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Multi-core systems

How To:
@ Deploy the application to the platform

@ Decide number of processors to use?

o Allocate tasks to processors and schedule them \/
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Deployment problem

@ The difficultly in the deployment is that the design space is exponential
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Deployment problem

@ The difficultly in the deployment is that the design space is exponential
@ One needs to model complex hardware : Processors, Network, DMA

@ Multiple Evaluation Criteria

e Latency

e Memory used

@ Processors used
o
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Research Questions

How to:
@ model the software
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Research Questions

How to:
@ model the software

@ model the hardware (Processors, Network, DMA)

@ Optimize deployment while dealing with design space explosion
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Outline

o Motivation

e Application Model

Q Deployment using SMT

e Symmetry elimination

e Distributed memory scheduling
Q Design Tools

e Conclusions
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Model of Computation

Synchronous Dataflow graphs (SDF)
by Edward Lee and David Messerschmitt in 1987
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Synchronous Dataflow graphs (SDF)
by Edward Lee and David Messerschmitt in 1987

represents Streaming Applications

Input output
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Application Model

Synchronous DataFlow
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Application Model

Synchronous DataFlow

SDF Graph v

Task Graph
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Application Model

Synchronous DataFlow
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Application Model

Synchronous DataFlow
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SDF Graph v

Task Graph
@ Actors
o Pre-processing
o Blur
e Post-processing

@ Edges
@ Blur executes only after Pre-processing finishes
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Application Model

Synchronous DataFlow

e n 1 4 A
Lo
SDF Graph v

Task Graph
@ Actors

o Pre-processing
o Blur
e Post-processing

@ Edges
@ Blur executes only after Pre-processing finishes

@ Rates

e Pre-processing produces 4 pieces of an image (tokens) \/
o Each Blur consumes 1 piece

Tendulkar Mapping/scheduling for many-core 17/52



Application Model

Synchronous DataFlow
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@ Actor Blur is compact representation of data parallel tasks. J
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Application Model

Synchronous DataFlow

> @O® AN

\ ©
SDF Graph W

Task Graph

@ Actor Blur is compact representation of data parallel tasks.
@ All Blur tasks have same properties such as execution time. J
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Split-Join Graphs

we use split-join graphs : restriction of SDF
still covering perhaps 90% of use cases in the literature
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Split-Join Graphs

we use split-join graphs : restriction of SDF
still covering perhaps 90% of use cases in the literature

a simple example:
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Restrictions compared to general SDF
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Restrictions compared to general SDF

Split-join does not support:

@ Stateful actors

@ Non-proportional rates

@ Initial tokens and cyclic paths
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e Deployment using SMT

Tendulkar Mapping/scheduling for many-core 20/52



Deployment using SMT

SATisfiability solver (SAT / SMT)
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Deployment using SMT

SATisfiability solver (SAT / SMT)

@ Boolean variables
’E‘Z ’E‘Z ’E‘Z 4 ino, inl, ing ...
> @ outg, outy, outs ...
—
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SATisfiability solver (SAT / SMT)

@ Boolean variables
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; @ Constraints
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variables
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SATisfiability solver (SAT / SMT)
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Deployment using SMT

SATisfiability solver (SAT / SMT)
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Deployment using SMT

Tisfiability solver (S

@ Boolean variables
’E‘Z ’E‘Z ’E‘Z 4 ino, inl, ing ...
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variables
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Deployment using SMT

SATisfiability solver (SAT / SMT)

@ Boolean variables
% % % @ ing, iny, ins ...
—) @ outp, outy, outy ...
) @ Constraints

1
SMT deals with numeric variables and constants |

|UUIISUHIIILS|

—— SAT solver ——
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Deployment using SMT

Encoding deployment with constraints

e Actor A B Cc
;6\ Tasks Ag By ‘ B, ‘ By ‘ Bj Co
=X Description Variables

Task Graph
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Deployment using SMT

Encoding deployment with constraints

e Actor A B
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Task Graph
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Deployment using SMT

