Efficient Computation of Reachable Sets of Linear Time-Invariant Systems with Inputs

Colas Le Guernic*
École Normale Supérieure
joint work with
Antoine Girard*
University of Pennsylvania
Oded Maler
VERIMAG

March 29, 2006

* currently at VERIMAG

Motivations

$\frac{\text { Introduction }}{\substack{\text { Motivations } \\ \text { DLT }}}$The wrapping effect

A new algorithm
Experimental Results

Conclusion

Motivations

The wrapping effect
A new algorithm
Experimental
Results
Conclusion

- Discrete Linear Time Invariant System:

$$
x_{k+1}=\Phi x_{k}+u_{k} \quad x_{0} \in \Omega_{0}, \forall i u_{i} \in U
$$

- Obtained by discretisation of a continuous system
- Input can take into account errors due to linearisation and discretisation

Motivations

The wrapping effect
A new algorithm

■ Discrete Linear Time Invariant System:

$$
x_{k+1}=\Phi x_{k}+u_{k} \quad x_{0} \in \Omega_{0}, \forall i u_{i} \in U
$$

- Obtained by discretisation of a continuous system
- Input can take into account errors due to linearisation and discretisation

■ Reachable sets:

- Set of points reachable from a specified initial set with the considered dynamic under any possible input
- Computation required for safety verification, controller synthesis,...

Motivations

The wrapping effect
A new algorithm
Experimental
Results
Conclusion

■ Discrete Linear Time Invariant System:

$$
x_{k+1}=\Phi x_{k}+u_{k} \quad x_{0} \in \Omega_{0}, \forall i u_{i} \in U
$$

- Obtained by discretisation of a continuous system
- Input can take into account errors due to linearisation and discretisation
- Reachable sets:
- Set of points reachable from a specified initial set with the considered dynamic under any possible input
- Computation required for safety verification, controller synthesis,...

We will not detail here how Ω_{0}, Φ and U can be obtained from a continuous time system.

DLTI

DLTI

The wrapping effect
A new algorithm
Experimental
Results
Conclusion

We want to compute the N first sets of the sequence defined by:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

- Ω_{0} is the set of initial points
- U is the set of inputs
- Φ is a $d \times d$ matrix

■ \oplus is the Minkowski sum

$$
A \oplus B=\{a+b \mid a \in A \text { and } b \in B\}
$$

A naive algorithm

Direct use of the recurence relation:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

For that, we need a class of sets closed under linear transformation and Minkowski sum, for example: convex polytopes represented by their vertices.

A naive algorithm

The wrapping effect A naive algorithm Usual Solution: Approximation
Tight approximation Example

A new algorithm

Experimental

 ResultsConclusion

Direct use of the recurence relation:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

For that, we need a class of sets closed under linear transformation and Minkowski sum, for example: convex polytopes represented by their vertices.
But:

A naive algorithm

The wrapping effect A naive algorithm Usual Solution: Approximation
Tight approximation Example

A new algorithm

Experimental

 ResultsConclusion

Direct use of the recurence relation:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

For that, we need a class of sets closed under linear transformation and Minkowski sum, for example: convex polytopes represented by their vertices.
But:

A naive algorithm

The wrapping effect A naive algorithm
Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental Results

Conclusion

Direct use of the recurence relation:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

For that, we need a class of sets closed under linear transformation and Minkowski sum, for example: convex polytopes represented by their vertices.
But:

A naive algorithm

Direct use of the recurence relation:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

For that, we need a class of sets closed under linear transformation and Minkowski sum, for example: convex polytopes represented by their vertices.
But:

A naive algorithm

Direct use of the recurence relation:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

For that, we need a class of sets closed under linear transformation and Minkowski sum, for example: convex polytopes represented by their vertices.
But:

A naive algorithm

Direct use of the recurence relation:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

For that, we need a class of sets closed under linear transformation and Minkowski sum, for example: convex polytopes represented by their vertices.
But:

A naive algorithm

The wrapping effect

A naive algorithm

Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental Results

Conclusion

Direct use of the recurence relation:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

For that, we need a class of sets closed under linear transformation and Minkowski sum, for example: convex polytopes represented by their vertices.
But:

