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Cyber-Physical Systems
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• A design:

• A bug:
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Mixed-Signal Simulation

Integrated Circuits

(courtesy of ST Microelectronics)

I Implement both analog and
digital electronics

I Design uses HDL and net lists at
several stages

Modeling

I Digital: event-driven

q = 0 q = 1

↑ p

↑ p

I Analog: algebraic differential
equations

fp

(
x,

dx

dt

)
= 0

I Mixed-Signal: analog events
↑(x > 2.0) and digital control fq
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Simulation-Based Verification

I During the design stage run multiple simulations
I Each simulation produces a trace

• Records evolution of quantities over time
• Real-valued and Boolean signals

I Monitoring: each traced need to be analysed
• Evaluate requirements: correctness, robusteness, diagnostics
• In general measuring some performance

I Automation of the monitoring activity:
• Additional observer blocks
• Declarative property or measurement languages
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Declarative Languages in Industry

Assertions

I Digital domain
I Languages psl and sva built using two layers:

• regular expression
• temporal logic

I Discrete time interpretation

Measurements

I Analog domain

I extract commands: signal processing, offline

I meas commands: event-driven, online
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Research on Realtime Properties

Problem: mixed-signal characterized by a synchronous interaction
Solution: use continous-time representation

I Metric Temporal Logic (Koymans, 1990)
• Signal Temporal Logic for real-valued signals (Maler and Nickovic,

2004)
• Quantitative semantics for robustness estimate (Fainekos and Pappas,

2009)

I Timed Regular Expressions (Asarin, Caspi and Maler, 1998)
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Limitations of Existing Tools and Techniques

I Digital assertions bound to precision of sampling clock

I Realtime properties monitoring not implemented

I Robustness computation is not efficient

I No easy diagnostic of temporal logic properties failure

I Measurements not controllable by sequential conditions

I No analog measures in a digital context
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Outline

1. Preliminaries

2. Robustness Computation

3. Diagnostics

4. Regular Expressions Monitoring

5. Pattern-Based Measurements

6. Analog Measures in Digital Environment

7. Conclusion
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Signal Temporal Logic

I Propositions p: Boolean variables q, conditions x ≤ c, and events ↑ p
I Temporal operators:

• Until: ϕUI ψ
• Eventually: ♦I ψ = >UI ψ
• Always: �I ψ = ¬♦I ¬ψ

Formulas can be written with ♦[a,b] and U only

I Example: stabilization property ϕ = �(↑ q → ♦[0,5]�[0,5] x ≤ 0.2)

t

x

t0 t0 + 5 t0 + 10

0.2
0

q
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Monitoring

Offline approach (Maler and Nickovic, 2004): for each subformula ϕ
compute set of times [ϕ]w where ϕ holds according to w

Definition (Satisfaction Set)

[p]w = {t : pw(t) = 1} [¬ϕ]w = [ϕ]w[
♦[a,b] ϕ

]
w = [ϕ]w 	 [a, b] [ϕ ∨ ψ]w = [ϕ]w ∪ [ψ]w
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Computation

Theorem

For any ϕ and w with finite variability, [ϕ]w is finite union of intervals

I Eventually operator:

t

ϕ

♦[a,b] ϕ

T

T 	 [a, b]

I Worst-case complexity O(|ϕ|)2 · |w|
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Example

t
50

x

0.2
0

q

x ≤ 0.2

↑ q

�[0,5] x ≤ 0.2

♦[0,5]�[0,5] x ≤ 0.2

↑ q → ♦[0,5]�[0,5] x ≤ 0.2

�(↑ q → ♦[0,5]�[0,5] x ≤ 0.2)
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Quantitative Semantics

Robustness value JϕKw indicates how strongly ϕ is satisfied / violated by w
I Positive if satisfied / negative if violated

I Magnitude = conservative estimate of distance to satisfaction /
violation boundary

Definition (Robustness Signal)

Jx ≤ cKw = c− xw J¬ϕKw = − JϕKwq
♦[a,b] ϕ

y
w = t 7→ sup

t′∈[t+a,t+b]
JϕKw (t′) Jϕ ∨ ψKw = max{JϕKw , JψKw}
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Outline
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Principle

Theorem

For any ϕ and w piecewise linear, JϕKw is piecewise linear

I Until rewrite rules preserve the robustness value

I Timed eventually computed using optimal streaming algorithm of
(Lemire, 2006) adapted to variable-step sampling

13 / 40



Eventually Computation

I Problem: compute g(t) = supt′∈[t+a,t+b] f(t
′)

I Solution: take maximum of f at t+ a, t+ b and sampling points
inside (a, b)

f

t+ a t+ b

•
i2
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Evaluation

I Worst-case complexity in 2O(|ϕ|) · |w|
I Implementation benchmarked with random signals:

|w| 102 103 104 105

♦[1,2] 0.0031 0.0030 0.0040 0.019
♦[1,11] 0.0029 0.0026 0.0039 0.017
♦[1,21] 0.0027 0.0026 0.0041 0.018
♦[1,31] 0.0030 0.0028 0.0041 0.021

I Cost of computing ♦[a,b] independent from b− a
I Improves on related works by several orders of magnitude
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Publications

I Donzé, Ferrère, and Maler. Efficient robust monitoring for STL. In
Computer Aided Verification (CAV), 2013.

