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I Systems Biology: the new gold rush for many mathematical
and technical disciplines

I Biophysics, Biomatics, Bioinformatics, ...

I In our domain: application of (Petri nets, process algebras,
rewriting systems, logic, probabilistic systems, hybrid systems,
...) to biological modeling

I So why not Timed Automata?
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More Seriously

I The study of biological phenomena may benefit from dynamic
models that allow predictions concerning the evolution of
processes over time

I Complex processes with different types of state variables that
may represent different types of entities (gene activation,
product concentration) evolving with different time scales

I The choice of dynamical models used by biologists (e.g.
differential equations, Boolean networks) is sometimes
accidental, not always reflecting all that exists in other
mathematical and engineering disciplines and what is
appropriate for the phenomena

I As in other domains, timed models can play an important role
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Summary of This Work

I Motivation: genetic regulatory networks

I Existing discrete models based on asynchronous automata

I We use delay equations on signals and build timed automata
based on previous work on asynchronous circuits

I We extend the model from Boolean to multi-valued

I Implement in IF and show feasibility on some examples

I No new significant mathematical or biological results but
interesting observations on discrete timed modeling of
continuous processes
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Genetic Regulatory Networks for (and by) Dummies

I A set G = {g1, . . . , gn} of genes

I A set P = {p1, . . . , pn} of products (proteins)

I Each gene is responsible for the production of one product

I Genes are viewed as Boolean variables (On/Off)

I When gi = 1 it will tend to increase the quantity of pi

I When gi = 0 the quantity of pi will decrease (degradation)

I Feedback from products concentrations to genes: when the
quantity of a product is below/above some threshold it may
set one or more genes on or off
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Continuous and Discrete Models

I Product quantities can be viewed as integer (quantity) or real
(concentration of molecules in the cell) numbers

I The system can be viewed as a hybrid automaton with
discrete states corresponding to combinations of gene
activations states

I The evolution of product concentrations can be described
using differential equations on concentration

I Alternatively, the domain of these concentrations can be
discretized into a finite (and small) number of ranges

I The most extreme of these discretizations is to to consider a
Boolean domain {0, 1} indicating present or absent



The Discrete Model of R. Thomas

I Gene activation is specified as a Boolean function over the
presence/absence of products

I When a gene changes its value, its corresponding product will
follow within some unspecified delay



The Discrete Model of R. Thomas

I Gene activation is specified as a Boolean function over the
presence/absence of products

I When a gene changes its value, its corresponding product will
follow within some unspecified delay

I The resulting model is equivalent to an asynchronous
automaton

I The relative speeds of producing different products are not
modeled

I The model admits many behaviors which are not possible if
these speeds are taken into account



The Discrete Model of R. Thomas

I Gene activation is specified as a Boolean function over the
presence/absence of products

I When a gene changes its value, its corresponding product will
follow within some unspecified delay

I The resulting model is equivalent to an asynchronous
automaton

I The relative speeds of producing different products are not
modeled

I The model admits many behaviors which are not possible if
these speeds are taken into account

I We want to add this timing information in a systematic
manner as we did in the past for asynchronous digital circuits
[Maler and Pnueli 95]
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Boolean Delay Networks

· · ·
fnf3f2f1

g1 g2 g3
gn

D2D1 D3 Dn
· · ·

· · ·

p1 p2 p3 pn

I A change in the activation of a gene is considered
instantaneous once the value of f has changed

I This change is propagated to the product within a
non-deterministic but bi-bounded delay specified by an interval



The Delay Operator

I For each i we define a delay operator Di , a function from
Boolean signals to Boolean signals characterized by 4
parameters

pi gi p′
i ∆

0 0 0 −
0 1 1 [l↑, u↑]
1 0 0 [l↓, u↓]
1 1 1 −

I When pi 6= gi , pi will catch up with gi within t ∈ [l↑, u↑]
(rising) or t ∈ [l↓, u↓] (falling)
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t t + l↑ t + u↑ t′ t′ + l↓ t′ + u↓

gi

pi

Nondeterministic

t t′t + d↑

gi

pi

t′ + d↓

Determinisitc

I The semantics of the network is the set of all Boolean signals
satisfying the following set of signal inclusions

gi = fi (p1, . . . , pn)
pi ∈ Di (gi )
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Modeling with Timed Automata