A naive algorithm

The wrapping effect

A naive algorithm

Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental Results

Conclusion

Direct use of the recurence relation:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

For that, we need a class of sets closed under linear transformation and Minkowski sum, for example: convex polytopes represented by their vertices.
But:

A naive algorithm

Direct use of the recurence relation:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

For that, we need a class of sets closed under linear transformation and Minkowski sum, for example: convex polytopes represented by their vertices.
But:

A naive algorithm

The wrapping effect

A naive algorithm

Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental Results

Conclusion

Direct use of the recurence relation:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

For that, we need a class of sets closed under linear transformation and Minkowski sum, for example: convex polytopes represented by their vertices.
But:

A naive algorithm

The wrapping effect

A naive algorithm

Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental Results

Conclusion

Direct use of the recurence relation:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

For that, we need a class of sets closed under linear transformation and Minkowski sum, for example: convex polytopes represented by their vertices.
But:

A naive algorithm

The wrapping effect

A naive algorithm

Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental Results

Conclusion

Direct use of the recurence relation:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

For that, we need a class of sets closed under linear transformation and Minkowski sum, for example: convex polytopes represented by their vertices.
But:

A naive algorithm

The wrapping effect

A naive algorithm

Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental Results

Conclusion

Direct use of the recurence relation:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

For that, we need a class of sets closed under linear transformation and Minkowski sum, for example: convex polytopes represented by their vertices.
But:

A naive algorithm

The wrapping effect

A naive algorithm

Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental Results

Conclusion

Direct use of the recurence relation:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

For that, we need a class of sets closed under linear transformation and Minkowski sum, for example: convex polytopes represented by their vertices.
But:

A naive algorithm

Direct use of the recurence relation:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

For that, we need a class of sets closed under linear transformation and Minkowski sum, for example: convex polytopes represented by their vertices.
But:

A naive algorithm

Introduction
The wrapping effect A naive algorithm
Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental Results

Conclusion

Direct use of the recurence relation:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

For that, we need a class of sets closed under linear transformation and Minkowski sum, for example: convex polytopes represented by their vertices.
But:

$$
\Omega_{n-1} \text { may have more than } \frac{(2 n)^{d-1}}{\sqrt{d}} \text { vertices. }
$$

A naive algorithm

Introduction
The wrapping effect A naive algorithm
Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental Results

Conclusion

Direct use of the recurence relation:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

For that, we need a class of sets closed under linear transformation and Minkowski sum, for example: convex polytopes represented by their vertices.
But:

$$
\begin{gathered}
\Omega_{n-1} \text { may have more than } \frac{(2 n)^{d-1}}{\sqrt{d}} \text { vertices. } \\
\Phi \Omega_{n-1} \text { needs more than }(2 n)^{d-1} d \sqrt{d} \text { multiplications. }
\end{gathered}
$$

A naive algorithm

Introduction
The wrapping effect

A naive algorithm

Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental Results

Conclusion

Direct use of the recurence relation:

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

For that, we need a class of sets closed under linear transformation and Minkowski sum, for example: convex polytopes represented by their vertices.

This naive algorithm has complexity about N^{d-1}.
where:

- N is the number of steps considered. $(N \in[100 ; 1000])$
- d is the dimension of the system. $(d \in[2 ; 100])$

Usual Solution: Approximation

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

APPROX takes a set and computes an over-approximation with bounded representation size.
For example: APPROX can be the Interval Hull.
Then, the algorithm is linear in the number of steps considered.

Usual Solution: Approximation

Experimental

\qquad
Conclusion

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

APPROX takes a set and computes an over-approximation with bounded representation size.
For example: APPROX can be the Interval Hull.
Then, the algorithm is linear in the number of steps considered. But:

Usual Solution: Approximation

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

APPROX takes a set and computes an over-approximation with bounded representation size.
For example: APPROX can be the Interval Hull.
Then, the algorithm is linear in the number of steps considered. But:

Usual Solution: Approximation

Experimental

\qquad
Conclusion

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

APPROX takes a set and computes an over-approximation with bounded representation size.
For example: APPROX can be the Interval Hull.
Then, the algorithm is linear in the number of steps considered. But:

Usual Solution: Approximation

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

APPROX takes a set and computes an over-approximation with bounded representation size.
For example: APPROX can be the Interval Hull.
Then, the algorithm is linear in the number of steps considered. But:

Usual Solution: Approximation

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

APPROX takes a set and computes an over-approximation with bounded representation size.
For example: APPROX can be the Interval Hull.
Then, the algorithm is linear in the number of steps considered. But:

Usual Solution: Approximation

The wrapping effect

A naive algorithm

Usual Solution:

 ApproximationTight approximation
Example
A new algorithm

Experimental

\qquad
Conclusion

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

APPROX takes a set and computes an over-approximation with bounded representation size.
For example: APPROX can be the Interval Hull.
Then, the algorithm is linear in the number of steps considered. But:

Usual Solution: Approximation

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

APPROX takes a set and computes an over-approximation with bounded representation size.
For example: APPROX can be the Interval Hull.
Then, the algorithm is linear in the number of steps considered. But:

Usual Solution: Approximation

A naive algorithm

Usual Solution:

 ApproximationTight approximation
Example
A new algorithm
Experimental
Results
Conclusion

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

APPROX takes a set and computes an over-approximation with bounded representation size.
For example: APPROX can be the Interval Hull.
Then, the algorithm is linear in the number of steps considered. But:

Usual Solution: Approximation

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

APPROX takes a set and computes an over-approximation with bounded representation size.
For example: APPROX can be the Interval Hull.
Then, the algorithm is linear in the number of steps considered. But:

Usual Solution: Approximation

A naive algorithm

Usual Solution:

 ApproximationTight approximation
Example
A new algorithm Experimental Results

Conclusion

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

APPROX takes a set and computes an over-approximation with bounded representation size.
For example: APPROX can be the Interval Hull.
Then, the algorithm is linear in the number of steps considered. But:

Usual Solution: Approximation

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

APPROX takes a set and computes an over-approximation with bounded representation size.
For example: APPROX can be the Interval Hull.
Then, the algorithm is linear in the number of steps considered. But:

Usual Solution: Approximation

Experimental

\qquad
Conclusion

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

APPROX takes a set and computes an over-approximation with bounded representation size.
For example: APPROX can be the Interval Hull.
Then, the algorithm is linear in the number of steps considered. But:

Usual Solution: Approximation

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

APPROX takes a set and computes an over-approximation with bounded representation size.
For example: APPROX can be the Interval Hull.
Then, the algorithm is linear in the number of steps considered. But:

The approximation error can be exponential in the number of steps!

Usual Solution: Approximation

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

APPROX takes a set and computes an over-approximation with bounded representation size.
For example: APPROX can be the Interval Hull.
Then, the algorithm is linear in the number of steps considered. But:

The approximation error can be exponential in the number of steps!
Most of the effort has been made on looking for a suitable APPROX function.

Tight approximation

Introduction
The wrapping effect
A naive algorithm Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental Results

Conclusion

How to evaluate if an APPROX function is suitable? One that minimizes the volume? the Hausdorff distance?...

Tight approximation

Introduction
The wrapping effect
A naive algorithm
Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental
Results
Conclusion

How to evaluate if an APPROX function is suitable?
One that minimizes the volume? the Hausdorff distance?... These criteria are often hard to evaluate, because they are not conserved by linear transformation.

Tight approximation

Introduction
The wrapping effect
A naive algorithm
Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental
Results
Conclusion

How to evaluate if an APPROX function is suitable? An easy to check criterion: Tightness [Kurzhanskiy, Varaiya]. Does the exact set Ω_{n} "touch" the boundaries of its over-approximation $\bar{\Omega}_{n}$?

