Assertions and Measurements for Mixed-Signal Simulation PhD Thesis

Thomas Ferrère

VERIMAG, University of Grenoble (directeur: Oded Maler) Mentor Graphics Corporation (co-encadrant: Ernst Christen)

October 28, 2016

Both discrete and continuous modes of operation

Example: a cell phone

A bug:

Verification is needed

- Both discrete and continuous modes of operation
- Example: a cell phone
 - A design:

(courtesy of Samsung and AppleInsider)

- Both discrete and continuous modes of operation
- Example: a cell phone
 - A design:

• A bug:

(courtesy of Samsung and AppleInsider)

- Both discrete and continuous modes of operation
- Example: a cell phone
 - A design:

• A bug:

(courtesy of Samsung and AppleInsider)

- Both discrete and continuous modes of operation
- Example: a cell phone
 - A design:

• A bug:

(courtesy of Samsung and AppleInsider)

Verification is needed

Mixed-Signal Simulation

Integrated Circuits

(courtesy of ST Microelectronics)

- Implement both analog and digital electronics
- Design uses HDL and net lists at several stages

Modeling

 Analog: algebraic differential equations

$$f_p\left(x,\frac{\mathrm{d}x}{\mathrm{d}t}\right) = 0$$

- Mixed-Signal: analog events $\uparrow(x>2.0)$ and digital control f_q

Mixed-Signal Simulation

Integrated Circuits

(courtesy of ST Microelectronics)

- Implement both analog and digital electronics
- Design uses HDL and net lists at several stages

Modeling

Digital: event-driven

 Analog: algebraic differential equations

$$f_p\left(x,\frac{\mathrm{d}x}{\mathrm{d}t}\right) = 0$$

• Mixed-Signal: analog events $\uparrow(x>2.0)$ and digital control f_q

Simulation-Based Verification

- During the design stage run multiple simulations
- Each simulation produces a trace
 - Records evolution of quantities over time
 - Real-valued and Boolean signals
- Monitoring: each traced need to be analysed
 - Evaluate requirements: correctness, robusteness, diagnostics
 - In general measuring some performance
- Automation of the monitoring activity:
 - Additional observer blocks
 - Declarative property or measurement languages

Declarative Languages in Industry

Assertions

- Digital domain
- ► Languages PSL and SVA built using two layers:
 - regular expression
 - temporal logic
- Discrete time interpretation

Measurements

- Analog domain
- EXTRACT commands: signal processing, offline
- MEAS commands: event-driven, online

Research on Realtime Properties

Problem: mixed-signal characterized by a synchronous interaction Solution: use continous-time representation

- Metric Temporal Logic (Koymans, 1990)
 - Signal Temporal Logic for real-valued signals (Maler and Nickovic, 2004)
 - Quantitative semantics for robustness estimate (Fainekos and Pappas, 2009)
- Timed Regular Expressions (Asarin, Caspi and Maler, 1998)

Limitations of Existing Tools and Techniques

- Digital assertions bound to precision of sampling clock
- Realtime properties monitoring not implemented
- Robustness computation is not efficient
- No easy diagnostic of temporal logic properties failure
- Measurements not controllable by sequential conditions
- No analog measures in a digital context

Outline

- 1. Preliminaries
- 2. Robustness Computation
- 3. Diagnostics
- 4. Regular Expressions Monitoring
- 5. Pattern-Based Measurements
- 6. Analog Measures in Digital Environment
- 7. Conclusion

Outline

1. Preliminaries

- 2. Robustness Computation
- 3. Diagnostics
- 4. Regular Expressions Monitoring
- 5. Pattern-Based Measurements
- 6. Analog Measures in Digital Environment
- 7. Conclusion

Signal Temporal Logic

- Propositions p: Boolean variables q, conditions $x \leq c$, and events $\uparrow p$
- Temporal operators:
 - Until: $\varphi U_I \psi$
 - Eventually: $\Diamond_I \psi = \top \operatorname{U}_I \psi$
 - Always: $\Box_I \psi = \neg \Diamond_I \neg \psi$