I For each equation gi = fi (p1, . . . , pn) we build the automaton

g gf (p1, . . . , pn) = 1

f (p1, . . . , pn) = 0

I For each delay inclusion pi ∈ Di (gi ) we build the automaton

c ≥ l↑

c ≥ l↓

c < u↓

gp gp

gp gp

c < u↑

g = 1/

c := 0

g = 0/
c := 0

I Composing these automata together we obtain a timed
automaton whose semantics coincides with that of the system
of signal inclusions



The Delay Automaton

I The automaton has two stable states gp and gp where the
gene and the product agree

I When g changes (excitation) it moves to the unstable state
and reset a clock to zero

I It can stay in an unstable state as long as c < u and can
stabilize as soon as c > l .

c ≥ l↑

c ≥ l↓

c < u↓

gp gp

gp gp

c < u↑

g = 1/

c := 0

g = 0/
c := 0



Expressing Temporal Uncertainty

I In this automaton the uncertainty interval [l , u] is expressed
by the non-punctual intersection of the guard c ≥ l and the
invariant c < u

I An alternative representation: making the stabilization
transition deterministic and accompany the excitation
transition with a non-deterministic reset

c = u↓

c < u↑

c < u↓

gp gp

gp gp

c = u↑

c := [0, u↑ − l↑]
g = 1/

g = 0/
c := [0, u↓ − l↓]

c ≥ l↑

c ≥ l↓

c < u↓

gp gp

gp gp

c < u↑

g = 1/

c := 0

g = 0/
c := 0
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Where do Delay bounds Come From?

I These are abstractions of continuous growth and decay
processes indicating the time it takes to move between points
in domains p0 = [0, θ] and p1 = [θ, 1]

I For example, for constant rates k↑ and k↓ the bounds will be
D↑ = [0, θ/k↑] and D↓ = [0, θ/k↓]

θ

p

t
u↓

Decay

p1

p0

θ

t

p

u↑

Production

p0

p1

I In any case, if we want the abstraction to be conservative we
should have a zero lower bound

I And this smells of Zenonism...
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To Zeno or not to Zeno?

I Consider a negative feedback loop where the presence of p

turns g off and its absence turns g on

g

D

p

¬p

c = u↓

c < u↑

c < u↓

gp gp

gp gp

c = u↑

c := [0, u↑] c := [0, u↓]

I Among the behaviors that the automaton may exhibit, if we
allow a zero lower bound, is a zero time cycle

I Whether this is considered a bug or a feature depends on
one’s point of view

I This is related to the fundamental difference between the
discrete and the continuous
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Zenonism from a Continuous Point of View

I The continuous model of the negative feedback loop is a
one-dimensional vector field pointing to an equilibrium point θ

θ

I In “reality” the value of p will have small oscillations around θ
which is normal. Not much difference between θ, θ + ε, θ − ε

I Discrete abstraction amplifies this difference. The inverse
image of the oscillating Boolean signal contains also large
oscillations

p

θ

p0

p1

t

p

p0

p1

θ

t
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Regrets and Abortions

I Another point in favor of a zero lower bound:

I Suppose g changes, triggers a change in p and then switches
back before p has stabilized, aborting the process

c = u↓

c < u↑

c < u↓

gp gp

gp gp

c = u↑

g = 0/
c := [0, u↓]

g = 1/
c := [0, u↑]

g = 1/g = 0/
θ

gp

p

gp gp gp

p

gpgp

I In the “stable” state there is a decay process inside p0

I Without additional clocks we do not now for how long

I Has the p level returned to the “nominal” low value or is still
close to the threshold?
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Multi-Valued Models

I The incompatibility between the discrete and the continuous
is an eternal problem

I Its effect on modeling and analysis can be reduced
significantly using multi-valued discrete models

I Instead of {0, 1} we use {0, 1, . . . ,m − 1} which, via a set
0 < θ1 < θ2 < . . . , < θm−1 < 1 of thresholds, defines every
discrete state as

pi = [θi , θi+1]

0 . . . θm−1

p0 p1 p2 pm−1. . .