Encoding deploym

Task Graph

Actor A B Cc
Tasks Ay By ‘ B, ‘ Bo ‘ Bs Co
Description Variables
Start time xAp | xBg xB; | xB2 | xBs  xCp
Allocated proc. | pA, | pB, [ pB; | pB, | pB; | pCy
Duration dA dB dc

@ Precedence Constraints

o XBO Z (XAO + dA)
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Deployment using SMT

Encoding deployment with constraints

e Actor A B C
;6\ Tasks Ay By ‘ B, ‘ Bo ‘ Bs Co
0“@ Description Variables
W Start time XAQ XBO XB1 XB2 XB3 XCO
e Allocated proc. | pA, | pB, [ pB; | pB, | pB; | pCy
Duration dA dB dc
Task Graph
% @
. (o] o
@ Precedence Constraints 2 OR ¢
e xBo > (xAo + dA) § §
@ Mutual Exclusion Constraints & a

e if (pB; = pB,) then Time Time
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Deployment using SMT

Encoding deployment with constraints

e Actor A B C

;6\ Tasks Ay By ‘ B, ‘ Bo ‘ Bs Co
0“@ Description Variables

W Start tlme XAQ XBO xB 1 XB2 XB3 XCO

e Allocated proc. | pA, | pB, [ pB; | pB, | pB; | pCy
Duration dA dB dC
Task Graph
Latency
1 .
. 5 .
@ Precedence Constraints 2l Ay m :
o XB“ 2 (XAu + (JA) 8 :
. . o
@ Mutual Exclusion Constraints a

o if (pB, = pB,) then
xB1 > (xB2 +dB) V xBa > (xB1 + dB)
@ Latency Cost

@ Latency = (xCo + dC) \/

Time
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Multi-criteria Problem

Processors

Latency
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Multi-criteria Problem

SIS
P

Time
Latency = 4
#Proc =2
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Multi-criteria Problem
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Time Time
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Multi-criteria Problem
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Multi-criteria Problem
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Deployment using SMT

Problem Monotonicity

Upper Bound
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Problem Monotonicity
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Problem Monotonicity
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Deployment using SMT
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Problem Monotonicity

Latency < 4
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Not Possible
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Problem Monotonicity
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Deployment using SMT

Design Space Exploration
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Design Space Exploration

Split-join Graph |
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Design Space Exploration

Split-join Graph

SMT Constraints
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Design Space Exploration

Split-join Graph

SMT Constraints =——>  SMT Solver
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Design Space Exploration

Design Space
Exploration Algorithm

Split-join Graph
cost

| constraints

SMT Constraints =——>  SMT Solver
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Design Space
Exploration Algorithm

Split-join Graph
cost

| constraints

SMT Constraints =——>  SMT Solver —>

solutions
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Design Space Exploration

Design Space
Exploration Algorithm

Split-join Graph
cost

| ‘ constraints (x1,y1)
SAT )

SMT Constraints =——>  SMT Solver —>

solutions
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Design Space Exploration
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‘ cost (x )
| constraints 2:Y2
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Design Space Exploration

Split-join Graph

SMT Constraints

Design Space
Exploration Algorithm

cost (x5,Y5)
constraints 373

——>  SMT Solver

Timeout:

Cannot decide SAT / UNSAT in a given TIME-BUDGET.

TIMEOUT
—

solutions

Tendulkar
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Design Space Exploration

Split-join Graph

e

SMT Constraints

Design Space
Exploration Algorithm

cost
constraints
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Deployment using SMT

Exploration Algorithm
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Exploration Algorithm

e Divide cost space using grids
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Exploration Algorithm

e Divide cost space using grids
e One SMT query per point on the grid
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Exploration Algorithm

e Divide cost space using grids
e One SMT query per point on the grid

o Finer grid after every iteration
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Exploration Algorithm

e Divide cost space using grids
e One SMT query per point on the grid
o Finer grid after every iteration

@ Don't query in known area
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Symmetry elimination

Overview

e Symmetry elimination
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Symmetry elimination