Tight approximation

A naive algorithm Usual Solution:
Approximation

Example
A new algorithm

Experimental

Results
Conclusion

How to evaluate if an APPROX function is suitable? An easy to check criterion: Tightness [Kurzhanskiy, Varaiya]. Does the exact set Ω_{n} "touch" the boundaries of its over-approximation $\bar{\Omega}_{n}$? If yes, this contact occurs in a specific direction ℓ_{n} and (if we deal with convex sets):

$$
\max \left\{x \bullet \ell_{n} \mid x \in \Omega_{n}\right\}=\max \left\{x \bullet \ell_{n} \mid x \in \bar{\Omega}_{n}\right\}
$$

Tight approximation

Introduction
The wrapping effect
A naive algorithm Usual Solution:
Approximation
Tight approximation
Example
A new algorithm

Experimental

Results
Conclusion

How to evaluate if an APPROX function is suitable? An easy to check criterion: Tightness [Kurzhanskiy, Varaiya]. Does the exact set Ω_{n} "touch" the boundaries of its over-approximation $\bar{\Omega}_{n}$?
If yes, this contact occurs in a specific direction ℓ_{n} and (if we deal with convex sets):

$$
\begin{aligned}
\max \left\{x \bullet \ell_{n} \mid x \in \Omega_{n}\right\} & =\max \left\{x \bullet \ell_{n} \mid x \in \bar{\Omega}_{n}\right\} \\
\max \left\{\Phi^{-1} x \bullet \ell_{n} \mid x \in \Phi \Omega_{n}\right\} & =\max \left\{\Phi^{-1} x \bullet \ell_{n} \mid x \in \Phi \bar{\Omega}_{n}\right\} \\
\max \left\{x \bullet\left(\Phi^{-1}\right)^{T} \ell_{n} \mid x \in \Phi \Omega_{n}\right\} & =\max \left\{x \bullet\left(\Phi^{-1}\right)^{T} \ell_{n} \mid x \in \Phi \bar{\Omega}_{n}\right\}
\end{aligned}
$$

Tight approximation

Introduction
The wrapping effect
A naive algorithm Usual Solution:
Approximation
Tight approximation
Example
A new algorithm

Experimental

Results
Conclusion

How to evaluate if an APPROX function is suitable? An easy to check criterion: Tightness [Kurzhanskiy, Varaiya]. Does the exact set Ω_{n} "touch" the boundaries of its over-approximation $\bar{\Omega}_{n}$?
If yes, this contact occurs in a specific direction ℓ_{n} and (if we deal with convex sets):

$$
\begin{aligned}
\max \left\{x \bullet \ell_{n} \mid x \in \Omega_{n}\right\} & =\max \left\{x \bullet \ell_{n} \mid x \in \bar{\Omega}_{n}\right\} \\
\max \left\{\Phi^{-1} x \bullet \ell_{n} \mid x \in \Phi \Omega_{n}\right\} & =\max \left\{\Phi^{-1} x \bullet \ell_{n} \mid x \in \Phi \bar{\Omega}_{n}\right\} \\
\max \left\{x \bullet\left(\Phi^{-1}\right)^{T} \ell_{n} \mid x \in \Phi \Omega_{n}\right\} & =\max \left\{x \bullet\left(\Phi^{-1}\right)^{T} \ell_{n} \mid x \in \Phi \bar{\Omega}_{n}\right\}
\end{aligned}
$$

Thus $\ell_{n+1}=\left(\Phi^{-1}\right)^{T} \ell_{n}$, and APPROX only needs to be tight in the direction given by $\left(\Phi^{-n}\right)^{T} \ell_{0}$.

Example

Introduction
The wrapping effect
A naive algorithm
Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental
Results
Conclusion

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

Example

Introduction
The wrapping effect
A naive algorithm
Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental
Results
Conclusion

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

Example

Introduction
The wrapping effect
A naive algorithm
Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental
Results
Conclusion

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

Example

Introduction
The wrapping effect
A naive algorithm
Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental Results

Conclusion

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

Example

Introduction
The wrapping effect
A naive algorithm
Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental Results

Conclusion

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

APPROX(

Example

Introduction
The wrapping effect
A naive algorithm
Usual Solution:
Approximation
Tight approximation

Example

A new algorithm
Experimental Results

Conclusion

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

Example

Introduction
The wrapping effect
A naive algorithm
Usual Solution:
Approximation
Tight approximation

Example

A new algorithm
Experimental Results

Conclusion

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

APPROX Φ

Example

Introduction
The wrapping effect
A naive algorithm
Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental Results

