Mapping and Scheduling Streaming
Applications using SMT Solvers

Pranav Tendulkar

Supervisors:
Dr. Oded Maler Dr. Peter Poplavko

\/m

Verimag, FRANCE

13 October 2014

Tendulkar Mapping/scheduling for many-core 1/52

Multi-core Processors Everywhere

7 Cameras
~ Smart-TV o \/

Tendulkar Mapping/scheduling for many-core 2/52

Multi-core Processors Everywhere

107 L Intel 48-Core Transistors
Prototype (Thousands)
6 [AMD 4-Core 3
10 i X Parallel Proc
Opteron Performance
10° - Intel: Sequential
Pentium 4 Processor
4 3 Performance
10 : DEC Alpha [E
21264 |- Frequency
3 - (MHZ)
10" wips Rk =
5 Typical Power
10" - (Watts)
1 Number
10 ¢ of Cores
10° ¢
1975 1980 1985 1990 1995 2000 2005 2010 2015 \/
source : http://www.csl.cornell.edu/courses/ece5745/handouts.html

Tendulkar Mapping/scheduling for many-core 3/52

Multi-core Processors Everywhere

107 L Intel 48-Core Transistors
Prototype (Thousands)
6 [AMD 4-Core 3
10 i X Parallel Proc
Opteron Performance
10° - Intel: Sequential
Pentium 4 Processor
4 3 Performance
10 : DEC Alpha [E
21264 |- Frequency
3 - (MHZ)
10" wips Rk =
5 Typical Power
10" - (Watts)
1 Number
10 ¢ of Cores
10° ¢
1975 1980 1985 1990 1995 2000 2005 2010 2015 \/
source : http://www.csl.cornell.edu/courses/ece5745/handouts.html

Tendulkar Mapping/scheduling for many-core 3/52

Motivation

Software on Single Processor System

Processor

Tendulkar Mapping/scheduling for many-core 4/52

Motivation

Software on Single Processor System

Processor

1
[perors_|

Code

Tendulkar Mapping/scheduling for many-core 4/52

Motivation

Software on Single Processor System

Processor

1
[perors_|

Code

—) ﬁ Compiler Tools

Tendulkar Mapping/scheduling for many-core 4/52

Motivation

Software on Single Processor System

Processor
Binary

Code

—) ﬁ Compiler Tools

Tendulkar Mapping/scheduling for many-core 4/52

Software on Single Processor System

Processor
Binary

%

—) ﬁ Compiler Tools

Tendulkar Mapping/scheduling for many-core 4/52

Motivation

Multi-core systems

How To:

Mapping/scheduling for many-core

Multi-core systems

How To:
@ Deploy the application to the platform

Tendulkar Mapping/scheduling for many-core 5/52

Multi-core systems

How To:
@ Deploy the application to the platform

@ Decide number of processors to use?

Tendulkar Mapping/scheduling for many-core 5/52

Multi-core systems

How To:
@ Deploy the application to the platform

@ Decide number of processors to use?

o Allocate tasks to processors and schedule them \/

Tendulkar Mapping/scheduling for many-core 5/52

Our Deployment Framework

Tendulkar Mapping/scheduling for many-core 6/52

Our Deployment Framework
L &

v ¥ 3

Tendulkar Mapping/scheduling for many-core 6/52

Our Deployment Framework
L &

5

T ¥
HEN

Tendulkar Mapping/scheduling for many-core 6/52

Our Deployment Framework
&

t
Platform Model ;2

&
HEBN

Optimization
Techniques

Tendulkar Mapping/scheduling for many-core 6/52

Our Deployment Framework
L &

5

T ¥
HEN

Optimization
Techniques
Solution
I I
1) I
| Vi

Tendulkar Mapping/scheduling for many-core 6/52

Our Deployment Framework
L &

v ¥ 3

Optimization
Techniques

\ Code

%

Solution

=

Tendulkar Mapping/scheduling for many-core 6/52

Motivation

Application Model

Task Graph

Mapping/scheduling for many-core

Application Model

®._
®/®\®

@
e

@ Tasks : Software procedure

Tendulkar Mapping/scheduling for many-core 7152

Application Model

®._
®/®\®

@
e

@ Tasks : Software procedure

@ annotated with execution time)

Tendulkar Mapping/scheduling for many-core 7152

Application Model

®_
®/®\@

@
o

@ Tasks : Software procedure

@ Edges : Precedence relations

Tendulkar Mapping/scheduling for many-core 7152

Deployment Problem

Task Graph Deployment Solution

®_
®/®\®

ONg | Time
e 4

@ Tasks : Software procedure

o]
©

Alelal1]

e FlE]D[H]V]

fad

Processors

@ Edges : Precedence relations

Tendulkar Mapping/scheduling for many-core 8/52

Deployment Problem

Task Graph Deployment Solution

®_
®/®\®

ONg | Time
e 4

@ Tasks : Software procedure @ Mapping : Task = Processor

Processors

@ Edges : Precedence relations

%

Tendulkar Mapping/scheduling for many-core 8/52

Deployment Problem

Task Graph

®_
®/®\®

@
e 4

@ Tasks : Software procedure

@ Edges : Precedence relations

Tendulkar

Processors

Deployment Solution

o]
©

Alelal1]

[c]FElD[H[J]

fad

‘ xC Time

@ Mapping : Task = Processor

@ Scheduling : Task = Time

Mapping/scheduling for many-core 8/52

Deployment Problem

Solution1:
[AlB[G[1]

lcF[E]D [H]y]

a~]
e

ol

Processors

‘ Time

Tendulkar Mapping/scheduling for many-core 9/52

Deployment Problem

Solution1:

@
2 r [RIsleli]
S P [c[FIE]D[H]J]
o
‘ Time
Solution2:
| [AlB]c[p[EJF[G[H[IT]J]

Processors

‘ Time

Tendulkar Mapping/scheduling for many-core 9/52

Motivation

()
(@]
=
o
()
(&)
©
o
(%)
c
e
—
=
(@)
n

o
=]

o
=]

2
=]

2
=]

o o
[i=N=}

la]
=]

a o
[i=H=]

o
=]

a o
[=H=]

o
=]

a a
[=H=]

2
=]

o o
= =

2
=]

o
=]

o
=

2
=]

o
=]

2
=]

o a
=N =}

2
=]

(= IT B = = N
=il = == ==l =]

(=T BT =]
el = =]

(=BT =]
=l =1 =]

oo
=il =1 =]

[BT = T
= =1 =]

[T = I T = = N 1= = N =]
e s] s T == = T == =T =}

[a]
=]

2
=]

T I =t = T eI e SN = N Y I = N = N B o S R = = = = B = T RN = T R = = N
Dloojolopoomoo/oooloo(ooo|(o/o|o|o oo |o|o|g

2
=]

o
=]

la]
=]

2
=]

o
=]

la]
=]

2
=]

o
=]

o
=

o
=]

la]
=]

2
=]

(=]
[l]

G
|
|

o
=]

2
=]

=
|
|

la]
=]

2
=]

o
=]

o
=

o
=]

la]
=]

2
=]

o
=]

la]
=]

2
=]

o @ @ @ @ @ @ @ @ B B @ @ @ @ @ @ @ @ @ B @ |O_ @ @ g
s 0 e e T e e T e e T e e e e e e e e e e T e e e e T e T T e e]

2
=]

T I =t = T eI e SN = N Y I = N = N B o S R = = = = B = T RN = T R = = N
Dloojolopoomoo/oooloo(ooo|(o/o|o|o oo |o|o|g

2
=]

| @& @ @ @ @ @ @ @ @8 @ @

=]

@ @ @ @

=]

ol ol
ol o

1
1

2 proc., 10 tasks ~ 1000+ potential solutions

o
=]

o
=]

=]
f

=]
|

o
=]

=]
f

o
=]

o
=

=]
|

o
=]

=]
f

=]
[

o
=]

=)
|

o
=]

=]
f

=)
|

o
=]

=]
f

o
=]

o
=

=]
|

o
=]

=]
f

=]
|

o
=]

2
=]

(=T = = = T N ix I HN = I = Y= I = = N B S = O N1 = = B = T = T R = N = N
Dloojolopoomoo/oooloo(ooo|(o/o|o|o oo |o|o|g

2
=]

[:]
=]

o
=]

=)
f

=)
|

o =
==}

o
=]

a =]
[f=H=]

o
=]

a o
[=Nl=]

la]
=]

a a
[=H=]

=)
f

= o
[=H=]

la]
=]
f

o
=]

la]
=

=)
|

o
=]

=)
f

= a
==}

2
=]

[T = e T = = = I = = I = I = I = = = N s B = A B = S = N = B 1= N = R
L e LEEELEEEEEEEEEELGEBELGEGEEGGS

[a]
=]

2
=]

%

o
=]

o
=]

o
=]

o o o o a a o a o =] a o a o o a
i T e e T e e e B e B B e B B e R e B B

o
=]

o
=

o
=]

o
=]

2
=]

o a
=N =}

2
=]

