach for multi-criteria optimization
 - Provides a guarantee on the quality
 - Application to scheduling (ECRTS 11)
 - Application to mapping (SIES 11)
 - Scalability issues
- Multi-criteria stochastic local search (CEC 11)
 - Fast and scalable
 - Good distribution of solutions (in our experiments)
 - Need efforts for each class of problems

Future Work

SAT-based multi-criteria optimization

- Handle non-terminating calls
- Specialization to special classes of problems
- Other uses of multi-dimensional binary search algorithm
- Multi-criteria stochastic local search
 - Local search on complex problems (many constraints)
 - Combining neighborhoods associated to different objectives
- Multi-processor mapping and scheduling
 - Find the right place for multi-criteria optimization to guide decisions

Publications

J. Legriel, C. Le Guernic, S. Cotton, and O. Maler. Approximating the Pareto front of multi-criteria optimization problems. In *TACAS*, pages 69–83, 2010.

- J. Legriel and O. Maler.

Meeting deadlines cheaply. In *ECRTS*, 2011.

J. Legriel, S. Cotton, and O. Maler.

On universal search strategies for multi-criteria optimization using weighted sums.

In CEC, 2011.

S. Cotton, O. Maler, J. Legriel, and S. Saidi.

Multi-criteria optimization for mapping programs to multi-processors. In *SIES*, 2011.

Thank you for your attention