Conclusion

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

Example

Introduction
The wrapping effect
A naive algorithm Usual Solution: Approximation
Tight approximation

Example

A new algorithm
Experimental Results

Conclusion

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

APPROX(Φ

Example

Introduction
The wrapping effect
A naive algorithm
Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental
Results
Conclusion

Example

Introduction
The wrapping effect
A naive algorithm
Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental Results

Conclusion

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

Introduction
The wrapping effect
A naive algorithm
Usual Solution:
Approximation
Tight approximation

Example

A new algorithm
Experimental
Results
Conclusion

Example

Example

Introduction
The wrapping effect
A naive algorithm
Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental
Results
Conclusion

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

Example

Introduction
The wrapping effect
A naive algorithm
Usual Solution:
Approximation
Tight approximation
Example
A new algorithm
Experimental
Results
Conclusion

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

This is much better.

Example

A naive algorithm Usual Solution:
Approximation
Tight approximation

Example

A new algorithm
Experimental Results

Conclusion

$$
\bar{\Omega}_{n+1}=\operatorname{APPROX}\left(\Phi \bar{\Omega}_{n} \oplus U\right)
$$

This is much better.

But:

- no reported algorithm has bound on the error in terms of diameter, volume, distance,...
■ in some case, all approximation directions may converge toward the same vector.

Introduction
The wrapping effect
A new algorithm
A simple idea
Exact Algorithm
Interval Hull
Approximation
Example
Hybrid Systems
Experimental Results

Conclusion

A new algorithm

A simple idea

Introduction
The wrapping effect
A new algorithm A simple idea
Exact Algorithm Interval Hull Approximation Example Hybrid Systems

Experimental Results

Conclusion

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

The problem comes from the mixing of the Minkowski sum (increases the complexity of the considered sets) and linear transformation (propagates the errors).
We should separate these two operations.

A simple idea

Introduction
The wrapping effect
A new algorithm A simple idea
Exact Algorithm Interval Hull Approximation Example Hybrid Systems

Experimental Results

Conclusion

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

The problem comes from the mixing of the Minkowski sum (increases the complexity of the considered sets) and linear transformation (propagates the errors).
We should separate these two operations.

$$
\Omega_{0}
$$

A simple idea

Introduction
The wrapping effect
A new algorithm

A simple idea

Exact Algorithm Interval Hull Approximation Example Hybrid Systems

Experimental Results

Conclusion

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

The problem comes from the mixing of the Minkowski sum (increases the complexity of the considered sets) and linear transformation (propagates the errors).
We should separate these two operations.

$$
\Omega_{1}=\Phi \Omega_{0} \oplus U
$$

A simple idea

Introduction
The wrapping effect
A new algorithm

A simple idea

Exact Algorithm Interval Hull Approximation
Example
Hybrid Systems
Experimental Results

Conclusion

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

The problem comes from the mixing of the Minkowski sum (increases the complexity of the considered sets) and linear transformation (propagates the errors).
We should separate these two operations.

$$
\Omega_{2}=\Phi\left(\Phi \Omega_{0} \oplus U\right) \oplus U
$$

A simple idea

Introduction
The wrapping effect
A new algorithm

A simple idea

Exact Algorithm Interval Hull Approximation
Example
Hybrid Systems
Experimental Results

Conclusion

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

The problem comes from the mixing of the Minkowski sum (increases the complexity of the considered sets) and linear transformation (propagates the errors).
We should separate these two operations.

$$
\Omega_{2}=\Phi^{2} \Omega_{0} \oplus \Phi U \oplus U
$$

A simple idea

Introduction
The wrapping effect
A new algorithm

A simple idea

Exact Algorithm Interval Hull Approximation
Example
Hybrid Systems
Experimental Results

Conclusion

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

The problem comes from the mixing of the Minkowski sum (increases the complexity of the considered sets) and linear transformation (propagates the errors).
We should separate these two operations.

$$
\Omega_{3}=\Phi\left(\Phi^{2} \Omega_{0} \oplus \Phi U \oplus U\right) \oplus U
$$

A simple idea

Introduction
The wrapping effect
A new algorithm

A simple idea

Exact Algorithm Interval Hull Approximation
Example
Hybrid Systems
Experimental Results