2
S
=
=
5
£
s
o
i=]
=
=1
@
=
S
2
>
=
=
o
5
=

endulkar

Deployment problem

@ The difficultly in the deployment is that the design space is exponential

Tendulkar Mapping/scheduling for many-core 11/52

Deployment problem

@ The difficultly in the deployment is that the design space is exponential

@ One needs to model complex hardware : Processors, Network, DMA

Tendulkar Mapping/scheduling for many-core 11/52

Deployment problem

@ The difficultly in the deployment is that the design space is exponential
@ One needs to model complex hardware : Processors, Network, DMA

@ Multiple Evaluation Criteria

e Latency

e Memory used

@ Processors used
o

Tendulkar Mapping/scheduling for many-core 11/52

Research Questions

How to:
@ model the software

Tendulkar Mapping/scheduling for many-core 12/52

Research Questions

How to:
@ model the software

@ model the hardware (Processors, Network, DMA)

Tendulkar Mapping/scheduling for many-core 12/52

Research Questions

How to:
@ model the software

@ model the hardware (Processors, Network, DMA)

@ Optimize deployment while dealing with design space explosion

Tendulkar Mapping/scheduling for many-core 12/52

Outline

o Motivation

e Application Model

Q Deployment using SMT

e Symmetry elimination

e Distributed memory scheduling
Q Design Tools

e Conclusions

Tendulkar Mapping/scheduling for many-core 13/52

Application Model

[S

e Application Model

Tendulkar Mapping/scheduling for many-core 14/52

Model of Computation

Synchronous Dataflow graphs (SDF)
by Edward Lee and David Messerschmitt in 1987

Tendulkar Mapping/scheduling for many-core 15/52

Model of Computation

Synchronous Dataflow graphs (SDF)
by Edward Lee and David Messerschmitt in 1987

represents Streaming Applications

Tendulkar Mapping/scheduling for many-core 15/52

Model of Computation

Synchronous Dataflow graphs (SDF)
by Edward Lee and David Messerschmitt in 1987

represents Streaming Applications

Input output

Computation

Tendulkar Mapping/scheduling for many-core 15/52

Application Model

Synchronous DataFlow

images
EEEE@

images
EEEEN

Tendulkar Mapping/scheduling for many-core 16/52

Application Model

Synchronous DataFlow

images
EEEE@

images
EEEEN

images
EEEE

images
EEEN

Tendulkar Mapping/scheduling for many-core 16/52

Application Model

Synchronous DataFlow

SDF Graph v

Task Graph

Mapping/scheduling for many-core

Application Model

Synchronous DataFlow

VIO

4 1 1 4

© © e o
SDF Graph v

Task Graph
@ Actors
o Pre-processing
o Blur
e Post-processing

Tendulkar Mapping/scheduling for many-core 17/52

Application Model

Synchronous DataFlow

PAON

4 1 1 4

D
SDF Graph v

Task Graph
@ Actors
o Pre-processing
o Blur
e Post-processing

@ Edges
@ Blur executes only after Pre-processing finishes

Tendulkar Mapping/scheduling for many-core 17/52

Application Model

Synchronous DataFlow

e n 1 4 A
Lo
SDF Graph v

Task Graph
@ Actors

o Pre-processing
o Blur
e Post-processing

@ Edges
@ Blur executes only after Pre-processing finishes

@ Rates

e Pre-processing produces 4 pieces of an image (tokens) \/
o Each Blur consumes 1 piece

Tendulkar Mapping/scheduling for many-core 17/52

Application Model

Synchronous DataFlow

> @O® AN

\ ©
SDF Graph W

Task Graph

@ Actor Blur is compact representation of data parallel tasks. J

%

Tendulkar Mapping/scheduling for many-core 17/52

Application Model

Synchronous DataFlow

> @O® AN

\ ©
SDF Graph W

Task Graph

@ Actor Blur is compact representation of data parallel tasks.
@ All Blur tasks have same properties such as execution time. J

Tendulkar Mapping/scheduling for many-core 17/52

Split-Join Graphs

we use split-join graphs : restriction of SDF
still covering perhaps 90% of use cases in the literature

Tendulkar Mapping/scheduling for many-core 18/52

Split-Join Graphs

we use split-join graphs : restriction of SDF
still covering perhaps 90% of use cases in the literature

a simple example:

()" —(c)
a : spawn and split

1/«: wait and join

Tendulkar Mapping/scheduling for many-core 18/52

Split-Join Graphs

we use split-join graphs : restriction of SDF
still covering perhaps 90% of use cases in the literature

a simple example:

()" —(c)
a : spawn and split

1/«: wait and join

D
/@

Tendulkar Mapping/scheduling for many-core 18/52

Restrictions compared to general SDF

(O—0

Tendulkar Mapping/scheduling for many-core 19/52

Restrictions compared to general SDF

Split-join does not support:

@ Stateful actors

Tendulkar Mapping/scheduling for many-core 19/52

Restrictions compared to general SDF

Split-join does not support:

@ Stateful actors

2 3
@ Non-proportional rates

Tendulkar Mapping/scheduling for many-core 19/52

Restrictions compared to general SDF

Split-join does not support:

@ Stateful actors

@ Non-proportional rates

@ Initial tokens and cyclic paths

Tendulkar Mapping/scheduling for many-core 19/52

Deployment using SMT
view

e Deployment using SMT

Tendulkar Mapping/scheduling for many-core 20/52

Deployment using SMT

SATisfiability solver (SAT / SMT)

Mapping/scheduling for many-core

Deployment using SMT

SATisfiability solver (SAT / SMT)

@ Boolean variables
’E‘Z ’E‘Z ’E‘Z 4 ino, inl, ing ...
> @ outg, outy, outs ...
—

Tendulkar Mapping/scheduling for many-core 21/52

Deployment using SMT

SATisfiability solver (SAT / SMT)

@ Boolean variables
’E‘Z ’E‘Z ’E‘Z 4 ino, inl, ing ...

> @ outg, outy, outs ...
; @ Constraints

@ outp = ing V in; P ins ...

Tendulkar Mapping/scheduling for many-core 21/52

Deployment using SMT

SATisfiability solver (SAT / SMT)

@ Boolean variables
’E‘Z ’E‘Z ’E‘Z 4 ino, inl, ing ...

> @ outg, outy, outs ...
; @ Constraints

@ outp = ing V in; P ins ...

Tendulkar Mapping/scheduling for many-core 21/52

Deployment using SMT

SATisfiability solver (SAT / SMT)

@ Boolean variables
’E‘Z ’E‘Z ’E‘Z 4 ino, inl, ing ...

> @ outg, outy, outs ...
; @ Constraints

@ outp = ing V in; P ins ...

variables

constraints

]

—— SAT solver ——

Tendulkar Mapping/scheduling for many-core 21/52

Deployment using SMT

SATisfiability solver (SAT / SMT)

@ Boolean variables
’E‘Z ’E‘Z ’E‘Z 4 ino, inl, ing ...

> @ outg, outy, outs ...
; @ Constraints

@ outp = ing V in; P ins ...

—
variables
constraints
outy = true l
& —— SAT solver ———
out; = frue

Tendulkar Mapping/scheduling for many-core 21/52

Deployment using SMT

SATisfiability solver (SAT / SMT)

@ Boolean variables
’E‘Z ’E‘Z ’E‘Z 4 ino, inl, ing ...

> @ outg, outy, outs ...
; @ Constraints

@ outp = ing V in; P ins ...

—
variables
constraints
outy = true l
& ——— SAT solver —— UNSAT
out; = frue

Tendulkar Mapping/scheduling for many-core 21/52

Deployment using SMT

SATisfiability solver (SAT / SMT)

@ Boolean variables
’E‘Z ’E‘Z ’E‘Z 4 ino, inl, ing ...

> @ outg, outy, outs ...
; @ Constraints

@ outp = ing V in; P ins ...

—
variables
constraints
outy = false l
& — SAT solver ——
out; = frue

Tendulkar Mapping/scheduling for many-core 21/52

Deployment using SMT

Tisfiability solver (S

@ Boolean variables
’E‘Z ’E‘Z ’E‘Z 4 ino, inl, ing ...

> @ outg, outy, outs ...
; @ Constraints

@ outp = ing V in; P ins ...

—
variables
constraints
outy = false l
& — SAT solver —— SAT
out; = frue

ing = true,
in; = false, ... \/

Tendulkar Mapping/scheduling for many-core 21/52

Deployment using SMT

SATisfiability solver (SAT / SMT)

@ Boolean variables
% % % @ ing, iny, ins ...
—) @ outp, outy, outy ...
) @ Constraints

1
SMT deals with numeric variables and constants |

|UUIISUHIIILS|

—— SAT solver ——

Tendulkar Mapping/scheduling for many-core

@ outp = ing V in; P ino ...