Task Symmetry
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task graph

@ all instances of actor C' are similar (symmetric)
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Task Symmetry

a schedule
Pyl [A[ By |Cu| D]
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task graph

@ all instances of actor C' are similar (symmetric)
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Task Symmetry

a schedule
p \AO\BO\CH\Dl\

@D/ Py ‘ B, ‘Clo‘cm‘coo‘ Dy ‘ E,y ‘
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time
@\ a permuted schedule
a Py| [ Ay [ By |Cu|D|
@/ P [B1 [Cuo | Coo [ Cor [ Do [ Eo |

task graph
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time

@ all instances of actor C' are similar (symmetric)
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Task Symmetry

a schedule
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Task Symmetry

a schedule
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@ all instances of actor C' are similar (symmetric)
e No change in latency !

Tendulkar Mapping/scheduling for many-core 28/52



Task Symmetry

a schedule
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time
@\ a permuted schedule
a Py| [ Ay [ By |Cu|D|
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task graph
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®

—

time

@ all instances of actor C' are similar (symmetric)
e No change in latency !
e Huge number of such symmetric solutions \/
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Task Symmetry

a schedule
p \AO\BO\CH\Dl\

®
‘\ n| (5 [co ORISR D] 5]
@ ©

time
@\ a permuted schedule
a Py| [ Ay [ By |Cu|D|
o b [ [ColGRIE D ] 5 |

task graph

%)

®

—

time

@ all instances of actor C' are similar (symmetric)

e No change in latency !

e Huge number of such symmetric solutions \/
@ Add constraints to eliminate all but one
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Task Symmetry

a schedule
Py [A[ By |Cu| D]
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Task Symmetry

a schedule
Py [A[ By |Cu| D]

@/ P, [B1 [ Cuo | Cor | Coo [ Do | o |
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o>

task graph

@ lexicographic order : Cyp < Cp1 < C19 < Cy3
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Task Symmetry

a schedule
Py [A[ By |Cu| D]

@/ P, [B1 [ Cuo | Cor | Coo [ Do | o |
(] ® |

o>

task graph

@ lexicographic order : Cyp < Cp1 < C19 < Cy3

@ enforce lexicographic order in schedule:
s(u) < s(u') foru < o’
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Task Symmetry

a schedule
Py [A[ By |Cu| D]

@/ P, [B1 [ Cuo | Cor | Coo [ Do | o |
(] ® |

o>

task graph

@ lexicographic order : Cyp < Cp1 < C19 < Cy3
@ enforce lexicographic order in schedule:

s(u) < s(u') foru < o’
@ 5(Cqp) < s(Co1) < 5(Cqp) < s(C11) \/

Tendulkar Mapping/scheduling for many-core 29/52



Task Symmetry

a schedule
Py [A[ By |Cu| D]

r| (B lculCilcaln ]
& o

‘ time

@\ a lexicographic schedule
a P, ‘AO‘B0’C00|DO‘
@/ P, [ B, €] Cuo [€] D: [ E |

task graph

‘ time

@ lexicographic order : Cyy < Cp; < C1p < Cy3
@ enforce lexicographic order in schedule:

s(u) < s(u') foru < o’
@ 5(Cqp) < s(Co1) < 5(Cqp) < s(C11) \/
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Symmetry elimination

Task Symmetry : Theorem
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Symmetry elimination

Task Symmetry : Theorem
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Task Symmetry : Theorem

a schedule
v 4 50880 ¢
) “ “.‘ s, Py ‘ B: ‘CIO ‘ Cop ‘Coo‘ Dy ‘ Eo ‘
L ': v e
t e~ .,
’ g ‘ time
o

SR ) .
aLt e a permuted schedule

Py [ Bi [ Cio [€o0 ] Cor ] Do | Eo |

‘ time

%
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Symmetry elimination

Task Symmetry : Theorem

Lexicographic Schedule

@ Theorem : Every group has a lexicographic schedule
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Symmetry elimination