16 / 40



Outline

1. Preliminaries

2. Robustness Computation

3. Diagnostics

4. Regular Expressions Monitoring

5. Pattern-Based Measurements

6. Analog Measures in Digital Environment

7. Conclusion

16 / 40



Motivation

I Find small segment of w sufficient to cause violation of ϕ

I Example: violation of �(↑ q → ♦[0,5]�[0,5] x ≤ 0.2)

t

x

0.2
0

q

50

I Sub-traces = temporal implicants
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Propositional Implicants

I Implicant of ϕ ≈ partial valuation whose extensions satisfy ϕ

Definition

Implicant of ϕ = term γ such that γ ⇒ ϕ
Prime implicant of ϕ = implicant of ϕ maximal relative to ⇒

I For diagnostic: implicant compatible with observed values v

Problem (Diagnostic)

For given ϕ and v, find γ ⇒ ¬ϕ such that v |= γ
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Temporal Implicants

I Temporal implicant of ϕ ≈ partial trace whose extensions satisfy ϕ
I Syntactical considerations:

• Terms with conjunctions
∧

t∈T θ(t) over intervals
• Limit values handled by non-standard reals t+, t−

I Example: ∧
t∈[0.5,3.0]

¬p(t) ⇒ ¬♦[1,2] p

Theorem

Every realtime property ϕ has a prime implicant

Relies on boundedness of the time domain and non-standard extension

19 / 40



Computation for Signal Temporal Logic

Diagnostic operators E, F such that:

I Explanation E(ϕ)⇒ ϕ

I Falsification F (ϕ)⇒ ¬ϕ

Definition (Diagnostic Signal)

E(p) = p E(¬ϕ) = F (ϕ)

E(♦[a,b] ϕ) = t 7→ E(ϕ)(ξ(t)) F (♦[a,b] ϕ) = t 7→
∧

t′∈[t+a,t+b]

F (ϕ)(t′)

with selection function ξ such that ξ(t) ∈ [t+ a, t+ b]

20 / 40



Selection Function
Compute ξ over some interval T where ♦[a,b] ϕ holds:

I Current time t is at start of T

I Select last witness s of ϕ to account for ♦[a,b] ϕ at t

I Remove from T the part R that has been accounted for

ϕ

♦[a,b] ϕ

•
t

already covered

T
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Overview
I Example:

t
0 5

x ≤ 0.2

↑ q

�[0,5] x ≤ 0.2

♦[0,5]�[0,5] x ≤ 0.2

↑ q → ♦[0,5]�[0,5] x ≤ 0.2

�(↑ q → ♦[0,5]�[0,5] x ≤ 0.2)

I Worst-case complexity O(|ϕ|)2 · |w|
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Publications

I Ferrère, Maler, and Nickovic. Trace diagnostics using temporal
implicants. In Automated Technology for Verification and Analysis
(ATVA), 2015.
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Signal Regular Expressions

I Propositions p: Boolean variables q, threshold conditions x ≤ c
I Atomic expressions: holding p, events ↑ p
I Concatenation: ϕ · ψ
I Kleene star: ϕ∗

I Duration restriction: 〈ϕ〉I

23 / 40



Example
Pulse pattern: ψ = ↓ r · 〈q · p · q〉[5,6] · ↑ r

q p q ↑ r↓ r
t

x

7.0

4.0

∈ [5, 6]

p = (x ≤ 4.0)

q = (4.0 < x ≤ 7.0)

r = (x > 7.0)
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Monitoring

I For any w expression ϕ defines a set of segments (t, t′) such that
w[t, t′] matches ϕ

I Offline approach: for all subexpressions ϕ compute the complete set
of matches [ϕ]w of ϕ relative to w

Definition (Match Set)