21/52

Deployment using SMT

Encoding deployment with constraints

e Actor A B Cc
;6\ Tasks Ag By ‘ B, ‘ By ‘ Bj Co
=X Description Variables

Task Graph

Tendulkar Mapping/scheduling for many-core 22/52

Deployment using SMT

Encoding deployment with constraints

e Actor A B C

;6\ Tasks Ay By ‘ B, ‘ Bo ‘ Bs Co
0“@ Description Variables

W Start tlme XAQ XBO ‘ xB 1 XB2 XB3 ‘ XCO

Task Graph

Tendulkar Mapping/scheduling for many-core 22/52

Deployment using SMT

Encoding deployment with constraints

e Actor A B
By [Bi [B [B3 | G

[é\ Tasks Ag
0“@ Description Variables
W Start tlme XAQ XBO XB1 XB2 XB3 XCO
Allocated proc. | pA, | pB, [pB; | pB, | pB; | pCy

Task Graph

22/52

Tendulkar Mapping/scheduling for many-core

Deployment using SMT

Encoding deployment with constraints

e Actor A B Cc
;6\ Tasks Ay By ‘ B, ‘ Bo ‘ Bs Co

0“@ Description Variables
W Start tlme XAQ XBO XB1 XB2 XB3 XCO
e Allocated proc. | pA, | pB, [pB; | pB, | pB; | pCy
Duration dA dB dc

Task Graph

22/52

Tendulkar Mapping/scheduling for many-core

Deployment using SMT

Encoding deploym

Task Graph

Actor A B Cc
Tasks Ay By ‘ B, ‘ Bo ‘ Bs Co
Description Variables
Start time xAp | xBg xB; | xB2 | xBs xCp
Allocated proc. | pA, | pB, [pB; | pB, | pB; | pCy
Duration dA dB dc

@ Precedence Constraints

o XBO Z (XAO + dA)

Tendulkar

%]
=
o
[7]
[%]
[0
[&]
]
=
o

Mapping/scheduling for many-core

22/52

Deployment using SMT

Encoding deployment with constraints

e Actor A B C
;6\ Tasks Ay By ‘ B, ‘ Bo ‘ Bs Co
0“@ Description Variables
W Start time XAQ XBO XB1 XB2 XB3 XCO
e Allocated proc. | pA, | pB, [pB; | pB, | pB; | pCy
Duration dA dB dc
Task Graph
% @
. (o] o
@ Precedence Constraints 2 OR ¢
e xBo > (xAo + dA) § §
@ Mutual Exclusion Constraints & a

e if (pB; = pB,) then Time Time

XB1 2 (XB2 +dB) V XB2 2 (XBl +dB)

Tendulkar Mapping/scheduling for many-core 22/52

Deployment using SMT

Encoding deployment with constraints

e Actor A B C

;6\ Tasks Ay By ‘ B, ‘ Bo ‘ Bs Co
0“@ Description Variables

W Start tlme XAQ XBO xB 1 XB2 XB3 XCO

e Allocated proc. | pA, | pB, [pB; | pB, | pB; | pCy
Duration dA dB dC
Task Graph
Latency
1 .
. 5 .
@ Precedence Constraints 2l Ay m :
o XB“ 2 (XAu + (JA) 8 :
. . o
@ Mutual Exclusion Constraints a

o if (pB, = pB,) then
xB1 > (xB2 +dB) V xBa > (xB1 + dB)
@ Latency Cost

@ Latency = (xCo + dC) \/

Time

Tendulkar Mapping/scheduling for many-core 22/52

Multi-criteria Problem

Processors

Latency

Tendulkar Mapping/scheduling for many-core 23/52

Multi-criteria Problem

SIS
P

Time
Latency = 4
#Proc =2
%
o
17
Q
3
J S EEEEEEERESSEE 1(4.2)
Latency \/

Tendulkar Mapping/scheduling for many-core 23/52

Multi-criteria Problem

P4 B3

Pii 2

SIS e [B]

Time Time
Latency = 4 Latency =3
#Proc = 2 #Proc =4
Sl R
2 :
® 1
8 |
o Fe
Latency \/

Tendulkar Mapping/scheduling for many-core 23/52

Multi-criteria Problem

3
P, A [B 5] 3

Py

Py
Conflicting Criteria

Latency = 4 Latency =3
#Proc =2 #Proc =4

Processors

Latency

Tendulkar Mapping/scheduling for many-core 23/52

Multi-criteria Problem

P4 B3

Pii 2

SIS e [B]

Time Time
Latency = 4 Latency =3
#Proc = 2 #Proc =4
© (340"
Qr-------- + Pareto Set
17} N
0] S
8 L
-l TTohe2)
Latency \/

Tendulkar Mapping/scheduling for many-core 23/52

Deployment using SMT

Problem Monotonicity

Upper Bound

J
punog Jaddn

Processors

Latency \/

Tendulkar Mapping/scheduling for many-core 24 /52

Problem Monotonicity

P

Time
Latency = 4
#Proc =2
Upper Bound
””””” r s
n |]
o 1 g
D | =
2] : :Q
S| IS .
e |
o |

Latency \/

Tendulkar Mapping/scheduling for many-core 24 /52

Problem Monotonicity

Py | Ap P,

P, -B1 -Bg -Co P, ‘ B, ‘ By | Co ‘
Time Time
Latency = 4 Latency = 5
#Proc =2 o #Proo = 3
,,,,,,,,, ‘ri 77!1?@7 Enﬂwj‘g
2 | X
o ‘ T
Gl e H
Bl ol !
2 Do !
e o !
Latency \/

Tendulkar Mapping/scheduling for many-core 24 /52

Deployment using SMT

P Pl (8] [B]c]
I Tlime I I I I 'I:ime I I I
Latency = 4 Latency = 5
#Proc =2 #Proc =3

Upper Bound

punog Jaddn

Processors

Latency \/

Tendulkar Mapping/scheduling for many-core 24 /52

Problem Monotonicity

Latency < 4
#Proc < 2
Not Possible

Upper Bound

********* [N

| k]

& | 2

o ' g

n | =

(2] ! 1o
| |
S b .
] |
o | |
o l |
| |
| |
l l

Latency \/

Tendulkar Mapping/scheduling for many-core 24 /52

Problem Monotonicity

Latency < 4 Latency = 2
#Proc < 2 #Proc = 1
Not Possible Also Not Possible
77777777777 !pf)leE“ﬂ‘d
" ! 3
5] | '@
2 | H
b P P g
<4 i |
N . |
Latency \/

Tendulkar Mapping/scheduling for many-core 24 /52

Problem Monotonicity

Latency < 4 Latency = 2
#Proc < 2 #Proc = 1
Not Possible Also Not Possible

Upper Bound

I
|
|
|
|
I
|
I

J
punog Jaddn

Processors

Latency \/

Tendulkar Mapping/scheduling for many-core 24 /52

Deployment using SMT

Design Space Exploration

Tendulkar Mapping/scheduling for many-core 25/52

Design Space Exploration

Split-join Graph |

Tendulkar Mapping/scheduling for many-core 25/52

Design Space Exploration

Split-join Graph

SMT Constraints

Tendulkar Mapping/scheduling for many-core 25/52

Design Space Exploration

Split-join Graph

SMT Constraints =——> SMT Solver

Tendulkar Mapping/scheduling for many-core 25/52

Design Space Exploration

Design Space
Exploration Algorithm

Split-join Graph
cost

| constraints

SMT Constraints =——> SMT Solver

Tendulkar Mapping/scheduling for many-core 25/52

Design Space Exploration

Design Space
Exploration Algorithm

Split-join Graph
cost

| constraints

SMT Constraints =——> SMT Solver —>

solutions

Tendulkar Mapping/scheduling for many-core 25/52

Design Space Exploration

Design Space
Exploration Algorithm

Split-join Graph
cost

| ‘ constraints (x1,y1)
SAT)

SMT Constraints =——> SMT Solver —>

solutions

Tendulkar Mapping/scheduling for many-core 25/52

Design Space Exploration

Design Space
Exploration Algorithm

Split-join Graph

‘ cost (x)
| constraints 2:Y2
solutions
. NSAT
SMT Constraints =——> SMT Solver L) 1
*

Tendulkar Mapping/scheduling for many-core 25/52

Design Space Exploration

Split-join Graph

SMT Constraints

Design Space
Exploration Algorithm

cost (x5,Y5)
constraints 373

——> SMT Solver

Timeout:

Cannot decide SAT / UNSAT in a given TIME-BUDGET.

