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■ Discrete Linear Time Invariant System:

xk+1 = Φxk + uk x0 ∈ Ω0, ∀i ui ∈ U
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the considered dynamic under any possible input
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synthesis,. . .
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■ Discrete Linear Time Invariant System:

xk+1 = Φxk + uk x0 ∈ Ω0, ∀i ui ∈ U

◆ Obtained by discretisation of a continuous system
◆ Input can take into account errors due to linearisation

and discretisation

■ Reachable sets:

◆ Set of points reachable from a specified initial set with
the considered dynamic under any possible input

◆ Computation required for safety verification, controller
synthesis,. . .

We will not detail here how Ω0, Φ and U can be obtained from a
continuous time system.
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We want to compute the N first sets of the sequence defined by:

Ωn+1 = ΦΩn ⊕ U

■ Ω0 is the set of initial points
■ U is the set of inputs
■ Φ is a d × d matrix
■ ⊕ is the Minkowski sum

A ⊕ B = {a + b|a ∈ A and b ∈ B}

⊕ =
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Direct use of the recurence relation:

Ωn+1 = ΦΩn ⊕ U

For that, we need a class of sets closed under linear
transformation and Minkowski sum, for example: convex
polytopes represented by their vertices.
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Direct use of the recurence relation:

Ωn+1 = ΦΩn ⊕ U

For that, we need a class of sets closed under linear
transformation and Minkowski sum, for example: convex
polytopes represented by their vertices.
But:

Ωn−1 may have more than (2n)d−1

√
d

vertices.
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Direct use of the recurence relation:

Ωn+1 = ΦΩn ⊕ U

For that, we need a class of sets closed under linear
transformation and Minkowski sum, for example: convex
polytopes represented by their vertices.
But:

Ωn−1 may have more than (2n)d−1

√
d

vertices.

ΦΩn−1 needs more than (2n)d−1d
√

d multiplications.
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Direct use of the recurence relation:

Ωn+1 = ΦΩn ⊕ U

For that, we need a class of sets closed under linear
transformation and Minkowski sum, for example: convex
polytopes represented by their vertices.

This naive algorithm has complexity about Nd−1.

where:

■ N is the number of steps considered. (N ∈ [100; 1000])
■ d is the dimension of the system. (d ∈ [2; 100])
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Ωn+1 = APPROX(ΦΩn ⊕ U)

APPROX takes a set and computes an over-approximation with
bounded representation size.
For example: APPROX can be the Interval Hull.
Then, the algorithm is linear in the number of steps considered.
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APPROX takes a set and computes an over-approximation with
bounded representation size.
For example: APPROX can be the Interval Hull.
Then, the algorithm is linear in the number of steps considered.
But:

The approximation error can be exponential in the number of
steps!
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Ωn+1 = APPROX(ΦΩn ⊕ U)

APPROX takes a set and computes an over-approximation with
bounded representation size.
For example: APPROX can be the Interval Hull.
Then, the algorithm is linear in the number of steps considered.
But:

The approximation error can be exponential in the number of
steps!

Most of the effort has been made on looking for a suitable
APPROX function.
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How to evaluate if an APPROX function is suitable?
One that minimizes the volume? the Hausdorff distance?. . .
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How to evaluate if an APPROX function is suitable?
One that minimizes the volume? the Hausdorff distance?. . .
These criteria are often hard to evaluate, because they are not
conserved by linear transformation.
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How to evaluate if an APPROX function is suitable?
An easy to check criterion: Tightness [Kurzhanskiy,Varaiya].
Does the exact set Ωn “touch” the boundaries of its
over-approximation Ωn?
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If yes, this contact occurs in a specific direction `n and (if we
deal with convex sets):

max{x • `n|x ∈ Ωn} = max{x • `n|x ∈ Ωn}
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deal with convex sets):

max{x • `n|x ∈ Ωn} = max{x • `n|x ∈ Ωn}
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How to evaluate if an APPROX function is suitable?
An easy to check criterion: Tightness [Kurzhanskiy,Varaiya].
Does the exact set Ωn “touch” the boundaries of its
over-approximation Ωn?
If yes, this contact occurs in a specific direction `n and (if we
deal with convex sets):

max{x • `n|x ∈ Ωn} = max{x • `n|x ∈ Ωn}

max{Φ−1x • `n|x ∈ ΦΩn} = max{Φ−1x • `n|x ∈ ΦΩn}
max{x • (Φ−1)T `n|x ∈ ΦΩn} = max{x • (Φ−1)T `n|x ∈ ΦΩn}

Thus `n+1 = (Φ−1)T `n, and APPROX only needs to be tight in
the direction given by (Φ−n)T `0.
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Ωn+1 = APPROX(ΦΩn ⊕ U)
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Ωn+1 = APPROX(ΦΩn ⊕ U)

This is much better.
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Ωn+1 = APPROX(ΦΩn ⊕ U)

This is much better.

