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Context of the Thesis

• Ph.D CIFRE STMicroelectronics Grenoble - Verimag
• Minalogic project ATHOLE

I low-power multi-processor platform for embedded systems
I partners: ST, CEA Leti, Thales Colombes, CWS, Verimag

• Verimag: high-level optimization methods which can guide
mapping and scheduling decisions

• This thesis: development of new multi-criteria optimization
techniques
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The Move to Multi-Processor Systems
A necessary transition to sustain Moore’s law.

If transistors were people..

1982 1999

Intel 286 Pentium III Core i7 Extreme Edition

134,000 (big stadium) 32 Million (Tokyo area) 1.3 Billion (China)

2010

Moore’s “law” (1975)
Empirically, the number of transistors integrated on a single chip
doubles roughly every two years.
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The Move to Multi-Processor Systems
A necessary transition to sustain Moore’s law.

• Hard to increase the performance of single cores further
I Walls (power, memory, ILP)
I Design complexity

Past Present Future

#cores

• Burden on the software side (manage parallel applications)
I mapping and scheduling
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The Move to Multi-Processor Systems
Embedded Multi-Processors.

• Mobility (low power)
• Greedy applications

I video encoding/decoding
I augmented reality

• Flexibility needed
• P2012, ST Grenoble

I multicore-processor to
replace hardware
accelerators
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Multi-Criteria Optimization
Motivating example : a bi-criteria mapping problem.

• Some problems related to multi-processors can be tackled via
combinatorial optimization
I e.g mapping/scheduling, design space exploration

• Ex: Mapping wrt load balancing/communications
I Find a tradeoff between load balancing/communications

......
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Multi-Criteria Optimization
Finding optimal trade-offs.

• Dominated solution,
some are better wrt all
criteria

• Optimal (Pareto)
solution, the others are
incomparable

communications

Pareto

Dominated
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Multi-Criteria Optimization
Drawbacks of reduction to single criteria.
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Multi-Criteria Optimization
Traditionnal approaches and our contribution.

• Classical methods
I Parametrized one-dimensional problem
I Ex: weighted sum
λ× load-imbalance + (1− λ)× communications

• Genetic algorithms
I mimic biological evolution
I Population, mutation & recombination
I Survival of the fittest

Our contribution consists of two new approaches:
1. Pareto front approximation using an SMT solver
2. Stochastic local search combined with weighted sum
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The problem studied
Approximating the Pareto front.

Multi-Criteria Optimization Problem

min c(x) s.t φ(x)

• x a decision vector (discrete and continuous variables)
• c a d-dimensional cost function
• φ(x) a set of problem specific constraints

• Goal: approximate the Pareto front with bounded distance
• Method: submit queries to a SMT (SAT Modulo Theories) solver
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Approximation using SAT queries
One-dimensional case.

• Binary search the cost space with queries like

0

C

C
2

∃x φ(x) ∧ c(x) ≤ C
2 ?

• The distance of C to the optimum is bounded by C − C0

• Our work extends the idea to multi-criteria

14 of 54



Approximation using SAT queries
One-dimensional case.

• Binary search the cost space with queries like

0 C

SAT

• The distance of C to the optimum is bounded by C − C0

• Our work extends the idea to multi-criteria

14 of 54



Approximation using SAT queries
One-dimensional case.

• Binary search the cost space with queries like

0 C

∃x φ(x) ∧ c(x) ≤ C
2 ?

C
2

• The distance of C to the optimum is bounded by C − C0

• Our work extends the idea to multi-criteria

14 of 54



Approximation using SAT queries
One-dimensional case.

• Binary search the cost space with queries like

0 CC0

• The distance of C to the optimum is bounded by C − C0

• Our work extends the idea to multi-criteria

14 of 54
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Approximation using SAT queries
Multi-dimensional case.

Multidimensional query : ∃x φ(x) ∧ c(x) ≤ s?
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Epsilon Approximation
Illustration.

• An ε-approximation of a
point does not worsen any
criterion value more than ε

• A ε-approximation of a
Pareto front includes an
approximation for every
point of the front
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Epsilon Approximation
Grid Method.

• Approximation reached in
(1
ε

)d
queries

approximation

Pareto points

unsat

ε

ε

17 of 54



Epsilon Approximation
A characterization using distance.

Definition (Directed Distance)
• ρ(s, s′) = max+{s′i − si : i = 1..d}

ρ(s, s′) ≤ ε⇒ s′ ∼ε s

• ρ(S,S′) = maxs∈S mins′∈S′ ρ(s, s′)

Definition (ε-approximation)
A set S is an ε-approximation of a Pareto front P if ρ(P,S) ≤ ε
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The unsat information
Bounding the approximation quality.

Property
Any set S1 of solutions which satisfies ρ(bd(K0),S1) ≤ ε is an
ε-approximation of the Pareto set P
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Knee Points
The most unexplored corners of the cost space.