Task Symmetry : Theorem

Lexicographic Schedule

@ Theorem : Every group has a lexicographic schedule
@ Corollary : No feasible schedule is lost \/
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Symmetry elimination

Processor Symmetry
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Processor Symmetry
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Processor Symmetry
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@/ Time
@ schedule
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Processor Symmetry
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task graph ‘

Time
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Pareto Exploration

Exploration : Processors vs Latency a« = 30
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Symmetry elimination

Pareto Exploration

Processors

Latency

[ @ Sat Points ®  Unsat Points — ParetoCurve]

without symmetry breaking

Exploration : Processors vs Latency a« = 30
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Symmetry elimination

Pareto Exploration

30 56 30
a9 49
25 25
a2 a2
2 2
g g
3 15 8 g 15 28
8 8
& &
21 21
10 10
14 14
5 5
7 7
% s 10 15 20 25 30 o % 5 10 15 20 25 30 0
Latency Latency
[[e_sat Points = Unsat Points —— Pareto Curve] [Ce_sat Points = Unsat Points —— Pareto Curve|
without symmetry breaking with symmetry breaking

Exploration : Processors vs Latency a« = 30
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eto Exploration

° °
30 H 56 30 H 56
49 a9
25 25
a2 a2
@ @
3 g
815 8 g15 28
- &
21 21
10 10-
14 14
5 5
7 7
% 0 0 0
Latency Latency
[[e_sat Points = Unsat Points —— Pareto Curve] [Ce_sat Points ®_ Unsat Points. —— Pareto Curve|
without symmetry breaking with symmetry breaking

Exploration : Processors vs Latency a« = 30

Solver Performance

@ Timeouts reduce !
@ The gap between SAT and UNSAT points is smaller. \/
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Video Decoder

3D cost space (C.,Cp, Cp) exploration, Cp - total buffer size

MPEG video decoder:
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Video Decoder

3D cost space (C.,Cp, Cp) exploration, Cp - total buffer size

s without symmetry constraints _  _ with symmetry constraints

MPEG video decoder:

Processor

33/52
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3D cost space (C.,Cp, Cp) exploration, Cp - total buffer size

\ a  without symmetry constraints e with symmetry constraints

MPEG video decoder:
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Video Decoder

3D cost space (C.,Cp, Cp) exploration, Cp - total buffer size

s without symmetry constraints _  _ with symmetry constraints

MPEG video decoder:

Processor

Better Pareto points
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Video Decoder

3D cost space (C.,Cp, Cp) exploration, Cp - total buffer size

s without symmetry constraints _  _ with symmetry constraints

MPEG video decoder:

Processor

Better Pareto points in same TIME-Budget !

33/52
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Symmetry elimination

Distributed memory scheduling
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Symmetry elimination

Distributed memory scheduling

@ So far we ignored the communication costs

Tendulkar Mapping/scheduling for many-core 34/52



Symmetry elimination

Distributed memory scheduling

@ So far we ignored the communication costs

@ For distributed memory, communication needs to be modeled
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Distributed memory scheduling
view

e Distributed memory scheduling
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Distributed memory scheduling

Kalray MPPA-256
- uevo | ot |

Tendulkar Mapping/scheduling for many-core 36/52



Distributed memory scheduling

Kalray MPPA-256

e 16 compute clusters
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Distributed memory scheduling

Kalray MPPA-256

Shared
Memory

e 16 compute clusters
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Distributed memory scheduling

Kalray MPPA-256

Shared
Memory

e 16 compute clusters
e 16 processors
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Distributed memory scheduling

Kalray MPPA-256

Shared
Memory

e 16 compute clusters

e 16 processors
e 2 MB Shared Memory

Tendulkar Mapping/scheduling for many-core

36/52



Distributed memory scheduling

Kalray MPPA-256

Shared
Memory

e 16 compute clusters

e 16 processors
e 2 MB Shared Memory

e DMA \/
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Kalray MPPA-256

Shared
Memory

e 16 compute clusters

e 16 processors
e 2 MB Shared Memory

o DMA \/

o Toroidal 2D network
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e 16 processors
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o DMA \/
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Distributed memory scheduling