Formulas can be written with $\Diamond_{[a,b]}$ and U only

Signal Temporal Logic

- Propositions p: Boolean variables q, conditions $x \leq c$, and events $\uparrow p$
- Temporal operators:
 - Until: $\varphi \operatorname{U}_{I} \psi$
 - Eventually: $\Diamond_I \psi = \top \operatorname{U}_I \psi$
 - Always: $\Box_I \psi = \neg \Diamond_I \neg \psi$

Formulas can be written with $\Diamond_{[a,b]}$ and U only

Monitoring

Offline approach (Maler and Nickovic, 2004): for each subformula φ compute set of times $[\varphi]_w$ where φ holds according to w

Definition (Satisfaction Set)

$$\begin{aligned} \left[p\right]_{\boldsymbol{w}} &= \{t : p_{\boldsymbol{w}}(t) = 1\} \\ \left[\diamondsuit_{[a,b]} \varphi\right]_{\boldsymbol{w}} &= [\varphi]_{\boldsymbol{w}} \ominus [a,b] \end{aligned} \qquad \begin{bmatrix} \neg \varphi \end{bmatrix}_{\boldsymbol{w}} = \overline{[\varphi]_{\boldsymbol{w}}} \\ \left[\varphi \lor \psi\right]_{\boldsymbol{w}} &= [\varphi]_{\boldsymbol{w}} \cup [\psi]_{\boldsymbol{w}} \end{aligned}$$

Computation

Theorem

For any φ and w with finite variability, $[\varphi]_w$ is finite union of intervals

► Eventually operator: $\begin{array}{c} \varphi \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\$

• Worst-case complexity $O(|\varphi|)^2 \cdot |\pmb{w}|$

Quantitative Semantics

Robustness value $[\![\varphi]\!]_{\it w}$ indicates how strongly φ is satisfied / violated by $\it w$

- Positive if satisfied / negative if violated
- Magnitude = conservative estimate of distance to satisfaction / violation boundary

Definition (Robustness Signal)

$$\begin{split} \llbracket x \leq c \rrbracket_{\boldsymbol{w}} &= c - x_{\boldsymbol{w}} & \llbracket \neg \varphi \rrbracket_{\boldsymbol{w}} = - \llbracket \varphi \rrbracket_{\boldsymbol{w}} \\ \llbracket \Diamond_{[a,b]} \varphi \rrbracket_{\boldsymbol{w}} &= t \mapsto \sup_{t' \in [t+a,t+b]} \llbracket \varphi \rrbracket_{\boldsymbol{w}} \left(t' \right) & \llbracket \varphi \lor \psi \rrbracket_{\boldsymbol{w}} = \max\{\llbracket \varphi \rrbracket_{\boldsymbol{w}}, \llbracket \psi \rrbracket_{\boldsymbol{w}}\} \end{split}$$

Outline

1. Preliminaries

2. Robustness Computation

- 3. Diagnostics
- 4. Regular Expressions Monitoring
- 5. Pattern-Based Measurements
- 6. Analog Measures in Digital Environment
- 7. Conclusion

Principle

Theorem

For any φ and w piecewise linear, $\llbracket \varphi \rrbracket_w$ is piecewise linear

- Until rewrite rules preserve the robustness value
- Timed eventually computed using optimal streaming algorithm of (Lemire, 2006) adapted to variable-step sampling

- ▶ Problem: compute $g(t) = \sup_{t' \in [t+a,t+b]} f(t')$
- ▶ Solution: take maximum of f at t + a, t + b and sampling points inside (a, b)

- ▶ Problem: compute $g(t) = \sup_{t' \in [t+a,t+b]} f(t')$
- ▶ Solution: take maximum of f at t + a, t + b and sampling points inside (a, b)