[
p
]

w = {(t, t′) : t < t′′ < t′ → pw(t
′′) = 1} [ϕ ∨ ψ]w = [ϕ]w ∪ [ψ]w

[〈ϕ〉I ]w = {(t, t′) : t′ − t ∈ I} ∩ [ϕ]w [ϕ ∧ ψ]w = [ϕ]w ∩ [ψ]w

[ϕ · ψ]w = [ϕ]w # [ψ]w [ϕ∗]w =
⋃
i≥0

[
ϕi
]

w

25 / 40



Match Set Representation

I A zone = convex set with horizontal, vertical and diagonal boundaries

I Represents a set of signal segments

t

t′

Theorem

For any ϕ and w with finite variability, [ϕ]w is a finite union of zones
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Example

〈p〉[2,4] · 〈q〉[1,2]

I Match set of p

I Match set of 〈p〉[2,4]

I Match set of 〈q〉[1,2]

I Match set of 〈p〉[2,4] · 〈q〉[1,2]

t, t′

t

t′

p

q
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Kleene Star

On bounded traces w the sequence
∨n
i=0 ϕ

i converges to a fix-point in
finitely many steps

I Assume w can be split in m constant segments v of length less that 1

I Over each segment either [ϕ]v = [>]v or [ϕ]v = [⊥]v

Lemma

[ϕn]w ⊆
[
ϕn−1

]
w for any n > 2m+ 1

Compute
∨n
i=0 ϕ

i by squaring: ε, ϕ, ϕ2, ϕ4, . . ., ϕ2k up to
k > log(2m+ 1)

28 / 40



Evaluation

I Worst-case complexity: |w|O(|ϕ|) without star

I Implementation using DBM for efficient zones computation

I Benchmarked for

ϕ = 〈(〈p · ¬p〉[0,10])∗ ∧ (〈q · ¬q〉[0,10])∗〉[80,∞]

with randomized traces:

|w| |[ϕ]w| time
3654 0 0.27
6715 10 1.35

13306 23 2.73
26652 47 5.83

I Observed performance linear in |w|
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Measurement Language

I Motivation: automate the extraction of mixed-signal measures

I Signal Regular Expressions control when the measure takes place

I Measure: aggregating operator duration, min, max, and average

I Example:

average(↑(x > 1.0) · (x > 1.0) · ↓(x > 1.0))

measures average value of x on high portions
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Conditionals and Events

Construct expressions delimited by events

I conditional operators:
• ?ϕ begins a match of ϕ
• !ϕ ends a match of ϕ

I event-bounded expressions ψ:
• event ↑ p, ↓ p
• conditional event ψ?, ψ!
• sequence ψ · ϕ · ψ

Theorem

For any w and ψ event-bounded, [ϕ]ψ is finite
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Case Study: Distributed System Interface

I DSI3 is a protocol for electronics in automotive industry

I Based on pulse communication

I Requirements about magnitude of signals and timing of events

I Implementation: behavioral model

e(t) a(t)

R

C

Controler Sensor

i

v
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Timing Requirement

q p q

rψ ψ

↑ r↓ r

ψ?

t

x

7.0

4.0

∈ [5, 6]

time between consecutive pulses
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Results

I Pulse description:

ψ = ↓ r · 〈q · p · q〉[5,6] · ↑ r

I Measure expression:

ϕ = duration(ψ · r · ψ?)

I Computation time cost:

|w| quantize match extract total

1 · 106 0.047 0.617 0.000 0.664
5 · 106 0.197 0.612 0.000 0.809
1 · 107 0.386 0.606 0.000 0.992
2 · 107 0.759 0.609 0.000 1.368
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Analog Measurements and Digital Testbench

I Simulator-implemented measures provide guarantees:
• accuracy
• reproducible

I Unfortunately only accessible in analog environment
I Digital testbench enables structured verification

• assertion tracking
• coverage indicators
• . . .

I Mixed-signal verification often done with user-defined monitors
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Measurement Tasks

I We propose new measurements functions as system tasks

taskµ(x, p, y, q, e, r)

I Input: (x, p), output: (y, q)

I Control: enable event e and reset event r

I Accessed in a variety of context: module, class, etc.

I Prototype implementation using VPI with functions: initializeµ,
updateµ, statusµ, and evaluateµ

36 / 40



Phase Locked Loop

I Digital testbench using the Universal Verification Methodology:

I Measure relative jitter online, locking time and enforce safe operating
area of current through VDD

I Computation time < 1s for measurements, ≈ 300s for simulation
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Contributions

I Diagnostic procedure for realtime assertions

I Efficient algorithms for robustness computation

I Monitoring of regular expressions

I Pattern-based measurements

I Bring practice of analog and digital verification closer
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Future Works

I Robustness of Signal Regular Expressions

I New monitoring algorithms for SRE

I Integrate SRE with STL

I Formal verification using regular expressions
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