Design Flow

Application
Graph
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Distributed memory scheduling
esign Flow
Application
Graph

Partitioning @\
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Distributed memory scheduling
esign Flow
Application
Graph

Partitioning C{D\

@ Load balance the groups
@ Minimize data exchange \/

Tendulkar Mapping/scheduling for many-core 37/52



Distributed memory scheduling
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Distributed memory scheduling

Design Flow

Application

Graph (9\
— 0 0

Partitioning
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) Place the Groups
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@ Minimize distance between communicating groups \/
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Distributed memory scheduling

Design Flow

Application
Graph @\®\
) (] (v)

Partitioning @\
J Schedule
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Placement i/ P

) sl w [0 5] m Transfer
i,

——— H
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Distributed memory scheduling

Design Flow

Application
Graph @\®\
) (] ()

Partitioning
C;>G/ Schedule

m Tasks
Placement i/ P
) sl w [0 5] m Transfer
o
Multi-cluster RO
Scheduling v [A]B ]G]
—_—

| Time

@ Minimize Latency
@ Minimize Buffer size \/
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Distributed memory scheduling

Output of Design Flow
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Output of Design Flow

@ Tasks and Transfers
o Cluster Mapping
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Output of Design Flow

@ Tasks and Transfers
o Cluster Mapping

e Processor and DMA Mapping
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Output of Design Flow

@ Tasks and Transfers
o Cluster Mapping

e Processor and DMA Mapping

o Start time
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Output of Design Flow

@ Tasks and Transfers
o Cluster Mapping

e Processor and DMA Mapping

o Start time

@ Edges
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Output of Design Flow

@ Tasks and Transfers
o Cluster Mapping

e Processor and DMA Mapping

o Start time

@ Edges
o Communication buffer size
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Output of Design Flow

@ Tasks and Transfers
o Cluster Mapping

e Processor and DMA Mapping

o Start time

@ Edges
o Communication buffer size

@ Application
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Output of Design Flow

@ Tasks and Transfers
o Cluster Mapping

e Processor and DMA Mapping

o Start time

@ Edges
o Communication buffer size

@ Application
o Latency
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Distributed memory scheduling

Tasks communicating via DMA:
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Distributed memory scheduling

Tasks communicating via DMA:

Clustery
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DMA,
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Distributed memory scheduling

Tasks communicating via DMA:

,,,,,,,,,,,,,,,,, oma icon
o S g [P L]
@—0O—0—0 { N
Time
Task Description Resources used Task duration
I Initialization Processor and DMA Constant

Tendulkar Mapping/scheduling for many-core 39/52



Tasks communicating via DMA:

77777777777777777 DMA g { ™
@ m @ @ 57‘? DMA, n
N N4 S PTA 1]
Time
Task Description Resources used Task duration
I Initialization Processor and DMA Constant
G Network Transfer Only DMA Transfer size dependent
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Model Transformation

An example application graph:

0
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An example application graph:
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Model Transformation

An example application graph:

O amn O

Partition-Aware graph:

ewt : [1,w] /-\ ewn * (1] /-\ ert : (o, w) O
A Iwr G\Vr B
O )

Buffer-Aware graph:

. 1 . . )
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Model Transformation

An example application graph:

O amn O

Partition-Aware graph:

ewt : [1,w] /-\ ewn * (1] /-\ ert : (o, w) O
A Iwr G\Vr B
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Buffer-Aware graph:
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Model Transformation

An example application graph:

O amn O

Partition-Aware graph:
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Buffer-Aware graph:
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odel Transformation

An example application graph:

O amn O

Partition-Aware graph:

ewt : [1,w] /-\ ewn * (1] /-\ ert : (o, w) O
A Iwr G\Vr B
O )

Buffer-Aware graph:

DMA-Completion DMA : flow-control
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Distributed memory scheduling

ecoder Example

12

Tendulkar Mapping/scheduling for many-core 41/52



JPEG Decoder Example

12

@ - ' 1

VLD : Variable Length Decoder
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JPEG Decoder Example

12

VLD : Variable Length Decoder

IQ / IDCT : Inverse Quantization / Inverse Discrete Cosine Transform
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JPEG Decoder Example

12

VLD : Variable Length Decoder

IQ / IDCT : Inverse Quantization / Inverse Discrete Cosine Transform

Color : Color Conversion
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Distributed memory scheduling

JPEG Decoder Example

Partitioning Solutions:

JPEG
Decoder C.- : Max. workload per group
C77 : Total communication cost
Partitioning

C, : No. of Groups

 CEE——

Placement

| N —

. . .. )
Multi-cluster
Scheduling

—

—
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JPEG Decoder Example

Partitioning Solutions:

JPEG
Decoder C.- : Max. workload per group
C77 : Total communication cost
CEE—
Partitioni .
L C, : No. of Groups
Pl t
ﬁ& Solution Allocated group Exploration Cost
vid ig color C- C, GC,
(Multicluster ) Py 0 1 2 424012 12384 3
Scheduling Py 0 0 1 758116 2736 2
Pso 0 0 0 934288 0 1
Pss 0 1 1 510276 9648 2

%
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Partitioning Solutions:
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Decoder C.- : Max. workload per group
C77 : Total communication cost
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Partitioni .
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JPEG Decoder Example

Partitioning Solutions:

JPEG
Decoder C.- : Max. workload per group
C77 : Total communication cost
CEE—
Partitioni .
L C, : No. of Groups
Pl t
ﬁ& Solution Allocated group Exploration Cost
vid ig color C- C, GC,
(Multicluster ) Py 0 1 2 [ 424012 12384 3 T
Scheduling Py 0 0 1 /58116 2/36 2
- 1 Py, 0 O 0 [ 934288 0 1
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%

Tendulkar Mapping/scheduling for many-core 42/52



Distributed memory scheduling

JPEG Decoder Example

Scheduling Solutions:

| S
JPEG -10%
Decoder
—
Partitioning ;w:
- ) %
2
»n 11
Placement _— 5
e Solution g
Multi-cluster Po 1
Scheduling Py
_ Pe 04 05 06 07 08 09 1
Ps3 Latency (cycles) 106

o Iy Psl = P52 ¢ PsS
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Distributed memory scheduling

JPEG Decoder Example

JPEG decoder latency on Kalray platform

10* 10" 10" 10"
ot
— 12 i — 12 = 12 = 12
g g g 8
s 2 5 5
Py ° 3 s
& 11 @ 11 B 11 » 11
5 5 k3l &
a 3 a z
1 e 1 e 1 e 1
04 05 06 07 08 09 1 04 05 06 07 08 09 1 04 05 06 07 08 09 1 04 05 06 07 08 09 1
Latency (cycles) 106 Latency (cycles)  .10° Latency (cycles) 106 Latency (cycles)  .10°
P. s0 P. sl P, s2 P. s3
-o- model —~—  measured-min. =  measured-max.

%
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Distributed memory scheduling
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Design Tools
view

e Design Tools
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Our Framework

Runtime
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Runtime

Run-time

Tendulkar Mapping/scheduling for many-core 46 /52



Our Framework

Runtime

XML

q Run-time |

Tendulkar Mapping/scheduling for many-core 46 /52



Our Framework

Runtime

Application Code

XML ‘
q Run-time

Tendulkar Mapping/scheduling for many-core 46 /52



Our Framework

Runtime

Application Code

XML ‘
q Run-time

Tendulkar Mapping/scheduling for many-core 46 /52



Our Framework

Runtime

Application Code

w b =]

q Run-time

Tendulkar Mapping/scheduling for many-core 46 /52



Our Framework
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Our Framework

e StreamExplorer

o Written in Java

@ 32k+ lines of Code.

e Runtime

o Written in C++

o 14k+ lines of Code.
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Conclusions and Future Work