- ▶ Problem: compute $g(t) = \sup_{t' \in [t+a,t+b]} f(t')$
- ▶ Solution: take maximum of f at t + a, t + b and sampling points inside (a, b)

- ▶ Problem: compute $g(t) = \sup_{t' \in [t+a,t+b]} f(t')$
- ▶ Solution: take maximum of f at t + a, t + b and sampling points inside (a, b)

- ▶ Problem: compute $g(t) = \sup_{t' \in [t+a,t+b]} f(t')$
- ▶ Solution: take maximum of f at t + a, t + b and sampling points inside (a, b)

- ▶ Problem: compute $g(t) = \sup_{t' \in [t+a,t+b]} f(t')$
- ▶ Solution: take maximum of f at t + a, t + b and sampling points inside (a, b)

- ▶ Problem: compute $g(t) = \sup_{t' \in [t+a,t+b]} f(t')$
- ▶ Solution: take maximum of f at t + a, t + b and sampling points inside (a, b)

15 / 40
Evaluation

- Worst-case complexity in $2^{O(|\varphi|)} \cdot |w|$
- Implementation benchmarked with random signals:

w	10^{2}	10^{3}	10^{4}	10^{5}	
$\Diamond_{[1,2]}$	0.0031	0.0030	0.0040	0.019	
$\Diamond_{[1,11]}$	0.0029	0.0026	0.0039	0.017	
$\Diamond_{[1,21]}$	0.0027	0.0026	0.0041	0.018	
$\Diamond_{[1,31]}$	0.0030	0.0028	0.0041	0.021	

- Cost of computing $\Diamond_{[a,b]}$ independent from b-a
- Improves on related works by several orders of magnitude

Publications

 Donzé, Ferrère, and Maler. Efficient robust monitoring for STL. In Computer Aided Verification (CAV), 2013.

Outline

1. Preliminaries

2. Robustness Computation

3. Diagnostics

- 4. Regular Expressions Monitoring
- 5. Pattern-Based Measurements
- 6. Analog Measures in Digital Environment
- 7. Conclusion

Motivation

- Find small segment of w sufficient to cause violation of φ
- ▶ Example: violation of $\Box(\uparrow q \rightarrow \Diamond_{[0,5]} \Box_{[0,5]} x \le 0.2)$

Sub-traces = temporal implicants

Motivation

- Find small segment of w sufficient to cause violation of φ
- Example: violation of $\Box(\uparrow q \rightarrow \Diamond_{[0,5]} \Box_{[0,5]} x \le 0.2)$

Sub-traces = temporal implicants

Propositional Implicants

 \blacktriangleright Implicant of arphi~pprox partial valuation whose extensions satisfy arphi

Definition

Implicant of $\varphi = \text{term } \gamma$ such that $\gamma \Rightarrow \varphi$ Prime implicant of $\varphi = \text{implicant of } \varphi$ maximal relative to \Rightarrow

For diagnostic: implicant compatible with observed values ν

Problem (Diagnostic)

For given φ and \mathbf{v} , find $\gamma \Rightarrow \neg \varphi$ such that $\mathbf{v} \models \gamma$

Propositional Implicants

 \blacktriangleright Implicant of $\varphi \quad \approx \quad$ partial valuation whose extensions satisfy φ

Definition

Implicant of $\varphi = \text{term } \gamma$ such that $\gamma \Rightarrow \varphi$ Prime implicant of $\varphi = \text{implicant of } \varphi$ maximal relative to \Rightarrow

• For diagnostic: implicant compatible with observed values v

Problem (Diagnostic)

For given φ and $\mathbf{v},$ find $\gamma \Rightarrow \neg \varphi$ such that $\mathbf{v} \models \gamma$

Temporal Implicants

- \blacktriangleright Temporal implicant of $\varphi~\approx~$ partial trace whose extensions satisfy φ
- Syntactical considerations:
 - Terms with conjunctions $\bigwedge_{t \in T} \theta(t)$ over intervals
 - Limit values handled by non-standard reals t^+ , t^-