But:

■ no reported algorithm has bound on the error in terms of
diameter, volume, distance,. . .

■ in some case, all approximation directions may converge
toward the same vector.
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Ωn+1 = ΦΩn ⊕ U

The problem comes from the mixing of the Minkowski sum
(increases the complexity of the considered sets) and linear
transformation (propagates the errors).
We should separate these two operations.
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Ωn+1 = ΦΩn ⊕ U

The problem comes from the mixing of the Minkowski sum
(increases the complexity of the considered sets) and linear
transformation (propagates the errors).
We should separate these two operations.
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Ωn+1 = ΦΩn ⊕ U

The problem comes from the mixing of the Minkowski sum
(increases the complexity of the considered sets) and linear
transformation (propagates the errors).
We should separate these two operations.

Ω1 = ΦΩ0 ⊕ U
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Ωn+1 = ΦΩn ⊕ U

The problem comes from the mixing of the Minkowski sum
(increases the complexity of the considered sets) and linear
transformation (propagates the errors).
We should separate these two operations.

Ω2 = Φ(ΦΩ0 ⊕ U) ⊕ U
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Ωn+1 = ΦΩn ⊕ U

The problem comes from the mixing of the Minkowski sum
(increases the complexity of the considered sets) and linear
transformation (propagates the errors).
We should separate these two operations.

Ω2 = Φ2Ω0 ⊕ ΦU ⊕ U
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Ωn+1 = ΦΩn ⊕ U

The problem comes from the mixing of the Minkowski sum
(increases the complexity of the considered sets) and linear
transformation (propagates the errors).
We should separate these two operations.

Ω3 = Φ(Φ2Ω0 ⊕ ΦU ⊕ U) ⊕ U
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Ωn+1 = ΦΩn ⊕ U

The problem comes from the mixing of the Minkowski sum
(increases the complexity of the considered sets) and linear
transformation (propagates the errors).
We should separate these two operations.

Ω3 = Φ3Ω0 ⊕ Φ2U ⊕ ΦU ⊕ U
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Ωn+1 = ΦΩn ⊕ U

The problem comes from the mixing of the Minkowski sum
(increases the complexity of the considered sets) and linear
transformation (propagates the errors).
We should separate these two operations.

. . .
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Ωn+1 = ΦΩn ⊕ U

The problem comes from the mixing of the Minkowski sum
(increases the complexity of the considered sets) and linear
transformation (propagates the errors).
We should separate these two operations.

Ωn = ΦnΩ0 ⊕
n−1⊕

i=0

ΦiU
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Ωn+1 = ΦΩn ⊕ U

The problem comes from the mixing of the Minkowski sum
(increases the complexity of the considered sets) and linear
transformation (propagates the errors).
We should separate these two operations.

Ωn = ΦnΩ0 ⊕
n−1⊕

i=0

ΦiU

To compute Ωn you need two linear transformations (on Φn−1Ω0

and Φn−2U) and two Minkowski sums.
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It is enough to compute the three following sequences:

■ X0 = Ω0, Xn = ΦXn−1 (Xn = ΦnΩ0)
■ V0 = U , Vn = ΦVn−1 (Vn = ΦnU)
■ S0 = {0}, Sn = Sn−1 ⊕ Vn−1 (Sn =

⊕
n−1
i=0 ΦiU)

then Ωn = Xn ⊕ Sn.
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It is enough to compute the three following sequences:

■ X0 = Ω0, Xn = ΦXn−1 (Xn = ΦnΩ0)
■ V0 = U , Vn = ΦVn−1 (Vn = ΦnU)
■ S0 = {0}, Sn = Sn−1 ⊕ Vn−1 (Sn =

⊕
n−1
i=0 ΦiU)

then Ωn = Xn ⊕ Sn.
We can now forget about linear transformations (they are
performed on constant complexity sets)
We should focus on Minkowski sum:

■ we can use Zonotopes [Girard] time complexity is O(Nd3),
space complexity is O(Nd2)