Conclusion

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

The problem comes from the mixing of the Minkowski sum (increases the complexity of the considered sets) and linear transformation (propagates the errors).
We should separate these two operations.

$$
\Omega_{3}=\Phi^{3} \Omega_{0} \oplus \Phi^{2} U \oplus \Phi U \oplus U
$$

A simple idea

Introduction
The wrapping effect
A new algorithm A simple idea
Exact Algorithm Interval Hull Approximation Example Hybrid Systems

Experimental Results

Conclusion

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

The problem comes from the mixing of the Minkowski sum (increases the complexity of the considered sets) and linear transformation (propagates the errors).
We should separate these two operations.

A simple idea

Introduction
The wrapping effect
A new algorithm

A simple idea

Exact Algorithm Interval Hull Approximation
Example
Hybrid Systems
Experimental Results

Conclusion

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

The problem comes from the mixing of the Minkowski sum (increases the complexity of the considered sets) and linear transformation (propagates the errors).
We should separate these two operations.

$$
\Omega_{n}=\Phi^{n} \Omega_{0} \oplus \bigoplus_{i=0}^{n-1} \Phi^{i} U
$$

A simple idea

Introduction
The wrapping effect
A new algorithm

A simple idea

Exact Algorithm Interval Hull Approximation
Example
Hybrid Systems
Experimental Results

Conclusion

$$
\Omega_{n+1}=\Phi \Omega_{n} \oplus U
$$

The problem comes from the mixing of the Minkowski sum (increases the complexity of the considered sets) and linear transformation (propagates the errors).
We should separate these two operations.

$$
\Omega_{n}=\Phi^{n} \Omega_{0} \oplus \bigoplus_{i=0}^{n-1} \Phi^{i} U
$$

To compute Ω_{n} you need two linear transformations (on $\Phi^{n-1} \Omega_{0}$ and $\Phi^{n-2} U$) and two Minkowski sums.

Exact Algorithm

A new algorithm

A simple idea
Exact Algorithm
Interval Hull
Approximation
Example
Hybrid Systems
Experimental Results

Conclusion

It is enough to compute the three following sequences:
■ $X_{0}=\Omega_{0}, X_{n}=\Phi X_{n-1}$

$$
\begin{array}{r}
\left(X_{n}=\Phi^{n} \Omega_{0}\right) \\
\left(V_{n}=\Phi^{n} U\right) \\
\left(S_{n}=\bigoplus_{i=0}^{n-1} \Phi^{i} U\right)
\end{array}
$$

■ $V_{0}=U, V_{n}=\Phi V_{n-1}$
■ $S_{0}=\{0\}, S_{n}=S_{n-1} \oplus V_{n-1}$
then $\Omega_{n}=X_{n} \oplus S_{n}$.

Exact Algorithm

Introduction
The wrapping effect
A new algorithm
A simple idea

Exact Algorithm

Interval Hull
Approximation
Example
Hybrid Systems
Experimental Results

Conclusion

It is enough to compute the three following sequences:
■ $X_{0}=\Omega_{0}, X_{n}=\Phi X_{n-1}$

$$
\begin{array}{r}
\left(X_{n}=\Phi^{n} \Omega_{0}\right) \\
\left(V_{n}=\Phi^{n} U\right) \\
\left(S_{n}=\bigoplus_{i=0}^{n-1} \Phi^{i} U\right)
\end{array}
$$

- $V_{0}=U, V_{n}=\Phi V_{n-1}$

■ $S_{0}=\{0\}, S_{n}=S_{n-1} \oplus V_{n-1}$
then $\Omega_{n}=X_{n} \oplus S_{n}$.
We can now forget about linear transformations (they are performed on constant complexity sets)
We should focus on Minkowski sum:
■ we can use Zonotopes [Girard] time complexity is $\mathcal{O}\left(N d^{3}\right)$, space complexity is $\mathcal{O}\left(N d^{2}\right)$

- recall that the naive algorithm with vertices representation has time complexity $\mathcal{O}\left(N^{d-1}\right)$
■ or approximate