Example:

$$\bigwedge_{t \in [0.5, 3.0]} \neg p(t) \quad \Rightarrow \quad \neg \Diamond_{[1, 2]} p$$

Theorem

Every realtime property φ has a prime implicant

Relies on boundedness of the time domain and non-standard extension

Computation for Signal Temporal Logic

Diagnostic operators E, F such that:

- Explanation $E(\varphi) \Rightarrow \varphi$
- Falsification $F(\varphi) \Rightarrow \neg \varphi$

Definition (Diagnostic Signal)

$$E(p) = p \qquad E(\neg \varphi) = F(\varphi)$$
$$E(\Diamond_{[a,b]} \varphi) = t \mapsto E(\varphi)(\xi(t)) \qquad F(\Diamond_{[a,b]} \varphi) = t \mapsto \bigwedge_{t' \in [t+a,t+b]} F(\varphi)(t')$$

with selection function ξ such that $\xi(t) \in [t + a, t + b]$

Compute ξ over some interval T where $\Diamond_{[a,b]} \varphi$ holds:

- Current time t is at start of T
- Select last witness s of φ to account for $\Diamond_{[a,b]} \varphi$ at t
- Remove from T the part R that has been accounted for

Compute ξ over some interval T where $\Diamond_{[a,b]} \varphi$ holds:

- Current time t is at start of T
- Select last witness s of φ to account for $\Diamond_{[a,b]} \varphi$ at t
- Remove from T the part R that has been accounted for

Compute ξ over some interval T where $\Diamond_{[a,b]} \varphi$ holds:

- Current time t is at start of T
- Select last witness s of φ to account for $\Diamond_{[a,b]} \varphi$ at t

Remove from T the part R that has been accounted for

Compute ξ over some interval T where $\Diamond_{[a,b]} \varphi$ holds:

- Current time t is at start of T
- Select last witness s of φ to account for $\Diamond_{[a,b]} \varphi$ at t

Remove from T the part R that has been accounted for

Compute ξ over some interval T where $\Diamond_{[a,b]} \varphi$ holds:

- Current time t is at start of T
- Select last witness s of φ to account for $\Diamond_{[a,b]} \varphi$ at t
- Remove from T the part R that has been accounted for

► Example:

Example: $x \le 0.2$ $\uparrow q$ $\Box_{[0,5]} x \le 0.2$ $\Diamond_{[0,5]} \square_{[0,5]} x \le 0.2$ $\uparrow q \to \Diamond_{[0,5]} \square_{[0,5]} x \le 0.2$ $\Box(\uparrow q \to \Diamond_{[0,5]} \Box_{[0,5]} x \le 0.2)$ → t 0 5

Publications

 Ferrère, Maler, and Nickovic. Trace diagnostics using temporal implicants. In Automated Technology for Verification and Analysis (ATVA), 2015.

Outline

- 1. Preliminaries
- 2. Robustness Computation
- 3. Diagnostics
- 4. Regular Expressions Monitoring
- 5. Pattern-Based Measurements
- 6. Analog Measures in Digital Environment
- 7. Conclusion

Signal Regular Expressions

- Propositions p: Boolean variables q, threshold conditions $x \leq c$
- Atomic expressions: holding p, events $\uparrow p$
- Concatenation: $\varphi \cdot \psi$
- Kleene star: φ^*
- Duration restriction: $\langle \varphi \rangle_I$

Pulse pattern: $\psi=\mathop{\downarrow} r\cdot \langle \underline{q}\cdot\underline{p}\cdot\underline{q}\rangle_{[5,6]}\cdot \mathop{\uparrow} r$

Monitoring

- For any *w* expression φ defines a set of segments (t, t') such that *w*[t, t'] matches φ
- Offline approach: for all subexpressions φ compute the complete set of matches [φ]_w of φ relative to w