TIMEOUT
—

solutions

Tendulkar

Mapping/scheduling for many-core

25/52

Design Space Exploration

Split-join Graph

e

SMT Constraints

Design Space
Exploration Algorithm

cost
constraints

Tendulkar

Mapping/scheduling for many-core

—> SMT Solver —>

solutions

25/52

Deployment using SMT

Exploration Algorithm

Tendulkar Mapping/scheduling for many-core 26/52

Exploration Algorithm

e Divide cost space using grids

|
|
|
|
|
|
,,,,,,, ® - - - - — -
|
|
|
|
|
|
1

] e sat points = unsat points e not yet explored points \ \/

Tendulkar Mapping/scheduling for many-core 26/52

Exploration Algorithm

e Divide cost space using grids
e One SMT query per point on the grid

|
|
|
|
|
|
,,,,,,, ® - - - - — -
|
|
|
|
|
|
1

] e sat points = unsat points e not yet explored points \ \/

Tendulkar Mapping/scheduling for many-core 26/52

Exploration Algorithm

e Divide cost space using grids
e One SMT query per point on the grid

o Finer grid after every iteration

I
[
1

T
|
|

| |
| |
| +
| |
| |
- — — — — — . 777777777 “,,,

|

| |
| |
| *
| |
| |
1 1

T
1
T
1
1
:
-
+
I & J-d-L L
|

] e sat points = unsat points e not yet explored points \ \/

Tendulkar Mapping/scheduling for many-core 26/52

Exploration Algorithm

e Divide cost space using grids
e One SMT query per point on the grid
o Finer grid after every iteration

@ Don't query in known area

I
[
1

T
|
|

| |
| |
| +
| |
| |
- — — — — — . 777777777 “,,,

|

| |
| |
| *
| |
| |
1 1

T
1
T
1
1
:
-
+
I & J-d-L L
|

] e sat points = unsat points e not yet explored points \ \/

Tendulkar Mapping/scheduling for many-core 26/52

Symmetry elimination

Overview

e Symmetry elimination

Tendulkar Mapping/scheduling for many-core 27/52

Symmetry elimination

Task Symmetry

Tendulkar Mapping/scheduling for 28/52

@\
@/
O ©

o>

task graph

@ all instances of actor C' are similar (symmetric)

Tendulkar Mapping/scheduling for many-core 28/52

Task Symmetry

a schedule
Pyl [A[By |Cu| D]

@D/ Py ‘ B, ‘Clo‘cm‘coo‘ Dy ‘ E,y ‘
(] ON

Bt

task graph

@ all instances of actor C' are similar (symmetric)

Tendulkar Mapping/scheduling for many-core 28/52

Task Symmetry

a schedule
p \AO\BO\CH\Dl\

@D/ Py ‘ B, ‘Clo‘cm‘coo‘ Dy ‘ E,y ‘
(] (=)

time
@\ a permuted schedule
a Py| [Ay [By |Cu|D|
@/ P [B1 [Cuo | Coo [Cor [Do [Eo |

task graph

%)

®

—

time

@ all instances of actor C' are similar (symmetric)

Tendulkar Mapping/scheduling for many-core 28/52

Task Symmetry

a schedule
p \AO\BO\CH\Dl\

®
‘\ n| (5 [co ORISR D] 5]
@ ©

time
@\ a permuted schedule
a Py| [Ay [By |Cu|D|
o b [[ColGRIE D] 5 |

task graph

%)

®

—

time

@ all instances of actor C' are similar (symmetric)

Tendulkar Mapping/scheduling for many-core 28/52

Task Symmetry

a schedule
p \AO\BO\CH\Dl\

®
‘\ n| (5 [co ORISR D] 5]
@ ©

time
@\ a permuted schedule
a Py| [Ay [By |Cu|D|
o b [[ColGRIE D] 5 |

task graph

%)

®

—

time

@ all instances of actor C' are similar (symmetric)
e No change in latency !

Tendulkar Mapping/scheduling for many-core 28/52

Task Symmetry

a schedule
p \AO\BO\CH\Dl\

®
‘\ n| (5 [co ORISR D] 5]
@ ©

time
@\ a permuted schedule
a Py| [Ay [By |Cu|D|
o b [[ColGRIE D] 5 |

task graph

%)

®

—

time

@ all instances of actor C' are similar (symmetric)
e No change in latency !
e Huge number of such symmetric solutions \/

Tendulkar Mapping/scheduling for many-core 28/52

Task Symmetry

a schedule
p \AO\BO\CH\Dl\

®
‘\ n| (5 [co ORISR D] 5]
@ ©

time
@\ a permuted schedule
a Py| [Ay [By |Cu|D|
o b [[ColGRIE D] 5 |

task graph

%)

®

—

time

@ all instances of actor C' are similar (symmetric)

e No change in latency !

e Huge number of such symmetric solutions \/
@ Add constraints to eliminate all but one

Tendulkar Mapping/scheduling for many-core 28/52

Task Symmetry

a schedule
Py [A[By |Cu| D]

@/ P, [B1 [Cuo | Cor | Coo [Do | o |
(] ® |

o>

task graph

Tendulkar Mapping/scheduling for many-core 29/52

Task Symmetry

a schedule
Py [A[By |Cu| D]

@/ P, [B1 [Cuo | Cor | Coo [Do | o |
(] ® |

o>

task graph

@ lexicographic order : Cyp < Cp1 < C19 < Cy3

Tendulkar Mapping/scheduling for many-core 29/52

Task Symmetry

a schedule
Py [A[By |Cu| D]

@/ P, [B1 [Cuo | Cor | Coo [Do | o |
(] ® |

o>

task graph

@ lexicographic order : Cyp < Cp1 < C19 < Cy3

@ enforce lexicographic order in schedule:
s(u) < s(u') foru < o’

Tendulkar Mapping/scheduling for many-core 29/52

Task Symmetry

a schedule
Py [A[By |Cu| D]

@/ P, [B1 [Cuo | Cor | Coo [Do | o |
(] ® |

o>

task graph

@ lexicographic order : Cyp < Cp1 < C19 < Cy3
@ enforce lexicographic order in schedule:

s(u) < s(u') foru < o’
@ 5(Cqp) < s(Co1) < 5(Cqp) < s(C11) \/

Tendulkar Mapping/scheduling for many-core 29/52

Task Symmetry

a schedule
Py [A[By |Cu| D]

r| (B lculCilcaln]
& o

‘ time

@\ a lexicographic schedule
a P, ‘AO‘B0’C00|DO‘
@/ P, [B, €] Cuo [€] D: [E |

task graph

‘ time

@ lexicographic order : Cyy < Cp; < C1p < Cy3
@ enforce lexicographic order in schedule:

s(u) < s(u') foru < o’
@ 5(Cqp) < s(Co1) < 5(Cqp) < s(C11) \/

Tendulkar Mapping/scheduling for many-core 29/52

Symmetry elimination

Task Symmetry : Theorem

Tendulkar Mapping/scheduling for many-core 30/52

Symmetry elimination

Task Symmetry : Theorem

Tendulkar Mapping/scheduling for many-core 30/52

Task Symmetry : Theorem

a schedule
v 4 50880 ¢
) “ “.‘ s, Py ‘ B: ‘CIO ‘ Cop ‘Coo‘ Dy ‘ Eo ‘
L ': v e
t e~ .,
’ g ‘ time
o

SR) .
aLt e a permuted schedule

Py [Bi [Cio [€o0] Cor] Do | Eo |

‘ time

%

Tendulkar Mapping/scheduling for many-core 30/52

Symmetry elimination

Task Symmetry : Theorem

Lexicographic Schedule

@ Theorem : Every group has a lexicographic schedule

Tendulkar Mapping/scheduling for many-core 30/52

Symmetry elimination

Task Symmetry : Theorem

Lexicographic Schedule

@ Theorem : Every group has a lexicographic schedule
@ Corollary : No feasible schedule is lost \/

Tendulkar Mapping/scheduling for many-core 30/52

Symmetry elimination

Processor Symmetry

Tendulkar Mapping/scheduling for many-core 31/52

Processor Symmetry

P, [By [Ci[Cu [D]

BO COO COl DO EO

@\ AN A
) | Time
() @/.\

e

task graph

Tendulkar Mapping/scheduling for many-core 31/52

Processor Symmetry

P, [By [Ci[Cu [D]
@@\ Py o Bo Co Cuu Do Eo
| .
@/ Time
@ schedule

@\ 122 Ac By Cw Co Dy Eg
@/ P, ’BI‘CIO‘CII‘DI‘

task graph ‘

Time
swapped P; and P,

%

Tendulkar Mapping/scheduling for many-core 31/52

Processor Symmetry

P, [By [Ci[Cu [D]

Py Ap By Cyp Coi Dy Eg

o
(»] @/.\

e,

task graph ‘

Time
swapped P; and P,

%

Tendulkar Mapping/scheduling for many-core 31/52

Pareto Exploration

Exploration : Processors vs Latency a« = 30

Tendulkar Mapping/scheduling for many-core 32/52

Symmetry elimination

Pareto Exploration

Processors

Latency

[@ Sat Points ® Unsat Points — ParetoCurve]

without symmetry breaking

Exploration : Processors vs Latency a« = 30

Tendulkar Mapping/scheduling for many-core 32/52

Symmetry elimination

Pareto Exploration

30 56 30
a9 49
25 25
a2 a2
2 2
g g
3 15 8 g 15 28
8 8
& &
21 21
10 10
14 14
5 5
7 7
% s 10 15 20 25 30 o % 5 10 15 20 25 30 0
Latency Latency
[[e_sat Points = Unsat Points —— Pareto Curve] [Ce_sat Points = Unsat Points —— Pareto Curve|
without symmetry breaking with symmetry breaking

Exploration : Processors vs Latency a« = 30

Tendulkar Mapping/scheduling for many-core 32/52

eto Exploration

° °
30 H 56 30 H 56
49 a9
25 25
a2 a2
@ @
3 g
815 8 g15 28
- &
21 21
10 10-
14 14
5 5
7 7
% 0 0 0
Latency Latency
[[e_sat Points = Unsat Points —— Pareto Curve] [Ce_sat Points ®_ Unsat Points. —— Pareto Curve|
without symmetry breaking with symmetry breaking