Conclusions:

@ Symmetry elimination finds better solutions
@ Combined Optimization with Communication modeling

@ Automated design flow for distributed memory
Future Work:

@ Spread actor over multiple clusters
@ Network route selection and scheduling
@ Pipelined scheduling

@ Scheduling under uncertainty
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SDF and Split Join graphs

Split-Join Graphs

Hypothesis supported by Streamit:!
@ Total 763 actors analyzed in various applications

@ 94% are stateless
@ 6% are stateful

@ 45% have states due to algorithm
@ 55% have avoidable states
@ Odd rates exists but are rare
CD-DAT benchmark used as an example
Converts CD audio (44.1 kHz) to digital audio tape (48 kHz)

[1] W. Thies and S. Amarasinghe. “An Empirical Characterization of Stream Programs and Its Implications for Language and Compiler V

Design”.
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Symmetry Breaking

Overview

Q Symmetry Breaking
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Symmetry Breaking

Proof Sketch

modify a feasible schedule such that:
s(Vo) < s(v1) S5(vy) < ...
prove that precedence constraints are satisfied
S here: for neutral channels (a=1), unfolded to (vp, v'1)

b 50 |
1> B

A1)~

A 2] fp> Bl2)

lexicographic start-time new hier. index;
order compatible new precedence relation
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modify a feasible schedule such that:
s(Vo) < s(v1) S5(vy) < ...
prove that precedence constraints are satisfied
S here: for neutral channels (a=1), unfolded to (vp, v'1)

| AO...l ........... +>Bo | |A1 L

lexicographic start-time new hier. index;
order compatible new precedence relation
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Proof Sketch
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Proof Sketch

Lo [P o | Lo | ] 210 |

i I Lo | ] a1 |
L2 2 | [ 221 ]y [o2] ]
T3 | | 3 | | 431=== s3] [«— [j1=13]
[ 4 [ 3041 | ] 44 |

ESINEEN

take successor | j | by definition there exist j + 1 same or earlier successors

their original predecessors finish before successor [ j |:
j + 1 predecessors finish before, hence the earliest j + 1 ones as well
predecessor | j | finishes before successor [ j |
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Design Flow Details

@ Design Flow Details
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Design Flow Details

Design Flow

Tendulkar

Partitioning
| N —

Placement
—/

0 )
Multi-cluster

Application
Graph

—— (3D Pareto solutions)

Yy max workload

per group

#groups
----- -

estimated
comm. cost

----- minimal soluton ———> communication cost

latency

Scheduling
—

—

___________ S

buffer size
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DMA transfer granularity

Overview

0 DMA transfer granularity
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DMA transfer granularity

Buffering Algorithm

For architectures with DMA and limited local memory

| | writebacky | writeback; i writebacky I

Output | ! ! i
Transfer |! Prologue . i i
Computation| | idle compute, compute, compute, idle I
Input | : 1 " 1
Tra,?sfe, { prefetch, ' prefetch, prefetch, | ! Epilogue ]
T T - T T

Time

Tendulkar Mapping/scheduling for many-core 9/20



DMA transfer granularity

Data transfer granularity

Transfer Granularity less than optimal

T?;,}gg, ‘ Prologue ‘ writebacky  writeback;  writeback,  writebacks  writeback,  writebacks |
Computation idle compute, compute; compute, compute; compute, compute; idle |
Trlgr?:fter prefetch, prefetch; prefetch, prefetchy prefetch, prefetchy } Epilogue ;
Time
Transfer Granularity greater than optimal
%;ntg?etr ‘ Prologue ‘ writebacky | writeback; writebacky |
Computation| idle compute, compute; compute, idle |
Trlgr?:fter iy prsistist, prefetch, | 3 Epilogue 1
Time
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DMA transfer granularity

Data transfer granularity

Additional complexity with multiple processors

'Igr):r:quetr i oo bo, b1, b b3, by, bs bg, b, bs I
Procy idle b bs bs |
Proc; idle by by by |
Procy idle by by be |
Tareier bo, b1, b2 b, ba, bs b, b7, bs Epilogue
| Time | |
A
Tendulkar
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DMA transfer granularity