Definition (Match Set)

$$\begin{split} \left[\underline{p}\right]_{w} &= \{(t,t'): t < t'' < t' \to p_{w}(t'') = 1\} \quad [\varphi \lor \psi]_{w} = [\varphi]_{w} \cup [\psi]_{w} \\ \left[\langle \varphi \rangle_{I}\right]_{w} &= \{(t,t'): t' - t \in I\} \cap [\varphi]_{w} \qquad \qquad [\varphi \land \psi]_{w} = [\varphi]_{w} \cap [\psi]_{w} \\ \left[\varphi \cdot \psi\right]_{w} &= [\varphi]_{w} \, ^{\circ}_{\circ} \, [\psi]_{w} \qquad \qquad \qquad [\varphi^{*}]_{w} = \bigcup_{i \ge 0} \left[\varphi^{i}\right]_{w} \end{split}$$

A zone = convex set with horizontal, vertical and diagonal boundaries
 Represents a set of signal segments

Theorem

- A zone = convex set with horizontal, vertical and diagonal boundaries
- Represents a set of signal segments

Theorem

- A zone = convex set with horizontal, vertical and diagonal boundaries
- Represents a set of signal segments

Theorem

- A zone = convex set with horizontal, vertical and diagonal boundaries
- Represents a set of signal segments

Theorem

$\langle \underline{p} \rangle_{[2,4]} \cdot \langle \underline{q} \rangle_{[1,2]}$

- Match set of <u>p</u>
- Match set of $\langle \underline{p}
 angle_{[2,4]}$
- Match set of $\langle \underline{q} \rangle_{[1,2]}$
- Match set of $\langle \underline{p} \rangle_{[2,4]} \cdot \langle \underline{q} \rangle_{[1,2]}$

$$\langle \underline{p} \rangle_{[2,4]} \cdot \langle \underline{q} \rangle_{[1,2]}$$

- Match set of <u>p</u>
- Match set of $\langle \underline{p} \rangle_{[2,4]}$
- Match set of $\langle \underline{q} \rangle_{[1,2]}$
- Match set of $\langle \underline{p} \rangle_{[2,4]} \cdot \langle \underline{q} \rangle_{[1,2]}$

$$\langle \underline{p} \rangle_{[2,4]} \cdot \langle \underline{q} \rangle_{[1,2]}$$

- Match set of \underline{p}
- Match set of $\langle \underline{p} \rangle_{[2,4]}$
- Match set of $\langle \underline{q} \rangle_{[1,2]}$
- Match set of $\langle \underline{p} \rangle_{[2,4]} \cdot \langle \underline{q} \rangle_{[1,2]}$

$$\langle \underline{p} \rangle_{[2,4]} \cdot \langle \underline{q} \rangle_{[1,2]}$$

- Match set of <u>p</u>
- Match set of $\langle \underline{p} \rangle_{[2,4]}$
- Match set of $\langle \underline{q} \rangle_{[1,2]}$
- Match set of $\langle \underline{p} \rangle_{[2,4]} \cdot \langle \underline{q} \rangle_{[1,2]}$

$$\langle \underline{p} \rangle_{[2,4]} \cdot \langle \underline{q} \rangle_{[1,2]}$$

- Match set of <u>p</u>
- \blacktriangleright Match set of $\langle \underline{p} \rangle_{[2,4]}$
- Match set of $\langle \underline{q} \rangle_{[1,2]}$
- Match set of $\langle \underline{p} \rangle_{[2,4]} \cdot \langle \underline{q} \rangle_{[1,2]}$

$$\langle \underline{p} \rangle_{[2,4]} \cdot \langle \underline{q} \rangle_{[1,2]}$$

- Match set of <u>p</u>
- Match set of $\langle \underline{p} \rangle_{[2,4]}$
- Match set of $\langle \underline{q} \rangle_{[1,2]}$
- Match set of $\langle \underline{p} \rangle_{[2,4]} \cdot \langle \underline{q} \rangle_{[1,2]}$

$$\langle \underline{p} \rangle_{[2,4]} \cdot \langle \underline{q} \rangle_{[1,2]}$$

