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u Input can take into account errors due to linearisation
and discretisation

n Reachable sets:

u Set of points reachable from a speci ed initial set with
the considered dynamic under any possible input

u Computation required for safety veri cation, controller
synthesis,. ..

We will not detail here how g, andU can be obtained from a
continuous time system.
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A naive algorithm

Direct use of the recurence relation:
n+l — n U

For that, we need a class of sets closed under linear
transformation and Minkowski sum, for example: convex
polytopes represented by their vertices.

This naive algorithm has complexity abodtd 1.
where:

n N is the number of steps considered\ (2 [100; 1000
n dis the dimension of the systemd@ [2; 100)
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APPROX takes a set and computes an over-approximation with
bounded representation size.
For example: APPROX can be the Interval Hull.

Then, the algorithm is linear in the number of steps conseber
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Thus h+1 =( YT, and APPROX only needs to be tight in
the direction given by ™).
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But:

n Nno reported algorithm has bound on the error in terms of
diameter, volume, distance,:

n In some case, all approximation directions may converge
toward the same vector.
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The problem comes from the mixing of the Minkowski sum
Exact Algorithm (increases the complexity of the considered sets) and hnea
Int [ Hull .

Approximation transformation (propagates the errors).

Example

o We should separate these two operations.
ybrid Systems

Experimental

Results M 1
— n | U
Conclusion n — 0
=0

To compute , you need two linear transformations (on" *
and " 2U) and two Minkowski sums.
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Exact Algorithm

It is enough to compute the three following sequences:

n Xo= 0,Xn= Xpn1 (Xn= " o)

n VO - U, Vn — Vn 1 (\ﬁn — nU)
— — — n 1 |

n Sp=1f00,Sn=Sn 1 Vh 1 (Sh = i=0 U)

then =X, S;.
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Exact Algorithm

It is enough to compute the three following sequences:

n Xo= 0, Xn= Xn1 (Xn= " o)
n V0: U,Vn: Vn 1 (\ﬁn: nU)
n Sp=1f00,Sn=Sn 1 Vh 1 (Sh = in:o1 'U)
then =X, S;.

We can now forget about linear transformations (they are

performed on constant complexity sets)
We should focus on Minkowski sum:

n we can use Zonotopes [Girard] time complexityd§Nd?),
space complexity i©(Nd?)

u recall that the naive algorithm with vertices
representation has time complexi®(N 9 1)

n Or approximate
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Interval Hull Approximation

Introduction X 0 —

n 0, Xn= Xnp 1
n V0: U,Vn: Vn 1
So=1f0g, Sh = Sy 1

The wrapping e ect

A new algorithm
A simple idea n

Exact Algorithm o

Interval Hull —

and "y = BOX(Xn) S
Example

Hybrid Systems

BOX(Vn 1)

Experimental
Results

Conclusion
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(Xn= " o)
L (Vn: nU)
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The wrapping e ect n VO — U, Vn — Vn 1 1 (Vn — n U)
A new algorithm i

n So=1f0g,Sn=S 1 BOX(Va 1) (L' BOX( 'U))

Exact Algorithm

ond o < B
Example but for any setsA andB: BOX(A) BOX(B)= BOX(A B)
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A new algorithm i

n So=1f0g,Sn=S 1 BOX(Va 1) (BOX(" [t 'U))

Exact Algorithm

I | Hull -
and = BOX(Xpn) ~ Sp.

Example but for any setsA andB: BOX(A) BOX(B)= BOX(A B)
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Interval Hull Approximation

n Xo= 0, Xn= Xn 1 (Xp = " 0)
n VO - U, Vn - Vn 1 (D/n - nU)
n So=1f0g,Sh=Sy 1 BOX(V, 1) (BOX( ' 'U))

and , = BOX(Xn) Sh.
but for any setsA andB: BOX(A) BOX(B)= BOX(A B)
thus , = BOX( )

No wrapping e ect!

n time complexity: O(Nd?®) (as the exact algorithm)
n space complexityO(d? + Nd) (d times smaller)
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Hybrid Systems

Introduction If we are tight in the direction given by the normal to the guis:

The wrapping e ect

A new algorithm
A simple idea
Exact Algorithm

Interval Hull
Approximation

Example

Hybrid Systems

Experimental
Results

;i intersectsGe () i IntersectsGe:

Conclusion
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Dim 5

lteHder o Result can be exported to the Multi-Parametric Toolbox (MB.T

The wrapping e ect

A new algorithm

Experimental
Results

ET
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Conclusion
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Comparaison with the Ellipsoidal Toolbox

ot Interval Hull vs ET (tight in one random direction)
Tewspndees - [Kurzhanskiy, Varaiyal

A new algorithm

Experimental
Results

Dim 5

Benchmarks

Conclusion

dimension 5,1000time steps in 0.01s.
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Benchmarks

= 5 10 20 50 100 150 200
Exact 0:0s 0:02s 0:11s 1:11s 8:43s 35.9s 136s
BOX 0:0s 0:01s 0:07s 0:91s 8:08s 28.8s 131s

= 5 10 20 50 100 150 200
Exact | 246KB | 49KB | 1.72MB | 8:85MB | 33 /MB | 752MB | 133VIB
BOX || 246KB | 246KB | 246KB | 49KB | 98XKB | 2:21MB | 3:69MB

Table 1: Time and memory consumption fof = 100 for several linear time-
Invariant systems of di erent dimensions

Colas Le Guernic
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Summary

Introduction n as fast as Kurzhanskiy and Varaiya's algorithm (tight in two
i R e directions)
‘E\Xleevrvir:fn‘;:hm n needs very little memory
Results n can deal with any kind of input
cn n can produce nearly any kind of output (polytopes,
_Future work ellipsoids,: :)
n tight over- and under-approximation in user speci ed
directions

u better approximation
u guard optimal
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Future work

Introduction n Implementation ofS-band intersections
The wrapping e ect n intersection with the guards
n use of the support function

A new algorithm

Experimental
Results

u drop complexity
Conclusion

Summary u parallelization
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