DMA transfer granularity optimization

Transfer
/ computation
time per block Total Exec
i i i time
| | |
Lo L C)
I I
o — Ty(s)
| ’ L Ti(s)
i . |
i I
I | | |
I I I
| | |
. . . block
- I
x local mem. size '
51 Sp i ! s
size
Transfer Computation s*
Domain Domain
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DMA transfer granularity

Experimental Evaluation

Characterization of DMA of IBM Cell B.E.:

F T T T ] T T T
t|—e—1SPU xoA 301 & —o—1SPU | |
|-=-2SPU 1 . -=-2 SPU
—e—4SPU o\ —e—4 SPU
— 10 gspy 1 ‘
8 r 1 8 20} =
= s
x I 1 X
8 8
S S 10p i
103 | / g g
F , 1
[ —g—o—0—1 ]
S = ] ol |
L1 | | | | L | | | | | |
16 64 256 1024 4096 16384 16 64 256 1024 4096 16384
block size (bytes) block size (bytes)
Time to read/write block Cost per byte

%
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Experimental Evaluation

Synthetic Application Benchmark:

-107

—_
ot

—

o
ot
2 SPU-optimal

4 SPU-optimal

Execution Time (clock cycles)
8 SPU-optimal

| | | |
16 64 256 1024 4096 16384
block size (bytes)

—o— 2 SPU-pred —=— 4 SPU-pred —e— 8 SPU-pred
—+— 2 SPU-meas —+— 4 SPU-meas - & -8 SPU-meas \/
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Run-time Management

Overview

@ Run-time Management
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The context
]

L 3
3
B

q App, |

3
- <®
H

»

@ Multiple configurations for each application

@ Applications start / stop dynamically

@ How to:

e select a configuration for each application?
e re-configure the applications? \/
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CompSoC platform

CompOSe CompOSe

FEthereal NoC ]

Features:

@ CompOSe real-time operating system

@ Predictable Athereal network-on-chip

@ TDM application scheduling for composability

@ composable: The changes in an application don’t affect other
running applications \/
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Run-time Management

Resource Manager conceptual view

Application start/stop request

| o) System RM |
I (e)] I
- |
L 2s |
| = £ |
L c o 1 f 1f .
I é e !
| 3 Application Application |
| [} o000

‘ 8 RM RM 1

Resource manager Design:

@ System RM : takes re-configuration decisions
@ Application RM : implements re-configuration decisions \/
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Run-time Management

m

Tile1 Tile2 Tile3
Application Application —  Application
RM (slave) RM (master) —» RM (slave)

11
System RM
Application Application «—  Application
RM (slave) RM (master) — RM (slave)

| | |
[EtherealNOC |

Resource manager Implementation:

@ System RM: is a separate application
@ Application RM:

@ organized in master-slave(s) configuration
@ is a part of user application
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Run-time Management

Experiment with JPEG Decoder

Steps for Re-configuration:

1.

. Remove old FIFO(s)
. Add application to TDM

. Inform system RM about completion

107
12 m L] [ ] L]

1
0.8
L] o = m u
0.6 L]

Instruct application RM to reconfigure g .
@)

RequestremovalofapplicationfromTDMn'i I I I I I I I I I I I I

21-2 21-3 2-23 2-2-2 2-3-2 2:3-3 3-3-3 2-3-3 223 2-22 2-1-2 232
Remove application from TDM and ack. Tile mapping(VLD, IQ/IDCT, CC)

-10%
L]
I | | .
1

ck cycles

2.5

Resize TDM allocation

™

Clock cycles
o 5
= \_ L]
o

Add new FIFO(s)

213 223 222 232 233 3-33 233 223 222 21-2 232
Tile mapping(VLD, IQ/IDCT, CC)

. step1 step2 mm step3 I step4 mam step5+6
. step? step8  m predicted
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