Exploration : Processors vs Latency a« = 30

Solver Performance

@ Timeouts reduce !
@ The gap between SAT and UNSAT points is smaller. \/

Tendulkar Mapping/scheduling for many-core 32/52

Video Decoder

3D cost space (C.,Cp, Cp) exploration, Cp - total buffer size

MPEG video decoder:

Tendulkar Mapping/scheduling for many-core 33/52

Video Decoder

3D cost space (C.,Cp, Cp) exploration, Cp - total buffer size

s without symmetry constraints _ _ with symmetry constraints

MPEG video decoder:

Processor

33/52

Tendulkar Mapping/scheduling for many-core

Video Decoder

3D cost space (C.,Cp, Cp) exploration, Cp - total buffer size

\ a without symmetry constraints e with symmetry constraints

MPEG video decoder:

Tendulkar Mapping/scheduling for many-core 33/52

Video Decoder

3D cost space (C.,Cp, Cp) exploration, Cp - total buffer size

s without symmetry constraints _ _ with symmetry constraints

MPEG video decoder:

Processor

Better Pareto points

33/52

Tendulkar Mapping/scheduling for many-core

Video Decoder

3D cost space (C.,Cp, Cp) exploration, Cp - total buffer size

s without symmetry constraints _ _ with symmetry constraints

MPEG video decoder:

Processor

Better Pareto points in same TIME-Budget !

33/52

Tendulkar Mapping/scheduling for many-core

Symmetry elimination

Distributed memory scheduling

Tendulkar Mapping/scheduling for many-core 34/52

Symmetry elimination

Distributed memory scheduling

@ So far we ignored the communication costs

Tendulkar Mapping/scheduling for many-core 34/52

Symmetry elimination

Distributed memory scheduling

@ So far we ignored the communication costs

@ For distributed memory, communication needs to be modeled

Tendulkar Mapping/scheduling for many-core 34/52

Distributed memory scheduling
view

e Distributed memory scheduling

Tendulkar Mapping/scheduling for many-core 35/52

Distributed memory scheduling

Kalray MPPA-256
- uevo | ot |

Tendulkar Mapping/scheduling for many-core 36/52

Distributed memory scheduling

Kalray MPPA-256

e 16 compute clusters

Tendulkar Mapping/scheduling for many-core 36/52

Distributed memory scheduling

Kalray MPPA-256

Shared
Memory

e 16 compute clusters

Tendulkar Mapping/scheduling for many-core 36/52

Distributed memory scheduling

Kalray MPPA-256

Shared
Memory

e 16 compute clusters
e 16 processors

Tendulkar Mapping/scheduling for many-core 36/52

Distributed memory scheduling

Kalray MPPA-256

Shared
Memory

e 16 compute clusters

e 16 processors
e 2 MB Shared Memory

Tendulkar Mapping/scheduling for many-core

36/52

Distributed memory scheduling

Kalray MPPA-256

Shared
Memory

e 16 compute clusters

e 16 processors
e 2 MB Shared Memory

e DMA \/

Tendulkar Mapping/scheduling for many-core 36/52

Kalray MPPA-256

Shared
Memory

e 16 compute clusters

e 16 processors
e 2 MB Shared Memory

o DMA \/

o Toroidal 2D network

Tendulkar Mapping/scheduling for many-core 36/52

e 16 compute clusters

e 16 processors
e 2 MB Shared Memory

o DMA \/

o Toroidal 2D network

Tendulkar Mapping/scheduling for many-core 36/52

Distributed memory scheduling

Design Flow

Application
Graph

Mapping/scheduling for

Distributed memory scheduling
esign Flow
Application
Graph

Partitioning @\

Tendulkar Mapping/scheduling for many-core 37/52

Distributed memory scheduling
esign Flow
Application
Graph

Partitioning C{D\

@ Load balance the groups
@ Minimize data exchange \/

Tendulkar Mapping/scheduling for many-core 37/52

Distributed memory scheduling

esign Flow

Application

Graph @\
— 0.0

Partitioning
|

>~
.@\@

) Place the Groups
Placement

o
N W

Tendulkar Mapping/scheduling for many-core 37/52

Distributed memory scheduling

Design Flow

Application

Graph (9\
— 0 0

Partitioning
|

~
.@\@

) Place the Groups
Placement

i

O
‘NP

@ Minimize distance between communicating groups \/

Tendulkar Mapping/scheduling for many-core 37/52

Distributed memory scheduling

Design Flow

Application
Graph

)
Partitioning
|

G

Placement
—

Mapping/scheduling for

Distributed memory scheduling

Design Flow

Application
Graph @\®\
) (] (v)

Partitioning @\
J Schedule
() ®/ m Tasks

Placement i/ P

) sl w [0 5] m Transfer
i,

——— H

Multi-cluster H P2

Scheduling p,| [ABa]Cn]
| S ——

‘ Time

Tendulkar Mapping/scheduling for many-core 37/52

Distributed memory scheduling

Design Flow

Application
Graph @\®\
) (] ()

Partitioning
C;>G/ Schedule

m Tasks
Placement i/ P
) sl w [0 5] m Transfer
o
Multi-cluster RO
Scheduling v [A]B]G]
—_—

| Time

@ Minimize Latency
@ Minimize Buffer size \/

Tendulkar Mapping/scheduling for many-core 37/52

Distributed memory scheduling

Output of Design Flow

Tendulkar Mapping/scheduling for many-core 38/52

put of Design Flo

@ Tasks and Transfers

Tendulkar Mapping/scheduling for many-core 38/52

Output of Design Flow

@ Tasks and Transfers
o Cluster Mapping

Tendulkar Mapping/scheduling for many-core 38/52

Output of Design Flow

@ Tasks and Transfers
o Cluster Mapping

e Processor and DMA Mapping

Tendulkar Mapping/scheduling for many-core 38/52

Output of Design Flow

@ Tasks and Transfers
o Cluster Mapping

e Processor and DMA Mapping

o Start time

Tendulkar Mapping/scheduling for many-core 38/52

Output of Design Flow

@ Tasks and Transfers
o Cluster Mapping

e Processor and DMA Mapping

o Start time

@ Edges

Tendulkar Mapping/scheduling for many-core 38/52

Output of Design Flow

@ Tasks and Transfers
o Cluster Mapping

e Processor and DMA Mapping

o Start time

@ Edges
o Communication buffer size

Tendulkar Mapping/scheduling for many-core 38/52

Output of Design Flow

@ Tasks and Transfers
o Cluster Mapping

e Processor and DMA Mapping

o Start time

@ Edges
o Communication buffer size

@ Application

Tendulkar Mapping/scheduling for many-core 38/52

Output of Design Flow

@ Tasks and Transfers
o Cluster Mapping

e Processor and DMA Mapping

o Start time

@ Edges
o Communication buffer size

@ Application
o Latency

Tendulkar Mapping/scheduling for many-core 38/52

Distributed memory scheduling

Tasks communicating via DMA:

,,,,,,,,,,,,,,,,,,,,,

Tendulkar Mapping/scheduling for many-core 39/52

Distributed memory scheduling

Tasks communicating via DMA:

Clustery
~
-

DMA,

®
©
©
®
d

,,,,,,,,,,,,,,,,,,,,,

Time

Tendulkar Mapping/scheduling for many-core 39/52

Distributed memory scheduling

Tasks communicating via DMA:

,,,,,,,,,,,,,,,,, oma icon
o S g [P L]
@—0O—0—0 { N
Time
Task Description Resources used Task duration
I Initialization Processor and DMA Constant

Tendulkar Mapping/scheduling for many-core 39/52

Tasks communicating via DMA:

77777777777777777 DMA g { ™
@ m @ @ 57‘? DMA, n
N N4 S PTA 1]
Time
Task Description Resources used Task duration
I Initialization Processor and DMA Constant
G Network Transfer Only DMA Transfer size dependent

Tendulkar Mapping/scheduling for many-core 39/52

Model Transformation

An example application graph:

0

Tendulkar Mapping/scheduling for many-core 40/52

Model Transformation

An example application graph:

O amn O

Tendulkar Mapping/scheduling for many-core 40/52

Model Transformation

An example application graph:

O amn O

Partition-Aware graph:

ewt : [1,w] /-\ ewn * (1] /-\ ert : (o, w) O
A Iwr G\Vr B
O)

Tendulkar Mapping/scheduling for many-core 40/52

Model Transformation

An example application graph:

O amn O

Partition-Aware graph:

ewt : [1,w] /-\ ewn * (1] /-\ ert : (o, w) O
A Iwr G\Vr B
O)

Buffer-Aware graph:

. 1 . .)
@ ewt : [1,w'] /IWI\ Cawn : [1] /G‘\ et : o, w]
v, 5.