Interval Hull Approximation

Introduction
The wrapping effect
A new algorithm
A simple idea
Exact Algorithm
Interval Hull
Approximation
Example
Hybrid Systems
Experimental
Results
Conclusion

$$
\begin{array}{llr}
\square & X_{0}=\Omega_{0}, X_{n}=\Phi X_{n-1} & \left(X_{n}=\Phi^{n} \Omega_{0}\right) \\
\text { ■ } & V_{0}=U, V_{n}=\Phi V_{n-1} & \left(V_{n}=\Phi^{n} U\right) \\
\text { ■ } & S_{0}=\{0\}, S_{n}=S_{n-1} \oplus \operatorname{BOX}\left(V_{n-1}\right) & \left(\oplus_{i=0}^{n-1} \operatorname{BOX}\left(\Phi^{i} U\right)\right)
\end{array}
$$

$$
\text { and } \bar{\Omega}_{n}=\operatorname{BOX}\left(X_{n}\right) \oplus S_{n}
$$

Interval Hull Approximation

Introduction
The wrapping effect
A new algorithm
A simple idea
Exact Algorithm
Interval Hull
Approximation
Example
Hybrid Systems
Experimental
Results
Conclusion

$$
\begin{array}{lr}
\square & X_{0}=\Omega_{0}, X_{n}=\Phi X_{n-1} \\
\text { ■ } & \left(X_{n}=\Phi^{n} \Omega_{0}\right) \\
\text { ■ } & V_{n}=\Phi V_{n-1} \\
S_{0}=\{0\}, S_{n}=S_{n-1} \oplus \operatorname{BOX}\left(V_{n-1}\right) & \left(\bigoplus_{n=0}^{n-1} \operatorname{BOX}\left(\Phi^{i} U\right)\right) \\
\text { and } \bar{\Omega}_{n}=\operatorname{BOX}\left(X_{n}\right) \oplus S_{n} . & \\
\text { but for any sets } A \text { and } B: \operatorname{BOX}(A) \oplus \operatorname{BOX}(B)=\operatorname{BOX}(A \oplus B)
\end{array}
$$

Interval Hull Approximation

Introduction
The wrapping effect
A new algorithm
A simple idea
Exact Algorithm
Interval Hull
Approximation
Example
Hybrid Systems
Experimental
Results

Conclusion

- $X_{0}=\Omega_{0}, X_{n}=\Phi X_{n-1}$ $\left(X_{n}=\Phi^{n} \Omega_{0}\right)$
- $V_{0}=U, V_{n}=\Phi V_{n-1}$
$\left(V_{n}=\Phi^{n} U\right)$
$\square S_{0}=\{0\}, S_{n}=S_{n-1} \oplus \operatorname{BOX}\left(V_{n-1}\right) \quad\left(\operatorname{BOX}\left(\oplus_{i=0}^{n-1} \Phi^{i} U\right)\right)$ and $\bar{\Omega}_{n}=\operatorname{BOX}\left(X_{n}\right) \oplus S_{n}$. but for any sets A and $B: \operatorname{BOX}(A) \oplus \operatorname{BOX}(B)=\operatorname{BOX}(A \oplus B)$ thus $\bar{\Omega}_{n}=\operatorname{BOX}\left(\Omega_{n}\right)$

No wrapping effect!

Interval Hull Approximation

Hybrid Systems
Experimental Results

Conclusion

■ $X_{0}=\Omega_{0}, X_{n}=\Phi X_{n-1}$ $\left(X_{n}=\Phi^{n} \Omega_{0}\right)$
■ $V_{0}=U, V_{n}=\Phi V_{n-1}$
$\left(V_{n}=\Phi^{n} U\right)$
$\square S_{0}=\{0\}, S_{n}=S_{n-1} \oplus \operatorname{BOX}\left(V_{n-1}\right) \quad\left(\operatorname{BOX}\left(\oplus_{i=0}^{n-1} \Phi^{i} U\right)\right)$ and $\bar{\Omega}_{n}=\operatorname{BOX}\left(X_{n}\right) \oplus S_{n}$. but for any sets A and $B: \operatorname{BOX}(A) \oplus \operatorname{BOX}(B)=\operatorname{BOX}(A \oplus B)$ thus $\bar{\Omega}_{n}=\operatorname{BOX}\left(\Omega_{n}\right)$

No wrapping effect!