Definition (Knee Point)
g ∈ bd(K0) is a knee point if by subtracting any positive number of
any of its component we obtain a point in the interior of K0

Property
Let G be the set of knee points of K0. Then
ρ(bd(K0),S1) = ρ(G,S1)
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Knee Points
Illustration.
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Algorithm Sketch

Algorithm (Approximate Pareto Surface)

initialize
repeat

select(s)
query(s) % is there a solution with cost ≤ s?
if sat

update-sat(s) % update the distance
else

update-unsat(s) % generate new knee points
until ρ(G,S1) < ε
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Generating Knees Incrementally
Movement vector.

Geometrically a knee g is
generated by d unsat points
[s1 . . . sd ] as :

∀i gi = min
j

sj
i

Definition (Movement Vector)

The movement vector of g ∈ G is h with ∀i hi = minj 6=i sj
i
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Generating Knees Incrementally
General rule.

Property (Knee Generation)
Let g ∈ G and u a newly obtained unsat point, then :
1. g is kept iff g 6< u

2. if g < u and g = [s1 . . . sd ] then ∀i s.t ui < hi generate
g′ = [s1 . . . u

io
. . . sd ]

ug1 6< u

g2 < u

g3 < u
24 of 54



Generating Knees Incrementally
General rule.

Property (Knee Generation)
Let g ∈ G and u a newly obtained unsat point, then :
1. g is kept iff g 6< u
2. if g < u and g = [s1 . . . sd ] then ∀i s.t ui < hi generate

g′ = [s1 . . . u
io
. . . sd ]

u

g2 < u

g3 < u

g1 6< u

24 of 54



Knee Tree
Making efficient updates.
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Query Selection

• At each tree update the maximum distance is reevaluated
• Ask gmax + rmax

2 where gmax reaches maximum distance
• tradeoff between SAT and UNSAT answers
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Synthetic Experiments
Result tab.

• Generate pseudo-randomly a non-convex discrete Pareto set
(10,000 points)

• Launch the algorithm using an oracle specifically designed for
the generated set

d no tests ε (1/ε)d min no queries avg no queries max no queries
2 40 0.050 400 5 11 27

0.025 1600 6 36 111
0.001 1000000 21 788 2494

3 40 0.050 8000 5 124 607
0.025 64000 6 813 3811

20 0.002 125000000 9 30554 208078
4 40 0.050 160000 5 1091 5970

0.025 2560000 10 11560 46906

Table: The average number of queries for surfaces of various
dimensions and values of ε.
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Synthetic Experiments
Illustration.
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Neighborhood
Capturing the concept of locality.

• Two solutions are neighbors if their decision vectors only differ
by a small perturbation (or move)

• Typical moves: change/swap one component
• Example (mapping)

P0 P1 P2

T0

T1 T2

P0 P1 P2

T1 T2 T0

Solution a = (0, 0, 1) Solution b = (2, 0, 1)

T0 → 0, T1 → 0, T2 → 1 T0 → 2, T1 → 0, T2 → 1

• The neighborhood of a decision vector is the set of its neighbors
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SLS Algorithm
A walk on the neigborhood graph.

The neighborhood induces an undirected graph structure on the
decision space

A SLS algorithm

• Perform a walk on the graph
• Choose a neighbor with a

stochastic search strategy
• Try to escape local optima (eg

tabu search, simulated
annealing)
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Restarts
Non local moves.

• New walk starting at a different solution
• Starting point chosen from a constant probability distribution

over the decision space (non local move)
• Stochastic algorithm⇒ different path
• Often efficient in combating problems with the cost landscape

Definition (Restart Strategy)
A restart strategy S is an infinite sequence of positive integers
t1, t2, t3, . . . indicating when to restart.
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Restarts
Illustration.
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Restarts
Illustration.
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Restarts
Illustration.
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Constant Restart Strategy

Definition (Constant Strategy)
A strategy is constant if it is of the form t , t , t , . . .

Dominance (Luby and al. 1993)
For any algorithm and problem instance there is a constant
strategy which provides minimal expected time to the optimum.

• T : time probability distribution for the algorithm to find the
optimum

• c = f (T )⇒ unknown
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Luby Strategy
Definition.

• We assume no information on T
I Any constant is equally likely to be the best

• Luby strategy L fairly multiplexes the different 2n constants:

2 2 4 2 2 4

18 . = 4 . 2 = 2 . 4 = 1 . 8

8

.....

11 11 11 11

We say that constant strategies are simulated by the Luby strategy
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Luby Strategy
Delay.

Strategy L simulates any constant strategy c with some time delay

• Ex: c = 2

1 1 2 1 1 2 4 1 1 2

2 2 2. .

. . . . . .

.

166

time

δ(6) = 16

• 16 units of L for simulating 6 units of strategy 2 (δ(6) = 16)

In general strategy L simulates any constant strategy with delay
δ(t) ≤ t(blog tc+ 1) (optimal).
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Weighted Sums of Objectives

A popular approach to tackle multi-objective optimization problems
is to reduce them to several single-objective ones

• f = (f 1, . . . , f d)

• λ ∈ Rd ,
∑d

i=1 λi = 1
• Weighted sum of the

objectives:

fλ =
d∑

i=1

λi f i

c
o
s
t 

2

cost 1

λ

λ′
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Multi-Criteria Restart Strategy

Definition (Multi-Criteria Strategy)
A multi-criteria search strategy is an infinite sequence of pairs

S = (λ(1), t(1)), (λ(2), t(2)), . . .

where for every i , ti is a positive integer and λi is a weight vector.