Tendulkar Mapping/scheduling for many-core 40/52

Model Transformation

An example application graph:

O amn O

Partition-Aware graph:

ewt : [1,w] /-\ ewn * (1] /-\ ert : (o, w) O
A Iwr G\Vr B
O)

Buffer-Aware graph:
DMA : Data
Q Cwt [l,wTE] m Cun : [1]
A | Lur
v ' U\r,f}é .
6'“"‘ l--------"-a-/
@ y
s
’6&;"‘ [

Tendulkar Mapping/scheduling for many-core 40/52

Model Transformation

An example application graph:

O amn O

Partition-Aware graph:

ewt : [1,w] /-\ ewn * (1] /-\ ert : (o, w) O
A Iwr G\Vr B
O)

Buffer-Aware graph:

@ Cwt : [l,wT:]'/I;r\ ewn : [1] /G-\

DMA : flow-control

Tendulkar Mapping/scheduling for many-core 40/52

odel Transformation

An example application graph:

O amn O

Partition-Aware graph:

ewt : [1,w] /-\ ewn * (1] /-\ ert : (o, w) O
A Iwr G\Vr B
O)

Buffer-Aware graph:

DMA-Completion DMA : flow-control

Tendulkar Mapping/scheduling for many-core 40/52

Distributed memory scheduling

ecoder Example

12

Tendulkar Mapping/scheduling for many-core 41/52

JPEG Decoder Example

12

@ - ' 1

VLD : Variable Length Decoder

Tendulkar Mapping/scheduling for many-core 41/52

JPEG Decoder Example

12

VLD : Variable Length Decoder

IQ / IDCT : Inverse Quantization / Inverse Discrete Cosine Transform

Tendulkar Mapping/scheduling for many-core 41/52

JPEG Decoder Example

12

VLD : Variable Length Decoder

IQ / IDCT : Inverse Quantization / Inverse Discrete Cosine Transform

Color : Color Conversion

Tendulkar Mapping/scheduling for many-core 41/52

Distributed memory scheduling

JPEG Decoder Example

Partitioning Solutions:

JPEG
Decoder C.- : Max. workload per group
C77 : Total communication cost
Partitioning

C, : No. of Groups

 CEE——

Placement

| N —

. . ..)
Multi-cluster
Scheduling

—

—

Tendulkar Mapping/scheduling for many-core 42/52

JPEG Decoder Example

Partitioning Solutions:

JPEG
Decoder C.- : Max. workload per group
C77 : Total communication cost
CEE—
Partitioni .
L C, : No. of Groups
Pl t
ﬁ& Solution Allocated group Exploration Cost
vid ig color C- C, GC,
(Multicluster) Py 0 1 2 424012 12384 3
Scheduling Py 0 0 1 758116 2736 2
Pso 0 0 0 934288 0 1
Pss 0 1 1 510276 9648 2

%

Tendulkar Mapping/scheduling for many-core 42/52

JPEG Decoder Example

Partitioning Solutions:

JPEG
Decoder C.- : Max. workload per group
C77 : Total communication cost
CEE—
Partitioni .
L C, : No. of Groups
Pl t
ﬁ& Solution Allocated group Exploration Cost
vid ig color C- C, GC,
(Multicluster) Py 0 1 2 424012 12384 3
Scheduling Py 0 0 1 758116 2736 2
71 Py 0 0 0 [934288 0 1]
Pss 0 1 1 510276 9648 2

%

Tendulkar Mapping/scheduling for many-core 42/52

JPEG Decoder Example

Partitioning Solutions:

JPEG
Decoder C.- : Max. workload per group
C77 : Total communication cost
CEE—
Partitioni .
L C, : No. of Groups
Pl t
ﬁ& Solution Allocated group Exploration Cost
vid ig color C- C, GC,
(Multicluster) Py 0 1 2 [424012 12384 3 T
Scheduling Py 0 0 1 /58116 2/36 2
- 1 Py, 0 O 0 [934288 0 1
Pss 0 1 1 510276 9648 2

%

Tendulkar Mapping/scheduling for many-core 42/52

Distributed memory scheduling

JPEG Decoder Example

Scheduling Solutions:

| S
JPEG -10%
Decoder
—
Partitioning ;w:
-) %
2
»n 11
Placement _— 5
e Solution g
Multi-cluster Po 1
Scheduling Py
_ Pe 04 05 06 07 08 09 1
Ps3 Latency (cycles) 106

o Iy Psl = P52 ¢ PsS

Tendulkar Mapping/scheduling for many-core 42/52

Distributed memory scheduling

JPEG Decoder Example

JPEG decoder latency on Kalray platform

10* 10" 10" 10"
ot
— 12 i — 12 = 12 = 12
g g g 8
s 2 5 5
Py ° 3 s
& 11 @ 11 B 11 » 11
5 5 k3l &
a 3 a z
1 e 1 e 1 e 1
04 05 06 07 08 09 1 04 05 06 07 08 09 1 04 05 06 07 08 09 1 04 05 06 07 08 09 1
Latency (cycles) 106 Latency (cycles) .10° Latency (cycles) 106 Latency (cycles) .10°
P. s0 P. sl P, s2 P. s3
-o- model —~— measured-min. = measured-max.

%

Tendulkar Mapping/scheduling for m: 43/52

Distributed memory scheduling

Streamlt Benchmarks

0
0
9
100
#Solutions N %error
80
60
40 g
[Ta]
Q 3
20
9] 0 0 ~ S 0 0
~ ‘°I<r < I © I
2] <
il EMEEE | i
P S SR S N R R R Y S R N
EIPSIC e S RO
& & o ASEER RPN
N Q)Q;b{\\ & W@ <F < N @’z}

Tendulkar Mapping/scheduling for many-core 44/52

Distributed memory scheduling

Streamlt Benchmarks

0
0
9
100
#Solutions N %error
80
60
40 g
[Ta]
Q 3
20
9] 0 0 ~ S 0 0
~ ‘°I<r < I © I
2]
il EMEEE | i
P S SR S N R R R Y S R N
& & %ec’ &+e° F ST E S PN <
& & o ASEER RPN
N Q)Q;b{\\ & W@ <F < N @’z}

Tendulkar Mapping/scheduling for many-core 44/52

Design Tools
view

e Design Tools

Tendulkar Mapping/scheduling for many-core 45/52

Our Framework

Runtime

Tendulkar Mapping/scheduling for many-core 46 /52

Our Framework

Runtime

Run-time

Tendulkar Mapping/scheduling for many-core 46 /52

Our Framework

Runtime

XML

q Run-time |

Tendulkar Mapping/scheduling for many-core 46 /52

Our Framework

Runtime

Application Code

XML ‘
q Run-time

Tendulkar Mapping/scheduling for many-core 46 /52

Our Framework

Runtime

Application Code

XML ‘
q Run-time

Tendulkar Mapping/scheduling for many-core 46 /52

Our Framework

Runtime

Application Code

w b =]

q Run-time

Tendulkar Mapping/scheduling for many-core 46 /52

Our Framework

Runtime

Application Code
pplicati P, P,

R R
XML ‘ FIFO ||| i i

q Run-time ’ ’

—|
—|

—{
—{

Tendulkar Mapping/scheduling for many-core 46 /52

Our Framework

Runtime

Application Code

AR R
o l \l l \I
‘ FIF ||| : :
XML T T

q Run-time ’ ’

Tendulkar Mapping/scheduling for many-core 46 /52

Our Framework

Runtime

Application Code
A () PO Pl

A
‘ FIFO o) o)
XML |ﬂ T T

q Run-time ’ ’

Tendulkar Mapping/scheduling for many-core 46 /52

Our Framework

Runtime

Application Code | —————————
A() — =

L AR R
o l \l l \I
‘ FIF ||| : :
XML . v

q Run-time ’ !

Tendulkar Mapping/scheduling for many-core 46 /52

Our Framework

Runtime

Application Code
B () PO Pl

R R
XML ‘ FIFO ||| i i

q Run-time ’ ’

—|

(_
W

Tendulkar Mapping/scheduling for many-core 46 /52

Our Framework

Runtime

Application Code
B () PO Pl

U U
o ’L \l ’L \l
‘ FIF ||| ! !
XML v U
B

q Run-time ____________ o '

Tendulkar Mapping/scheduling for many-core 46 /52

Our Framework

StreamExplorer

Tendulkar Mapping/scheduling for many-core 47 /52

Our Framework

StreamExplorer

Run-time

Tendulkar Mapping/scheduling for many-core 47 /52

Our Framework

StreamExplorer

XML Parser
Split-join | Platform

. _profile

Run-time |

Tendulkar Mapping/scheduling for many-core 47 /52

Our Framework

StreamExplorer

XML Parser Graph Models

Split-join | Platform Split-join | Task Graph

. _profile

Run-time

Tendulkar Mapping/scheduling for many-core 47 /52

r Framework

StreamExplorer
Property Analyzer
Consistency | Cost bounds
XML Parser Graph Models |
Split-join | Platform Split-join | Task Graph
2
QI
5!
(1)
Run-time |
Tendulkar

Mapping/scheduling for many-core 47 /52

r Framework

StreamExplorer
Property Analyzer
Consistency | Cost bounds
XML Parser Graph Models
Split-join | Platform Split-join | Task Graph
A
QI
5
(1)
! Output Generator
Run-time DotGraph
Tendulkar