- ► Match set of p
- \blacktriangleright Match set of $\langle \underline{p} \rangle_{[2,4]}$
- Match set of $\langle \underline{q} \rangle_{[1,2]}$
- Match set of $\langle \underline{p} \rangle_{[2,4]} \cdot \langle \underline{q} \rangle_{[1,2]}$

Example

$$\langle \underline{p} \rangle_{[2,4]} \cdot \langle \underline{q} \rangle_{[1,2]}$$

- ► Match set of p
- Match set of $\langle \underline{p} \rangle_{[2,4]}$
- Match set of $\langle \underline{q} \rangle_{[1,2]}$
- Match set of $\langle \underline{p} \rangle_{[2,4]} \cdot \langle \underline{q} \rangle_{[1,2]}$

Example

$$\langle \underline{p} \rangle_{[2,4]} \cdot \langle \underline{q} \rangle_{[1,2]}$$

- Match set of <u>p</u>
- Match set of $\langle \underline{p} \rangle_{[2,4]}$
- Match set of $\langle \underline{q} \rangle_{[1,2]}$
- Match set of $\langle \underline{p} \rangle_{[2,4]} \cdot \langle \underline{q} \rangle_{[1,2]}$

Kleene Star

On bounded traces ${\it w}$ the sequence $\bigvee_{i=0}^n \varphi^i$ converges to a fix-point in finitely many steps

- Assume w can be split in m constant segments v of length less that 1
- Over each segment either $[\varphi]_{v} = [\top]_{v}$ or $[\varphi]_{v} = [\bot]_{v}$

Lemma

$$[\varphi^n]_{\mathbf{w}} \subseteq [\varphi^{n-1}]_{\mathbf{w}}$$
 for any $n > 2m+1$

Compute $\bigvee_{i=0}^n\varphi^i$ by squaring: $\epsilon,\,\varphi,\,\varphi^2,\,\varphi^4,\,\ldots,\,\varphi^{2^k}$ up to $k>\log(2m+1)$

Evaluation

- Worst-case complexity: $|w|^{O(|\varphi|)}$ without star
- Implementation using DBM for efficient zones computation
- Benchmarked for

$$\varphi = \langle (\langle \underline{p} \cdot \underline{\neg p} \rangle_{[0,10]})^* \wedge (\langle \underline{q} \cdot \underline{\neg q} \rangle_{[0,10]})^* \rangle_{[80,\infty]}$$

with randomized traces:

W	$ [\varphi]_w $	time
3654	0	0.27
6715	10	1.35
13306	23	2.73
26652	47	5.83

• Observed performance linear in |w|

Publications

- Ulus, Ferrère, Asarin, and Maler. Timed pattern matching. In Formal Modeling and Analysis of Timed Systems (FORMATS), 2014.
- Ulus, Ferrère, Asarin, and Maler. Online timed pattern matching using derivatives In Tools and Algorithms for the Construction and Analysis of Systems (TACAS), 2016.

Outline

- 1. Preliminaries
- 2. Robustness Computation
- 3. Diagnostics
- 4. Regular Expressions Monitoring
- 5. Pattern-Based Measurements
- 6. Analog Measures in Digital Environment
- 7. Conclusion

Measurement Language

- Motivation: automate the extraction of mixed-signal measures
- Signal Regular Expressions control when the measure takes place
- ► Measure: aggregating operator duration, min, max, and average
- Example:

$$\operatorname{average}(\uparrow (x > 1.0) \cdot (x > 1.0) \cdot \downarrow (x > 1.0))$$

measures average value of x on high portions

Conditionals and Events

Construct expressions delimited by events

conditional operators:

- $? \varphi$ begins a match of φ
- $!\varphi$ ends a match of φ
- event-bounded expressions ψ :
 - event $\uparrow p$, $\downarrow p$
 - conditional event ψ ?, ψ !
 - sequence $\psi \cdot \varphi \cdot \psi$

Theorem

For any w and ψ event-bounded, $[\varphi]_{\psi}$ is finite

Case Study: Distributed System Interface

- DSI3 is a protocol for electronics in automotive industry
- Based on pulse communication
- Requirements about magnitude of signals and timing of events
- Implementation: behavioral model

Timing Requirement

time between consecutive pulses

Results

Pulse description:

$$\psi = \mathop{\downarrow} r \cdot \langle \underline{q} \cdot \underline{p} \cdot \underline{q} \rangle_{[5,6]} \cdot \mathop{\uparrow} r$$

• Measure expression:

$$\varphi = \operatorname{duration}(\psi \cdot \underline{r} \cdot \psi?)$$

Computation time cost:

w	quantize	match	extract	total
$1\cdot 10^6$	0.047	0.617	0.000	0.664
$5\cdot 10^6$	0.197	0.612	0.000	0.809
$1 \cdot 10^7$	0.386	0.606	0.000	0.992
$2 \cdot 10^7$	0.759	0.609	0.000	1.368

Publications

 Ferrère, Maler, Nickovic, and Ulus. Measuring with timed patterns. In Computer Aided Verification (CAV), 2015.

Outline

- 1. Preliminaries
- 2. Robustness Computation
- 3. Diagnostics
- 4. Regular Expressions Monitoring
- 5. Pattern-Based Measurements
- 6. Analog Measures in Digital Environment
- 7. Conclusion

Analog Measurements and Digital Testbench

Simulator-implemented measures provide guarantees:

- accuracy
- reproducible
- Unfortunately only accessible in analog environment
- Digital testbench enables structured verification
 - assertion tracking
 - coverage indicators
 - ...
- Mixed-signal verification often done with user-defined monitors

Measurement Tasks

We propose new measurements functions as system tasks

$$\mathtt{task}_{\mu}(x,p,y,q,e,r)$$

- Input: (x, p), output: (y, q)
- Control: enable event e and reset event r
- Accessed in a variety of context: module, class, etc.
- Prototype implementation using VPI with functions: initialize_µ, update_µ, status_µ, and evaluate_µ

Phase Locked Loop

Digital testbench using the Universal Verification Methodology:

- Measure relative jitter online, locking time and enforce safe operating area of current through VDD
- Computation time < 1s for measurements, pprox 300s for simulation

Outline

- 1. Preliminaries
- 2. Robustness Computation
- 3. Diagnostics
- 4. Regular Expressions Monitoring
- 5. Pattern-Based Measurements
- 6. Analog Measures in Digital Environment
- 7. Conclusion

Contributions

- Diagnostic procedure for realtime assertions
- Efficient algorithms for robustness computation
- Monitoring of regular expressions
- Pattern-based measurements
- Bring practice of analog and digital verification closer

Publications

- 1. Donzé, Ferrère, and Maler. Efficient robust monitoring for STL. In *Computer Aided Verification (CAV)*, 2013.
- 2. Ulus, Ferrère, Asarin, and Maler. Timed pattern matching. In *Formal Modeling and Analysis of Timed Systems (FORMATS)*, 2014.
- 3. Ferrère, Maler, Nickovic, and Ulus. Measuring with timed patterns. In *Computer Aided Verification (CAV)*, 2015.
- 4. Ferrère, Maler, and Nickovic. Trace diagnostics using temporal implicants. In *Automated Technology for Verification and Analysis* (ATVA), 2015.
- 5. Ulus, Ferrère, Asarin, and Maler. Online timed pattern matching using derivatives In *Tools and Algorithms for the Construction and Analysis of Systems (TACAS)*, 2016.

Future Works

- Robustness of Signal Regular Expressions
- New monitoring algorithms for SRE
- Integrate SRE with STL
- Formal verification using regular expressions