■ time complexity: $\mathcal{O}\left(N d^{3}\right)$ (as the exact algorithm)

- space complexity: $\mathcal{O}\left(d^{2}+N d\right)$ (d times smaller)

Example

Example

Example

Introduction
The wrapping effect
A new algorithm
A simple idea
Exact Algorithm Interval Hull Approximation

Example

Hybrid Systems
Experimental Results

Conclusion

Example

Introduction
The wrapping effect
A new algorithm
A simple idea
Exact Algorithm Interval Hull Approximation

Example

Hybrid Systems
Experimental Results

Conclusion

Example

Introduction
The wrapping effect
A new algorithm
A simple idea
Exact Algorithm Interval Hull Approximation

Example

Hybrid Systems
Experimental Results

Conclusion

Example

Introduction
The wrapping effect
A new algorithm
A simple idea
Exact Algorithm Interval Hull Approximation

Example

Hybrid Systems
Experimental Results

Conclusion

Example

Introduction
The wrapping effect
A new algorithm
A simple idea
Exact Algorithm
Interval Hull
Approximation

Example

Hybrid Systems
Experimental Results

Conclusion

Example

Introduction
The wrapping effect
A new algorithm
A simple idea
Exact Algorithm
Interval Hull
Approximation

Example

Hybrid Systems
Experimental Results

Conclusion

Example

Introduction
The wrapping effect
A new algorithm
A simple idea
Exact Algorithm Interval Hull Approximation

Example

Hybrid Systems
Experimental Results

Conclusion

Example

Introduction
The wrapping effect
A new algorithm
A simple idea
Exact Algorithm Interval Hull Approximation

Example

Hybrid Systems
Experimental Results

Conclusion

Hybrid Systems

Introduction
The wrapping effect
A new algorithm
A simple idea
Exact Algorithm Interval Hull
Approximation
Example

```
Hybrid Systems
```

Experimental Results

Conclusion

If we are tight in the direction given by the normal to the guards:

$$
\bar{\Omega}_{i} \text { intersects } G_{e} \Longleftrightarrow \Omega_{i} \text { intersects } G_{e} .
$$

Experimental Results

Dim 5

Introduction
The wrapping effect
A new algorithm
Experimental
Results
Dim 5
ET
Benchmarks
Conclusion

Result can be exported to the Multi-Parametric Toolbox (MPT).

Comparaison with the Ellipsoidal Toolbox

Introduction
The wrapping effect
A new algorithm
Experimental Results

Dim 5

ET
Benchmarks
Conclusion

Interval Hull vs ET (tight in one random direction) [Kurzhanskiy,Varaiya]

dimension 5, 1000 time steps in 0.01s.

Benchmarks

$d=$	5	10	20	50	100	150	200
Exact	0.0 s	0.02 s	0.11 s	1.11 s	8.43 s	35.9 s	136 s
BOX	0.0 s	0.01 s	0.07 s	0.91 s	8.08 s	28.8 s	131 s

$d=$	5	10	20	50	100	150	200
Exact	246 KB	492 KB	1.72 MB	8.85 MB	33.7 MB	75.2 MB	133 MB
BOX	246 KB	246 KB	246 KB	492 KB	983 KB	2.21 MB	3.69 MB

Table 1: Time and memory consumption for $N=100$ for several linear timeinvariant systems of different dimensions

Introduction
The wrapping effect
A new algorithm
Experimental
Results
Conclusion
Summary
Future work

Summary

Introduction
The wrapping effect
A new algorithm
Experimental Results

Conclusion Summary
Future work

- as fast as Kurzhanskiy and Varaiya's algorithm (tight in two directions)
- needs very little memory
- can deal with any kind of input
- can produce nearly any kind of output (polytopes, ellipsoids,...)
- tight over- and under-approximation in user specified directions
- better approximation
- guard optimal

Future work

Introduction
The wrapping effect
A new algorithm
Experimental
Results
Conclusion
Summary
Future work

■ implementation of \mathcal{S}-band intersections

- intersection with the guards
- use of the support function
- drop complexity
- parallelization