Mapping/scheduling for many-core 47 /52

Design Tools

Our Framework

StreamExplorer
Property Analyzer
Consistency | Cost bounds
XML Parser Graph Models Cost-space Explorer
Split-join | Platform Split-join | Task Graph grid | binary search
A
QI
5
(1)
! Output Generator
Run-time DotGraph

Tendulkar Mapping/scheduling for many-core 47 /52

Design Tools

Our Framework

StreamExplorer
Property Analyzer
Consistency | Cost bounds
> 5
gl 38
g_ 2
XML Parser Graph Models Cost-space Explorer
Split-join | Platform Split-join | Task Graph grid binary search
A
gl
S
(1)
! Output Generator
Run-time DotGraph
Tendulkar

Mapping/scheduling for many-core

47 /52

Design Tools

Our Framework

StreamExplorer
Property Analyzer
Consistency | Cost bounds
> 5
gl 38
g_ b
XML Parser Graph Models Cost-space Explorer
Split-join | Platform Split-join | Task Graph grid | binary search
A
gl
S
(1)
! Output Generator
Run-time DotGraph = Gantt Chart

Schedule XML

Tendulkar Mapping/scheduling for many-core 47 /52

Design Tools

Our Framework

StreamExplorer
Property Analyzer
Consistency | Cost bounds
> 5
3| &
T
XML Parser Graph Models Cost-space Explorer
Split-join | Platform Split-join | Task Graph grid binary search
A
ot
=1
O
(1)
L]
L]
! Output Generator
Run-time |<-S-c:(1&-(|’_l-”-e- DotGraph || Gantt Chart
Schedule XML

Tendulkar Mapping/scheduling for many-core 47 /52

Our Framework

e StreamExplorer

Tendulkar Mapping/scheduling for many-core 48/52

Our Framework

e StreamExplorer

o Written in Java

Tendulkar Mapping/scheduling for many-core 48/52

Our Framework

e StreamExplorer

o Written in Java

@ 32k+ lines of Code.

Tendulkar Mapping/scheduling for many-core 48/52

Our Framework

e StreamExplorer

o Written in Java

@ 32k+ lines of Code.

e Runtime

o Written in C++

Tendulkar Mapping/scheduling for many-core 48/52

Our Framework

e StreamExplorer

o Written in Java

@ 32k+ lines of Code.

e Runtime

o Written in C++

o 14k+ lines of Code.

Tendulkar Mapping/scheduling for many-core 48/52

Conclusions

Overview

e Conclusions

Tendulkar Mapping/scheduling for many-core 49 /52

Conclusions and Future Work

Conclusions:

Tendulkar Mapping/scheduling for many-core 50/52

Conclusions and Future Work

Conclusions:

@ Symmetry elimination finds better solutions

Tendulkar Mapping/scheduling for many-core 50/52

Conclusions and Future Work

Conclusions:

@ Symmetry elimination finds better solutions

@ Combined Optimization with Communication modeling

Tendulkar Mapping/scheduling for many-core 50/52

Conclusions and Future Work

Conclusions:

@ Symmetry elimination finds better solutions
@ Combined Optimization with Communication modeling

@ Automated design flow for distributed memory

Tendulkar Mapping/scheduling for many-core 50/52

Conclusions and Future Work

Conclusions:

@ Symmetry elimination finds better solutions
@ Combined Optimization with Communication modeling

@ Automated design flow for distributed memory

Future Work:

Tendulkar Mapping/scheduling for many-core 50/52

Conclusions and Future Work

Conclusions:

@ Symmetry elimination finds better solutions
@ Combined Optimization with Communication modeling

@ Automated design flow for distributed memory
Future Work:

@ Spread actor over multiple clusters

Tendulkar Mapping/scheduling for many-core 50/52

Conclusions and Future Work

Conclusions:

@ Symmetry elimination finds better solutions
@ Combined Optimization with Communication modeling

@ Automated design flow for distributed memory
Future Work:

@ Spread actor over multiple clusters

@ Network route selection and scheduling

Tendulkar Mapping/scheduling for many-core 50/52

Conclusions and Future Work

Conclusions:

@ Symmetry elimination finds better solutions
@ Combined Optimization with Communication modeling

@ Automated design flow for distributed memory
Future Work:

@ Spread actor over multiple clusters
@ Network route selection and scheduling

@ Pipelined scheduling

Tendulkar Mapping/scheduling for many-core 50/52

Conclusions and Future Work

Conclusions:

@ Symmetry elimination finds better solutions
@ Combined Optimization with Communication modeling

@ Automated design flow for distributed memory
Future Work:

@ Spread actor over multiple clusters
@ Network route selection and scheduling
@ Pipelined scheduling

@ Scheduling under uncertainty

Tendulkar Mapping/scheduling for many-core 50/52

Contributions

m P. Tendulkar, P. Poplavko, and O. Maler. “Symmetry Breaking for Multi-criteria
Mapping and Scheduling on Multicores”. In: FORMATS. 2013

m P. Tendulkar, P. Poplavko, |. Galanommatis, and O. Maler. “Many-Core
Scheduling of Data Parallel Applications using SMT Solvers”. In: DSD. 2014

m P. Tendulkar, P. Poplavko, and O. Maler. Strictly Periodic Scheduling of
Acyclic Synchronous Dataflow Graphs using SMT Solvers. Tech. rep.
Verimag Research Report, 2014

m P. Tendulkar and S. Stuijk. “A Case Study into Predictable and Composable
MPSoC Reconfiguration”. In: IPDPS RAW Workshop. 2013

m S. Saidi, P. Tendulkar, T. Lepley, and O. Maler. “Optimizing Explicit Data
Transfers for Data Parallel Applications on the Cell Architecture”. In: ACM
TACO (2012)

m S. Saidi, P. Tendulkar, T. Lepley, and O. Maler. “Optimizing two-dimensional
DMA transfers for scratchpad Based MPSoCs platforms”. In:
Microprocessors and Microsystems (2013) \/

Tendulkar Mapping/scheduling for many-core 51/52

Thank You

Questions?

Tendulkar Mapping/scheduling for many-core 52/52

SDF and Split Join graphs

[S

Q SDF and Split Join graphs

Tendulkar Mapping/scheduling for many-core 1/20

SDF and Split Join graphs

Split-Join Graphs

Hypothesis supported by Streamit:!
@ Total 763 actors analyzed in various applications

@ 94% are stateless
@ 6% are stateful

@ 45% have states due to algorithm
@ 55% have avoidable states
@ Odd rates exists but are rare
CD-DAT benchmark used as an example
Converts CD audio (44.1 kHz) to digital audio tape (48 kHz)

[1] W. Thies and S. Amarasinghe. “An Empirical Characterization of Stream Programs and Its Implications for Language and Compiler V

Design”.

Tendulkar Mapping/scheduling for many-core 2/20

Symmetry Breaking

Overview

Q Symmetry Breaking

Tendulkar Mapping/scheduling for many-core 3/20

Symmetry Breaking

Proof Sketch

modify a feasible schedule such that:
s(Vo) < s(v1) S5(vy) < ...
prove that precedence constraints are satisfied
S here: for neutral channels (a=1), unfolded to (vp, v'1)

b 50 |
1> B

A1)~

A 2] fp> Bl2)

lexicographic start-time new hier. index;
order compatible new precedence relation

Tendulkar Mapping/scheduling for m: 4/20

Symmetry Breaking

Proof Sketch

modify a feasible schedule such that:
s(Vo) < s(v1) S5(vy) < ...
prove that precedence constraints are satisfied
S here: for neutral channels (a=1), unfolded to (vp, v'1)

| AO...l +>Bo | |A1 L

lexicographic start-time new hier. index;
order compatible new precedence relation

[0 "o]

-

Tendulkar Mapping/scheduling for many-core 4/20

Proof Sketch

| o o | [20 || 200 |
Y Lot | [arw |

N N | 221 | [o2] |

T3 7]3] 431] | s3] |*«—1i1=03)
L4 P4 | EZENEZE

5 5 IEEEEGH

take successor | j |

Tendulkar Mapping/scheduling for many-core 5/20

Proof Sketch

o | 1o | Lo] | 20 |
Y Lo | [] |

N N} | 2021 |9 [02] |

13T |3] | a3]+f2= 53] |*—[j1=13]
NN EN [3041 | [44 |

5 5 IEEEEGH

take successor | j |

Tendulkar Mapping/scheduling for many-core 5/20

Proof Sketch

o | 1o | Lo] | 20 |
Y Lo | [] |

N N} | 2021 |9 [02] |

13T |3] | a3]+f2= 53] |*—[j1=13]
NN EN [3041 | [44 |

5 5 IEEEEGH

take successor | j | by definition there exist j + 1 same or earlier successors

%

Tendulkar Mapping/scheduling for many-core 5/20

Proof Sketch

[o Jfo | Lo | 210 |

[1] 1] [o] | | 201 |

L2 2 [[2121 |9 [021]