θ2θ1

I If you just entered pi from pi−1, you need to cross the whole
pi in order to reach pi+1



Multi-Valued Delay Operator

I The delay operator for multiple values will have 2(m − 1)
parameters in each direction.

I When g = 1, p will progress toward the next level and vice
versa

g p p′ ∆ g p p′ ∆

0 0 0 − 1 0 1 [l↑0 , u↑
0 ]

0 1 0 [l↓1 , u↓
1 ] 1 1 2 [l↑1 , u↑

1 ]

0 2 1 [l↓2 , u↓
2 ] 1 2 3 [l↑2 , u↑

2 ]
. . . . . . . . . . . . . . . . . . . . . . . .

0 m − 1 m − 2 [l↓m−1, u
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Multi-Valued Delay Operator

I The delay operator for multiple values will have 2(m − 1)
parameters in each direction.

I When g = 1, p will progress toward the next level and vice
versa

g p p′ ∆ g p p′ ∆

0 0 0 − 1 0 1 [l↑0 , u↑
0 ]

0 1 0 [l↓1 , u↓
1 ] 1 1 2 [l↑1 , u↑

1 ]

0 2 1 [l↓2 , u↓
2 ] 1 2 3 [l↑2 , u↑

2 ]
. . . . . . . . . . . . . . . . . . . . . . . .

0 m − 1 m − 2 [l↓m−1, u
↓
m−1] 1 m − 1 m − 1 −

l
↑
i = min{t : θi

t
−→ θi+1} u

↑
i = max{t : θi

t
−→ θi+1}

l
↓
i = min{t : θi

t
−→ θi−1} u

↓
i = max{t : θi

t
−→ θi−1}



The Automaton for the Multi-Valued Model

0 . . . θm−1

p0 p1 p2 pm−1. . .

θ2θ1

c < u
↓

2

(g , 2)

(g , 2)

g = 0/

c < u
↑

2c < u
↑

0

(g , 0)

(g , 0)

g = 0/

c < u
↓

1

(g , 1)

(g , 1)

c := [0, u
↓

1 ]
g = 0/

c := [0, u
↓

2 ]

c < u
↑

1

c = u
↑

0 / c = u
↑

1 / c = u
↑

2 /

c = u
↓

3 /c = u
↓

2 /c = u
↓

1

g = 1/
c := [0, u

↑

2 ]
g = 1/
c := [0, u

↑

1 ]
g = 1/
c := [0, u

↑

0 ]

c := [0, u
↓

2 − l
↓

2 ]c := [0, u
↓

1 − l
↓

1 ]

c := [0, u3 ↑ −l
↑

3 ]c := [0, u2 ↑ −l2 ↑]c := [0, u
↑

1 − l
↑

1 ]
· · ·

· · ·

I The lower bound for moving from (g , i) to (g , i + 1) depends
on the state from which (g , i) was entered

I If from (g , i − 1) (continuous evolution) then it is l
↑
i

I If from (g , i) (change of direction) then it is 0

I Zero/Zeno cycles can happen only among neighbors i ,i + 1



Implementation and Experiments

I Implementation in the IF toolbox including translation from
delay inclusions to timed automata

I Analysis of several examples to show feasibility (not much
biological significance at this point)

I Example 1: a cross inhibition network (also modeled by
[Siebert and Bockmayr 06])

x y

X

Y

00

01

(y:=1) 

10

(x:=1) 

02

(y:=2) 

01

(y:=1) (y:=2) 



Transcription Cascade for E. Coli
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Conclusions and Future Work

I Provided a systematic translation from timed gene networks
to timed automata

I Extended the model to include multiple-values and reduce the
effect of Zeno behavior

I Demonstrated feasibility on non-trivial examples

I Future: refine gene activation from binary to multi-valued.
Requires refinement of the feedback function

I Future: combine with LTL and MITL model checking against
the generated models

I Future: promote the idea of timed modeling among biologists
and see what experiments are needed to extract timing
information