• Meaning: optimize fλ(1) for t(1) steps, then fλ(2) for t(2) . . .

• Strategy for simulating every constant strategy (λ, c), (λ, c) . . .?
• No, weight vectors are sampled from an uncountable set

I infinite delay
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Strategy Approximation

When λ and λ′ are close to each other, the effort spent in
optimizing fλ is almost in the same direction as optimizing fλ′

Definition (ε-Approximation)
A strategy S ε-approximates a strategy S′ if for every i , t(i) = t ′(i)
and |λ(i)− λ′(i)| < ε.

• Strategy simulating an ε-approximation of any constant strategy
(λ, c), (λ, c) . . . ?
I theoretically yes
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Strategy LDε

Let λ1 . . . λmε be an ε-net

(λ1,2), (λ2,2) . . . (λmε
,2)

(λ1,1), (λ2,1) . . . (λmε
,1)

(λ1,1), (λ2,1) . . . (λmε ,1)

(λ1,1), (λ2,1) . . . (λmε ,1)

L

LDε
:

LDε simulates an ε-approximation of any constant strategy
(λ, c), (λ, c) . . . with delay δ(t) ≤ tmε(blog tc+ 1) (optimal)

Drawbacks:
• Computing and storing an ε-net is complicated (dim ≥ 2)
• Which ε value to choose?
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Stochastic Strategy Lr

• LDε is bound to a particular ε value
• Lr : strategy L with λ(i)’s sampled uniformly at random

Lr = rand(λ)⊗ L = (λ(1),1), (λ(2),1), (λ(3),2), (λ(4),1) . . .

• Intuitively, Lr probabilistically behave as LDε for any ε and (λ, c)

Fairness
The expected time spent on simulating an ε-approximation of a
constant strategy (λ, c) is the same for any (λ, c)
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Quadratic Assignment Problem

D1−4
place 2

place 3

place 4

D1−2

D2−3

D1−3

D3−4

D2−4

F1−2

F3−4

F2−3

F2−4

F1−3

F1−4

place 1

C(π) =
∑n

i=1
∑n

j=1 FijDπ(i)π(j)
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Experiments
Setting.

Algorithm (Greedy Randomized Local Search)

initialize
repeat n times

if rnd() ≥ p
optimal_move()

else
rnd_move()

• Standard QAP move: swap the locations of two facilities
• 2D and 3D experiments on QAPLib and mQAPLib
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Experiments
Single-Criteria Results.
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Experiments
3-dimensional Example.
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Bi-Criteria Multi-Processor Scheduling

• Architecture (Processors, Communication network)
• Application (task-graph)
• Static scheduling without preemption
• Two objectives to minimize

1. Energy
2. Schedule duration
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SAT-based Scheduling

• Architecture with processors of configurable speeds
• Each speed is associated to a static energy cost

I The sum of processor costs is the total platform cost

2,000 3,000 4,000 5,000 6,000

0

0.2

0.4

0.6

0.8

1

·104

schedule duration

pl
at

fo
rm

co
st

approximation
unsat frontier • Decision variables

I Processor speeds
I Task assignments
I Task start-times

• Results (SMT solver Z3)
I 25-tasks graph
I 8-spidergon architecture
I ε = 5% of the max value
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Scheduling with Local Search
Experimental setting.

• Processors running at fixed (but different) speeds
• Dynamic energy cost (task + communication)
• Schedule is a permutation of tasks

I Representing priorities on processors

p2

p1

p3

p4

p1

p3

p2

p4

p1

p3

p4

p2

p1 < p2 < p3 < p4 p1 < p3 < p4 < p2

• Incremental algorithm to recompute makespan at each move

# task 10 15 20 25 30 35 40 45
step time (ms) 0.18 0.39 0.55 0.77 0.8 1.1 1.35 1.38
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Scheduling with Local Search
Results.
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Conclusions

• SAT-based multi-criteria optimization (TACAS 10)
I Novel approach for multi-criteria optimization
I Provides a guarantee on the quality
I Application to scheduling (ECRTS 11)
I Application to mapping (SIES 11)
I Scalability issues

• Multi-criteria stochastic local search (CEC 11)
I Fast and scalable
I Good distribution of solutions (in our experiments)
I Need efforts for each class of problems
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Future Work

• SAT-based multi-criteria optimization
I Handle non-terminating calls
I Specialization to special classes of problems
I Other uses of multi-dimensional binary search algorithm

• Multi-criteria stochastic local search
I Local search on complex problems (many constraints)
I Combining neighborhoods associated to different objectives

• Multi-processor mapping and scheduling
I Find the right place for multi-criteria optimization to guide decisions
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Thank you for your attention
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