13] 13] [a[3]+f%=2p 53] | +— [j1=[3]
L4 [] 4 ECENETE

|
5 5 IEEIEGH

take successor | j | by definition there exist j + 1 same or earlier successors

%

Tendulkar Mapping/scheduling for many-core 5/20

Proof Sketch

Lo | o | L 2o) || 2001 |

|1| N Lo | [201 |
[2 2 [| 2021 | 9| o2]]
1 3 | | 3 | | a3]=f==b 53] | *— [j1=13]
| 4 [3041 | | 4141 |

ESINEEN

take successor | j | by definition there exist j + 1 same or earlier successors

their original predecessors finish before successor [j |:

%

Tendulkar Mapping/scheduling for many-core 5/20

Proof Sketch

[o] o | [1001 | | 2[0] |
| 1] | o] |] 1] |
2 | 2 [| 2121 |9 | o2 |

1
| :
BEEEER 4[3]=p==op 5[3] |*— [jI=[3]
L& [P] 4] 3041 | o a4

5 5 [sisr] 3051 |

take successor [j | by definition there exist j + 1 same or earlier successors

their original predecessors finish before successor [j |:

%

Tendulkar Mapping/scheduling for many-core 5/20

Proof Sketch

EN KN 1oL &ou
S |0[11~J 111 |
[2] 2| 2] ,1»0[21
HEE ER 43]===p 53] [€—[j1=13]
[4] | 4 | 3[4] | o a[4]
5 5 [sis] |05 |

take successor | j | by definition there exist j + 1 same or earlier successors

their original predecessors finish before successor [j |:

%

Tendulkar Mapping/scheduling for many-core 5/20

Proof Sketch

(o g] Tor] &ou
S |0[11~J 111 |
[2] 2 | 22| ?0[2]
HEE ER 43]===p 53] [€—[j1=13]
[4] | 4 | 3[4] | o a[4]
5 5 [sisr] 3051 |

take successor | j | by definition there exist j + 1 same or earlier successors

their original predecessors finish before successor [j |:
j + 1 predecessors finish before, hence the earliest j + 1 ones as well

%

Tendulkar Mapping/scheduling for many-core 5/20

Proof Sketch

Lo [P o | Lo |] 210 |

i I Lo |] a1 |
L2 2 | [221]y [o2]]
T3 | | 3 | | 431=== s3] [«— [j1=13]
[4 [3041 |] 44 |

ESINEEN

take successor | j | by definition there exist j + 1 same or earlier successors

their original predecessors finish before successor [j |:
j + 1 predecessors finish before, hence the earliest j + 1 ones as well
predecessor | j | finishes before successor [j |

%

Tendulkar Mapping/scheduling for many-core 5/20

Design Flow Details

@ Design Flow Details

Tendulkar Mapping/scheduling for many-core 6/20

Design Flow Details

Design Flow

Tendulkar

Partitioning
| N —

Placement
—/

0)
Multi-cluster

Application
Graph

—— (3D Pareto solutions)

Yy max workload

per group

#groups
----- -

estimated
comm. cost

----- minimal soluton ———> communication cost

latency

Scheduling
—

—

___________ S

buffer size
(2D Pareto solutions)

Mapping/scheduling for m

7120

DMA transfer granularity

Overview

0 DMA transfer granularity

Tendulkar Mapping/scheduling for many-core 8/20

DMA transfer granularity

Buffering Algorithm

For architectures with DMA and limited local memory

| | writebacky | writeback; i writebacky I

Output | ! ! i
Transfer |! Prologue . i i
Computation| | idle compute, compute, compute, idle I
Input | : 1 " 1
Tra,?sfe, { prefetch, ' prefetch, prefetch, | ! Epilogue]
T T - T T

Time

Tendulkar Mapping/scheduling for many-core 9/20

DMA transfer granularity

Data transfer granularity

Transfer Granularity less than optimal

T?;,}gg, ‘ Prologue ‘ writebacky writeback; writeback, writebacks writeback, writebacks |
Computation idle compute, compute; compute, compute; compute, compute; idle |
Trlgr?:fter prefetch, prefetch; prefetch, prefetchy prefetch, prefetchy } Epilogue ;
Time
Transfer Granularity greater than optimal
%;ntg?etr ‘ Prologue ‘ writebacky | writeback; writebacky |
Computation| idle compute, compute; compute, idle |
Trlgr?:fter iy prsistist, prefetch, | 3 Epilogue 1
Time

Mapping/scheduling for many-core

DMA transfer granularity

Data transfer granularity

Additional complexity with multiple processors

'Igr):r:quetr i oo bo, b1, b b3, by, bs bg, b, bs I
Procy idle b bs bs |
Proc; idle by by by |
Procy idle by by be |
Tareier bo, b1, b2 b, ba, bs b, b7, bs Epilogue
| Time | |
A
Tendulkar

Mapping/scheduling for many-core

11/20

DMA transfer granularity

DMA transfer granularity optimization

Transfer
/ computation
time per block Total Exec
i i i time
| | |
Lo L C)
I I
o — Ty(s)
| ’ L Ti(s)
i . |
i I
I | | |
I I I
| | |
. . . block
- I
x local mem. size '
51 Sp i ! s
size
Transfer Computation s*
Domain Domain

Tendulkar Mapping/scheduling for many-core 12/20

DMA transfer granularity

Experimental Evaluation

Characterization of DMA of IBM Cell B.E.:

F T T T] T T T
t|—e—1SPU xoA 301 & —o—1SPU | |
|-=-2SPU 1 . -=-2 SPU
—e—4SPU o\ —e—4 SPU
— 10 gspy 1 ‘
8 r 1 8 20} =
= s
x I 1 X
8 8
S S 10p i
103 | / g g
F , 1
[—g—o—0—1]
S =] ol |
L1 | | | | L | | | | | |
16 64 256 1024 4096 16384 16 64 256 1024 4096 16384
block size (bytes) block size (bytes)
Time to read/write block Cost per byte

%

Tendulkar Mapping/scheduling for many-core 13/20

Experimental Evaluation

Synthetic Application Benchmark:

-107

—_
ot

—

o
ot
2 SPU-optimal

4 SPU-optimal

Execution Time (clock cycles)
8 SPU-optimal

| | | |
16 64 256 1024 4096 16384
block size (bytes)

—o— 2 SPU-pred —=— 4 SPU-pred —e— 8 SPU-pred
—+— 2 SPU-meas —+— 4 SPU-meas - & -8 SPU-meas \/

Tendulkar Mapping/scheduling for many-core 14/20

Run-time Management

Overview

@ Run-time Management

Tendulkar Mapping/scheduling for many-core 15/20

The context
]

L 3
3
B

q App, |

3
- <®
H

»

@ Multiple configurations for each application

@ Applications start / stop dynamically

@ How to:

e select a configuration for each application?
e re-configure the applications? \/

Tendulkar Mapping/scheduling for many-core 16/20

CompSoC platform

CompOSe CompOSe

FEthereal NoC]

Features:

@ CompOSe real-time operating system

@ Predictable Athereal network-on-chip

@ TDM application scheduling for composability

@ composable: The changes in an application don’t affect other
running applications \/

Tendulkar Mapping/scheduling for many-core 17/20

Run-time Management

Resource Manager conceptual view

Application start/stop request

| o) System RM |
I (e)] I
- |
L 2s |
| = £ |
L c o 1 f 1f .
I é e !
| 3 Application Application |
| [} o000

‘ 8 RM RM 1

Resource manager Design:

@ System RM : takes re-configuration decisions
@ Application RM : implements re-configuration decisions \/

Tendulkar Mapping/scheduling for many-core 18/20

Run-time Management

m

Tile1 Tile2 Tile3
Application Application — Application
RM (slave) RM (master) —» RM (slave)

11
System RM
Application Application «— Application
RM (slave) RM (master) — RM (slave)

| | |
[EtherealNOC |

Resource manager Implementation:

@ System RM: is a separate application
@ Application RM:

@ organized in master-slave(s) configuration
@ is a part of user application

Tendulkar Mapping/scheduling for many-core

19/20

Run-time Management

Experiment with JPEG Decoder

Steps for Re-configuration:

1.

. Remove old FIFO(s)
. Add application to TDM

. Inform system RM about completion

107
12 m L] [] L]

1
0.8
L] o = m u
0.6 L]

Instruct application RM to reconfigure g .
@)

RequestremovalofapplicationfromTDMn'i I I I I I I I I I I I I

21-2 21-3 2-23 2-2-2 2-3-2 2:3-3 3-3-3 2-3-3 223 2-22 2-1-2 232
Remove application from TDM and ack. Tile mapping(VLD, IQ/IDCT, CC)

-10%
L]
I | | .
1

ck cycles

2.5

Resize TDM allocation

™

Clock cycles
o 5
= _ L]
o

Add new FIFO(s)

213 223 222 232 233 3-33 233 223 222 21-2 232
Tile mapping(VLD, IQ/IDCT, CC)

. step1 step2 mm step3 I step4 mam step5+6
. step? step8 m predicted

Tendulkar Mapping/scheduling for many-core 20/20

	Motivation
	Application Model
	Deployment using SMT
	Symmetry elimination
	Distributed memory scheduling
	Design Tools
	Conclusions
	Appendix
	SDF and Split Join graphs
	Symmetry Breaking
	Design Flow Details
	DMA transfer granularity
	Run-time Management