◆ recall that the naive algorithm with vertices
representation has time complexity O(Nd−1)

■ or approximate
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■ X0 = Ω0, Xn = ΦXn−1 (Xn = ΦnΩ0)
■ V0 = U , Vn = ΦVn−1 (Vn = ΦnU)
■ S0 = {0}, Sn = Sn−1 ⊕ BOX(Vn−1) (

⊕
n−1
i=0 BOX(ΦiU) )

and Ωn = BOX(Xn) ⊕ Sn.
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■ X0 = Ω0, Xn = ΦXn−1 (Xn = ΦnΩ0)
■ V0 = U , Vn = ΦVn−1 (Vn = ΦnU)
■ S0 = {0}, Sn = Sn−1 ⊕ BOX(Vn−1) (

⊕
n−1
i=0 BOX(ΦiU) )

and Ωn = BOX(Xn) ⊕ Sn.
but for any sets A and B: BOX(A) ⊕ BOX(B) = BOX(A ⊕ B)
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■ X0 = Ω0, Xn = ΦXn−1 (Xn = ΦnΩ0)
■ V0 = U , Vn = ΦVn−1 (Vn = ΦnU)
■ S0 = {0}, Sn = Sn−1 ⊕ BOX(Vn−1) ( BOX(

⊕
n−1
i=0 ΦiU))

and Ωn = BOX(Xn) ⊕ Sn.
but for any sets A and B: BOX(A) ⊕ BOX(B) = BOX(A ⊕ B)
thus Ωn = BOX(Ωn)

No wrapping effect!
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■ X0 = Ω0, Xn = ΦXn−1 (Xn = ΦnΩ0)
■ V0 = U , Vn = ΦVn−1 (Vn = ΦnU)
■ S0 = {0}, Sn = Sn−1 ⊕ BOX(Vn−1) ( BOX(

⊕
n−1
i=0 ΦiU))

and Ωn = BOX(Xn) ⊕ Sn.
but for any sets A and B: BOX(A) ⊕ BOX(B) = BOX(A ⊕ B)
thus Ωn = BOX(Ωn)

No wrapping effect!

■ time complexity: O(Nd3) (as the exact algorithm)
■ space complexity: O(d2 + Nd) (d times smaller)
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X0: V0:

Ω0: S0:
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X1: V1:

Φ Φ

Ω1: S1:

BOX(X1) ⊕ S1 ⊕
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X1: V1:

Ω1: S1:

⊕
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X2: V2:

Φ Φ

Ω1: S2:

⊕
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X2: V2:

Ω2: S2:

⊕
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X3: V3:

Φ Φ

Ω2: S3:

⊕
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X3: V3:

Ω3: S3:

⊕
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X4: V4:

Φ Φ

Ω3: S4:

⊕
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X4: V4:

Ω4: S4:
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X5: V5:

Ω5: S5:
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If we are tight in the direction given by the normal to the guards:

Ωi intersects Ge ⇐⇒ Ωi intersects Ge.
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Result can be exported to the Multi-Parametric Toolbox (MPT).
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Interval Hull vs ET (tight in one random direction)
[Kurzhanskiy,Varaiya]

dimension 5, 1000 time steps in 0.01s.
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d = 5 10 20 50 100 150 200

Exact 0.0s 0.02s 0.11s 1.11s 8.43s 35.9s 136s
BOX 0.0s 0.01s 0.07s 0.91s 8.08s 28.8s 131s

d = 5 10 20 50 100 150 200

Exact 246KB 492KB 1.72MB 8.85MB 33.7MB 75.2MB 133MB
BOX 246KB 246KB 246KB 492KB 983KB 2.21MB 3.69MB

Table 1: Time and memory consumption for N = 100 for several linear time-
invariant systems of different dimensions
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■ as fast as Kurzhanskiy and Varaiya’s algorithm (tight in two
directions)

■ needs very little memory
■ can deal with any kind of input
■ can produce nearly any kind of output (polytopes,

ellipsoids,. . .)
■ tight over- and under-approximation in user specified

directions

◆ better approximation
◆ guard optimal



Future work

Introduction

The wrapping effect

A new algorithm

Experimental
Results

Conclusion

Summary

Future work

Colas Le Guernic HSCC 2006 – 20 / 20

■ implementation of S-band intersections
■ intersection with the guards
■ use of the support function

◆ drop complexity
◆ parallelization
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